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Abstract—To gain improved performance in multiple 

issue superscalar processors, the increment in instruction 

fetch and issue rate is pretty necessary. Evasion of control 

hazard is a primary source to get peak instruction level 

parallelism in superscalar processors. Conditional branch 

prediction can help in improving the performance of 

processors only when these predictors are equipped with 

algorithms to give higher accuracy. The Increment in 

single miss-prediction rate can cause wastage of more 

than 20% of the instructions cycles, which leads us to an 

exploration of new techniques and algorithms that 

increase the accuracy of branch prediction. Alloying is a 

way to exploit the local and global history of different 

predