
I.J. Modern Education and Computer Science, 2017, 5, 27-33
Published Online May 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2017.05.04

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 5, 27-33

Two-Level Alloyed Branch Predictor based on

Genetic Algorithm for Deep Pipelining

Processors

Shivam Goyal

JECRC University, Jaipur, Rajasthan 303905, India

E-mail: shivamgoyal.sg05@gmail.com

Jaskirat Singh
JECRC University, Jaipur, Rajasthan 303905, India

E-mail: jaskirat.singh@jecrcu.edu.in

Abstract—To gain improved performance in multiple

issue superscalar processors, the increment in instruction

fetch and issue rate is pretty necessary. Evasion of control

hazard is a primary source to get peak instruction level

parallelism in superscalar processors. Conditional branch

prediction can help in improving the performance of

processors only when these predictors are equipped with

algorithms to give higher accuracy. The Increment in

single miss-prediction rate can cause wastage of more

than 20% of the instructions cycles, which leads us to an

exploration of new techniques and algorithms that

increase the accuracy of branch prediction. Alloying is a

way to exploit the local and global history of different

predictors in the same structure and sometimes also

called hybrid branch prediction. In this paper, we aim to

design a more accurate and robust two-level alloyed

predictor, whose behavior is more dynamic on changing

branch direction.

Index Terms—Control hazard, Branch prediction,

Alloying, hybrid branch predictors, dynamic, robust.

I. INTRODUCTION

High-performance computers are embedded with the

processors with deeper pipelining and also with higher

parallelism in instruction fetch, and are called superscalar

processors. The Increment in instruction fetch parallelism

causes control and data hazards. Data forwarding units

can be implemented to remove data hazards whereas

branch predictors deal with control hazards. A lot of

cycles get wasted in a single miss-prediction, that‟s why

we need branch predictors having very high level of

accuracy. One way of deploying this is to make adaptive

branch predictor [11]. Such predictor uses the

information about the behavior of a branch for fixed

number of iterations (local history) or/and behavior of

fixed number of past branches (global history) stored in it

at the time of execution [3]. The new way of dealing with

this problem is to use multiple advanced dynamic branch

predictors in the same structure to maintain the accuracy

of prediction throughout. This idea came into existence

because every branch predictor has its characteristics and

behaves differently with the change in frequency of

branch directions. Branch prediction is an on-going

subject.

Branch prediction is also a point of interest for many

researchers. There are several ways of deploying the

branch predictors, but two-level alloyed predictor is

considered to be most accurate [7]. The technique that a

highly accurate predictor uses is recording the branch

history and observing each branch scenario which

predictor came across. Predictor learns from these

scenarios and starts predicting better. Static selection is

undesirable as the direction of individual branches varies

dynamically, and there could be a need for both global

and local history [1].

The need for global and local history made alloyed

branch prediction technique came into existence.

Alloying gives higher prediction accuracy over

conventional branch predictors with the addition of

nominal hardware to store branch/branches history. No

advancement in prediction mechanism limits alloying

technique to get efficiencies ranging in 70%-95% and in

some situations the miss-prediction rate can be as high as

35%. A new source of miss-prediction comes into

account if we deploy components for both local and

global history [9]. This miss-prediction happens when

branch needs local history and predictors track the global

one or vice-versa and hence poor behavior. This kind of

prediction is called wrong-history miss-prediction. The

Wrong history here doesn‟t mean that history bits are

wrong, but the track is inappropriate for a particular

branch [3]. Separate structures for global and local

history can solve this problem but still alloyed branch

predictor lacks in good prediction mechanism. This

lacking in accuracy is the reason why alloyed predictors

use other schemes such as Tournament predictors or

Genetic Programming to increase performance. An

energy efficient branch predictor with less history size

and self-learning capacity is our goal so that the

predictions will become more robust and dynamic

according to change in frequency of branch direction in

28 Two-Level Alloyed Branch Predictor based on Genetic Algorithm for Deep Pipelining Processors

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 5, 27-33

instruction fetch.

This paper explains why and when our predictor

performs well. The Genetic algorithm with a particular

fitness function we have chosen works well for the class

of continuously flipping branches (if-else branches) along

with those branches whose flipping tendency is very less

(loop branches). We know that programs tend to have

branches, of which, these two kinds frequently occur but

when they do not, our predictor may not perform as well

as other techniques. Thus, our predictor works best in the

conditions where branch transition probabilities are either

too high or too less.

Our predictor gives a hike in performance and reaches

the accuracies as high as 98% with the128K budget in the

two extreme cases mentioned above. On the other hand

for other cases, the performance is not remarkable, and

mispredictions rate reaches to 20-25%.

This paper makes the following contributions. In

section-I, we introduce the basic branch problem and

validation of scheme proposed in this paper. In section-II,

we provide a deep literature survey, which explains a

wide variety of branch resolving techniques and covers

major related work. Furthermore, in section-III, we

proceed in our paper by giving a thorough explanation of

how to integrate genetic algorithm in branch prediction.

This section also explains genetic operations involved in

GA. In section IV we explained the whole methodology,

which we have used while integrating genetic algorithm

with alloyed branch predictor. This section focuses on

modeling GA and explains how genetic operations work

to select the best predictor in present situation. Section V

includes results of our simulations and performance

comparison of conventional branch predictors with

proposed predictor has been done. Lastly, in section VI

we concluded the performance analysis done in the

previous section. This section also gives the validation of

proposed work. Tabulated results are attached at the end

of the paper.

II. RELATED WORKS

The literature on branch prediction schemes is huge

[13][2][11][14][4][6]. Few of them from deep past were

based on static predictions while others were dynamic in

nature i.e. predictors which change its behavior in run-

time. Researchers have done Substantial research to

decrease aliasing problem, power consumption problem,

delay and hardware in branch predictors [15][1][3]. Bi-

Modal branch predictor [13] is the simplest dynamic

branch predictor. It is more accurate than one-bit branch

predictor and one of the most widely used predictors. The

accuracy of this predictor depends on the dynamic

behavior of the branch, which limits the accuracy to 50%

[2]. It also has a high level of aliasing in PHT (Pattern

history table) that affects the accuracy. Two-level

Adaptive Branch predictors and hybrid predictors such as

YAGS (Yet Another Global Scheme) branch predictors

can improve efficiency. These predictors consume less

power and have improved accuracy with little aliasing

[11][15][16]. The main advantage we get from the

adaptive or dynamic branch predictor is they learn the

repetitive pattern of change in branch direction if any,

studies the branch behavior and acts accordingly. It does

not alter its prediction very quickly but changes with

changing scenario [11].

A more accurate 2 level branch predictor, which takes

the recent behavior of other branches into consideration,

is called Correlating branch predictor [2][14]. A

previously executed branch can affect the direction and

outcome of the future branch if a previous branch runs

source operands of the next branch. Correlated branch

predictor handles these correlations between the branches

and improves prediction mechanism by identifying the

correlated branches from large history table. G-share

branch predictor eradicates the problem of aliasing [12]

in earlier branch predictors. When multiple branches

mapped onto the same location in branch history table, it

is called aliasing. Therefore, many positions of branch

history table remain unmapped. G-share branch predictor

[2] uses the XOR function to produce new bits, which

will further point to the different locations in the history

table. In G-share prediction mechanism XORing of „k‟

least significant bits of current PC address is being done

with address bits of global history table [9]. This XORing

gives a new address, which will point to a unique location

of branch history table and we take prediction bit of that

address to predict the current branch. Generation of

unique address every time in G-share predictors prevents

aliasing. Removal of aliasing helps in increasing the

prediction accuracy but with a margin of 2-5%, and there

is still a scope to recuperate the branch prediction

techniques and algorithms [4]. The right amount of

research on resolving multiple branches in a single cycle

has also been done in recent past [17].

Alloyed branch prediction has its importance in its

robustness in using the local and global history in the

same structure. Alloyed or hybrid predictors are designed

to fulfill the requiring need of improvement in the

accuracy of predictors and also its an effort to develop a

structure to predict branches (T/NT) more dynamically.

Alloyed predictors changed the prediction mechanism

slightly which was earlier unaltered in conventional

branch predictors [6]. Hybrid predictors with different

PHT for taken and not taken branches are efficient

enough to improve prediction accuracy but with a large

hardware budget.

Branch prediction structures that use more than two

single scheme predictors were introduced in the past.

These predictors use two kinds of predictors: one with

less warm-up time along with those who have highest

prediction efficiency but have great warm-up time. These

predictors are made keeping the fact in mind that most

efficient predictors have large history tables and they

need training time to get higher accuracies i.e. warm-up

time of these predictors are large. Hybrid predictors [18]

Initially use small single scheme predictor with less

warm-up time. In the meantime, the history table gets

filled with enough prediction bits to train the other

predictor embedded in the structure. This predictor then

 Two-Level Alloyed Branch Predictor based on Genetic Algorithm for Deep Pipelining Processors 29

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 5, 27-33

uses this history to predict with better accuracy and

maintain it. Predictor that uses neural networks

(perceptrons) has also been proposed [5]. These

predictors with machine learning techniques are more

sophisticated than conventional predictors. They claim to

give higher accuracies of prediction in nominal hardware

budget (4K byte).

III. BRANCH PREDICTION WITH GENETIC ALGORITHM

(GA)

Branch prediction with GA is a new way to predict the

branch direction (T/NT). GA has a knack to generate

potential solutions and to improve them, as it evolves.

GA is all about moving to the fittest solutions and

maintaining the selection of the same. This property of

GA motivates us to design an environment, where GA

selects the most suitable predictor to be used and also

picks up the prediction bit of the same predictor [5].

A. Why GA

The motivation of integrating our primary alloyed

branch prediction mechanism with the GA is to improve

the conventional prediction scheme and to have a

substantial growth in prediction accuracy. GA is efficient

in elucidating two of the biggest problems, which we

come across while predicting through conventional

Hybrid predictors: One is how to know which predictor is

making the correct predictions and the second is how to

ensure that the prediction bit generated by our

conventional predictors is right in the present scenario.

GA does this job efficiently as we can encode the type of

predictor with its characteristics in the binary string that

are called chromosomes. The genetic operations help us

in selecting the winner chromosome. The prediction of

the predictor encoded in the winner chromosome can then

be made.

B. How GA Works

Fig.1. GA mechanism

Generating Initial Population- The very first step in

GA is to create an initial population of solutions, which

we call chromosomes. These chromosomes are the binary

strings as shown in Figure 4 whose bits are the properties

of the different predictors such as the warm-up time,

more accurate predictor, and probability difference

between the last few taken/not-taken branches.

Applying Fitness Function- The next step is to find the

winner chromosome among all the chromosomes selected

and for this, we use fitness function over our

chromosomal strings as shown in the second phase of

Figure 4. The fittest chromosome is selected and the

prediction bit of the predictor encoded in the winner

chromosome is taken into account [8].

Mutation -Mutation is done on a single bit or multiple

points of current generation. It is a step to prevent

convergence in multiple offspring. Mutation is done in

the binary chromosomal string to flip few of the bits,

which will try to make every new generation unique [8].

Crossover - Crossover is done to copy useful bits from

winner chromosome to other offspring. It is done to

generate healthier future generation from the recipient

chromosome. In this way, the new generation produced

will be healthier than the old generation of solutions [8].

IV. PROPOSED METHODOLOGY

The use of 2-bit counter in traditional predictors such

as correlated and G-share gives miss-prediction whenever

counter is at corrupt state. This type of miss-prediction

reduces the accuracy. Which led us to create a

mechanism, which can work accurately even when the

counter goes wrong. Integrating GA with alloyed

predictor does the same. GA not only selects the

prediction bit of best predictor but also tries to predict

branch correctly when selected predictor fails. So in this

way scope of wrong predictions decreases. The criterion

of prediction used by GA in the cases when the counter

goes wrong is to calculate probability difference of last 8

T/NT branches. GA gives its forecast as taken if the

probability of the number of taken branches is more or

vice-versa.

A. GA Implementation

GA starts with encoding binary strings called

chromosomes, and each chromosomal string contains 9

bits, and each bit has its significant meaning regarding

the features of predictor: Starting two bits signifies the

type of predictor: (00) for bi-modal, (01) for G-share, (11)

for correlated predictor. Next, two bits mean the wake-up

time of the particular predictor. The wake-up time is

highest for bi-modal and lowest for the correlated

predictor, therefore initially (00) is used for highest and

(11) is for the lowest wake-up time. Least significant 5

bits show the probability difference of the last 8 T/NT

branches, where 4 bits represent the binary equivalent of

the integral value of probability difference and fifth bit is

signed bit for the difference.

The next step in GA is to apply fitness function over

the chromosomes to find most suitable predictor. Fitness

function used in our algorithm is the number of ones in

the chromosome, more the number of ones in the binary

string, healthier the chromosome will be.

30 Two-Level Alloyed Branch Predictor based on Genetic Algorithm for Deep Pipelining Processors

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 5, 27-33

Fig.2. (a) Initial Populations (b) Winner Chromosome

Further, the algorithm proceeds by setting mutation

probability (0.55) and mutation point (5th bit) as shown

in Figure 6 (a).

Mutation point can be a single bit or multiple bits. This

process is simple, which includes flipping the bit of the

chromosome on variation point.

The next stage in GA is to copy the relevant bits from

winner chromosome to rest of the chromosomes, and this

process is called crossover. In our chromosome strings,

relevant bits are the number of ones, so we do bitwise

XORing of rest of the chromosome with winner

chromosome. This step helps in copying the bits

containing “1” present in recipient chromosome at the

crossover points to rest of the offspring.

Fig.3. (a) Chromosomes before and after Mutation (b) Chromosome
before and after crossover

After crossover, we get healthier generation. It can be

observed from Figure 6 (b) that new chromosomal strings

contain comparatively more number of ones, which

means offspring of the new generation are healthier than

the previous generation. This process is thus repeated in

the next iteration, results in the production of new

offspring from previous ones. It results in shifting to the

fittest predictor, which will result in appropriate

predictions every time. New population after the first

iteration is shown in Figure 7.

Fig.4. Chromosome After Applying GA

Further improvement in prediction mechanism is

achieved by selecting the winner chromosome along with

calculating the probability of last 8 taken/Not taken

branches. This probability is useful in the cases where

Winner chromosome fails to predict correctly. This

failure happens when the state of 2-bit counter goes

wrong in such situations prediction is considered to be

the one, which is more probable for e.g. If the number of

taken branches are more in last eight branches then next

prediction is found to be taken or vice-versa. The

probability difference, which gets calculated earlier and

mapped into the last 5 bits of chromosomal string, is used

in this case.

V. RESULTS

The designed alloyed branch predictor with Genetic

algorithm simulates performance analysis on MATLAB.

A 16- Instruction RISC ISA (Instruction set architecture)

of a processor simulated with an instruction memory of

1MB having instruction length of 16-bits. Two branch

instructions included in this ISA: Branch if Zero and

branch if negative. Only the fetch stage of a processor is

simulated in MATLAB with the complete proposed

predictor working in the fetch stage. This simulation

includes over 0.5 million instructions of which about 25%

instructions are branch one. The mechanism to flip

branch direction is kept random it depends upon the

branch transition probabilities we set. Setting the branch

transition probabilities allows us to have a controlled

flow of branch instructions. High branch transition

probability means a more random flipping of branches,

which ultimately creates a robust environment for our

predictor.

To test and compare GA with other kinds of branch

predictors, we did a rigorous analysis of designed

predictor on several benchmark programs. Each program

has 0.5 million instructions in which more than 0.15

million instructions are branches. Statistically, every

fourth instruction being a branch gives us an idea about

the number of branches in a program. The branch

resolving structure is kept just after the fetch stage to

predict correct branch direction. The branch transition

probability varies from 0.35 - 0.95 for each benchmark

program. Different branch transition probabilities in

 Two-Level Alloyed Branch Predictor based on Genetic Algorithm for Deep Pipelining Processors 31

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 5, 27-33

every benchmark program provide randomness in

forward and backward branches. It means that larger the

transition probability, greater is the flipping of branch

directions. Branch resolving mechanism consists of three

conventional predictors with genetic algorithm applied to

it. To make the comparison more extensive we did

various simulations with different branch transition

probabilities. Each simulation with one value of transition

probability tested for various history length of 128, 256,

512, 1024, 2048 and 4096 entries.

Observation from tabulated as well as graphical results

explains that although our prediction based on GA is not

attaining high accuracy for average branch transition

probabilities like 0.35 to 0.75, it‟s raising with increasing

history lengths and is ranging between 77%-89%.

Furthermore, it is also not able to attain very high

accuracy for low transition probability branches (0.15),

but the prediction accuracy is consistent and near about

96%. On the other side, efficiency is as high as 98% for

high transition probability branches (0.95) in significant

history length. Our GA-based predictor is giving

exceptional accuracy for high transition probability

branches, and it is consistent for all history length.

Our predictor can choose the best predictor out of three

conventional branch predictors, which includes in the

structure. This decision of which predictor is fittest is

critical and should be done very carefully as the selected

suitable predictor is going to generate the decision bits.

Our GA-based predictor is also able to make its

prediction whenever the chosen conventional predictor

makes a wrong move. This prediction made by GA is

correct almost all the time as this decision made by

calculating the branch probability differences of taken

and not-taken branches executed in the past.

GA provides a considerable amount of increment in the

prediction accuracies and can also perform well even if

the history table is short. Moreover, we can see that

during instruction fetch, branches that are usually

encountered are either with very low transition

probability (loop branches) or with very high transition

probability (if-else branches). Higher accuracies in 0.15

and 0.95 branch transition probabilities make our branch-

resolving structure more suitable for the environment

where branch direction is randomly flipping at a very

high rate and also in the environment where it is not

flipping much.

32 Two-Level Alloyed Branch Predictor based on Genetic Algorithm for Deep Pipelining Processors

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 5, 27-33

Fig.5. Prediction Accuracy for Different Predictors at Different History

Length

VI. CONCLUSION

In this paper, we systematically studied the efficiency

of GA in the context of alloyed branch prediction. Our

idea of applying GA in choosing fit predictor among

conventional branch predictors proved to be a source of

better prediction mechanism. It is evident from our results

that applying GA can improve the prediction mechanism

and gives a considerable amount of increment in

prediction accuracy for different branch transition

probabilities. This increment is more than 10% in few

cases of branch transition probabilities such as 0.35, 0.55

and 0.75, whereas it‟s more than 20% for 0.15 and 0.95-

branch transition probabilities. Moreover, the substantial

increment in accuracy can be achieved even for small

history length whereas for large history length of 4096

entries; accuracy reaches as high as 98%. This makes our

overall prediction mechanism more robust and reliable in

conditions where branch directions are continuously

flipping as seen in the case of if-else branches and also in

conditions where branches are flipping at a very slow rate

as seen in loop branches.

REFERENCES

[1] Huang, Mingkai, Dan He, Xianhua Liu, Mingxing Tan,

and Xu Cheng. "An Energy-Efficient Branch Prediction

with Grouped Global History". In Parallel Processing

(ICPP), 2015 44th International Conference on, pp. 140-

149. IEEE, 2015.

[2] Wu, Di. "High Performance Branch Predictors for Soft

Processors." PhD diss., University of Toronto, 2014.

[3] Lu, Z., Lach, J., Stan, M. R. & Skadron, K. “Alloyed

branch history: Combining global and local branch history

for robust performance”. International Journal of Parallel

programming, 31(2), pp.137-177, 2003

[4] Eden, Avinoam Nomik. "Of limits and myths in branch

prediction." PhD diss., University of Michigan, 2001.

[5] Jiménez, Daniel A., and Calvin Lin. "Dynamic branch

prediction with perceptrons." In High-Performance

Computer Architecture, 2001. HPCA. The Seventh

International Symposium on, pp. 197-206. IEEE, 2001.

[6] Skadron, Kevin, Margaret Martonosi, and Douglas W.

Clark. "A taxonomy of branch mispredictions, and alloyed

prediction as a robust solution to wrong-history

mispredictions." Parallel Architectures and Compilation

Techniques, 2000. Proceedings. International Conference

on. IEEE, 2000.

[7] Lee, Chih-Chieh, I-CK Chen, and Trevor N. Mudge. "The

bi-mode branch predictor." In Microarchitecture, 1997.

Proceedings. Thirtieth Annual IEEE/ACM International

Symposium on, pp. 4-13. IEEE, 1997.

[8] Emer, Joel, and Nikolas Gloy. "A language for describing

predictors and its application to automatic synthesis." In

ACM SIGARCH Computer Architecture News, vol. 25(2),

pp. 304-314. ACM, 1997.

[9] McFarling, Scott. Combining branch predictors. Vol. 49.

Technical Report TN-36, Digital Western Research

Laboratory, 1993.

[10] Porter, Leo, and Dean M. Tullsen. "Creating artificial

global history to improve branch prediction accuracy." In

Proceedings of the 23rd international conference on

Supercomputing, pp. 266-275. ACM, 2009.

[11] Yeh, T. Y., & Patt, Y. N. “Alternative implementations of

two-level adaptive branch prediction”. In ACM SIGARCH

Computer Architecture News Vol. 20(2), pp. 124-134. ,

May 1992

[12] Mudge, T., Lee, C. C., & Sechrest, S. “Correlation and

aliasing in dynamic branch predictors”. In Computer

Architecture, 1996 23rd Annual International Symposium

on pp. 22-22, IEEE. May 1996

[13] Lee, C. C., Chen, I. C., & Mudge, T. N. “The bi-mode

branch predictor”. In Microarchitecture, 1997.

Proceedings., Thirtieth Annual IEEE/ACM International

Symposium on pp. 4-13. IEEE, December 1997

[14] Thomas, R., Franklin, M., Wilkerson, C., & Stark, J.

“Improving branch prediction by dynamic dataflow-based

identification of correlated branches from a large global

history”. In ACM SIGARCH Computer Architecture News

Vol. 31(2), pp. 314-323. ACM, June 2003

[15] Chang, P. Y., Evers, M., & Patt, Y. N. “Improving branch

prediction accuracy by reducing pattern history table

interference”. International journal of parallel

programming, 25(5), pp.339-362, 1997

[16] Eden, A. N., & Mudge, T. “The YAGS branch prediction

scheme”. In Proceedings of the 31st annual ACM/IEEE

international symposium on Microarchitecture pp. 69-77,

November 1998

[17] Yeh, T. Y., Marr, D. T., & Patt, Y. N. “Increasing the

instruction fetch rate via multiple branch prediction and a

branch address cache”. In ACM International Conference

on Supercomputing 25th Anniversary Volume pp. 183-192,

June 2014

[18] Evers, M., Chang, P. Y., & Patt, Y. N. “Using hybrid

branch predictors to improve branch prediction accuracy

in the presence of context switches”. In ACM SIGARCH

Computer Architecture News Vol. 24(2), pp. 3-11, May

1996

 Two-Level Alloyed Branch Predictor based on Genetic Algorithm for Deep Pipelining Processors 33

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 5, 27-33

SUMMARY OF RESULTS

Table 1. Prediction Accuracy (%) when Branch Transition Probability is 0.15

Type of predictor 128 Entries 256 Entries 512 Entries 1024 Entries 2048 Entries 4096 Entries

Bi-modal 74.7332 74.5448 74.5563 74.5511 74.6037 74.7038

Correlated 84.5975 84.3679 84.4228 84.4531 84.4303 84.4414

G-share 84.4102 84.4034 84.4354 84.4142 84.4714 84.5864

Genetic algorithm 96.5381 96.9031 96.8808 96.9300 96.9128 96.9225

Table 2. Prediction Accuracy (%) when Branch Transition Probability is 0.35

Type of predictor 128 Entries 256 Entries 512 Entries 1024 Entries 2048 Entries 4096 Entries

Bi-modal 50.2328 50.7558 50.7404 50.7338 50.8696 51.2456

Correlated 65.4424 65.5290 65.6538 65.7279 65.7691 66.3231

G-share 65.2612 65.7008 65.5584 65.7390 65.7595 66.4679

Genetic algorithm 86.5602 88.2742 87.6113 88.4593 87.8712 89.4123

Table 3. Prediction Accuracy (%) when Branch Transition Probability is 0.55

Type of predictor 128 Entries 256 Entries 512 Entries 1024 Entries 2048 Entries 4096 Entries

Bi-modal 36.0330 36.0663 35.9496 36.0571 36.2910 37.9508

Correlated 52.3182 52.5252 52.6824 52.8677 52.8014 54.4699

G-share 52.2722 52.5704 52.6413 52.5481 52.8517 55.1713

Genetic algorithm 77.6711 79.3096 77.4923 79.3159 77.6484 81.9421

Table 4. Prediction Accuracy (%) when Branch Transition Probability is 0.75

Type of predictor 128 Entries 256 Entries 512 Entries 1024 Entries 2048 Entries 4096 Entries

Bi-modal 37.4525 37.4347 37.5521 37.3746 37.1817 38.3432

Correlated 53.7087 53.8850 53.7928 53.6989 53.2564 54.5643

G-share 57.7247 53.4613 53.6096 53.4522 53.4178 56.3654

Genetic algorithm 77.2412 78.3468 78.4986 78.3978 78.2489 82.2012

Table 5. Prediction Accuracy (%) when Branch Transition Probability is 0.95

Type of predictor 128 Entries 256 Entries 512 Entries 1024 Entries 2048 Entries 4096 Entries

Bi-modal 81.0605 80.9782 80.8621 80.6099 80.1575 80.1775

Correlated 88.7983 88.7320 88.8631 88.4700 88.1646 86.2334

G-share 88.8023 88.6610 88.2921 87.9359 86.8487 88.4656

Genetic algorithm 96.5824 98.1196 98.0172 97.8342 97.8487 98.5313

Authors’ Profiles

Shivam Goyal is currently an M.Sc.

candidate in the Department of Electronics

and Communication Engineering at

JECRC University at Jaipur (India). He did

his B.Tech in Electronics and

Communication Engineering from JECRC

UDML College of engineering, Jaipur,

India. His research interests include high-

performance computing and Microarchitecture.

Jaskirat Singh is an Assistant Professor –

II in the Department of Electronics and

Communication Engineering, JECRC

University, Jaipur (India). He did his

B.Tech in Electronics and Communication

Engineering from Sikkim Manipal Institute

of Technology, Sikkim Manipal University,

Sikkim (India). He did his MSc. Engg. In

Electrical and Computer Engineering from Lakehead University,

Canada. His research interests include Supervised,

Reinforcement and Deep Learning.

How to cite this paper: Shivam Goyal, Jaskirat Singh,"Two-Level Alloyed Branch Predictor based on Genetic

Algorithm for Deep Pipelining Processors", International Journal of Modern Education and Computer

Science(IJMECS), Vol.9, No.5, pp. 27-33, 2017.DOI: 10.5815/ijmecs.2017.05.04

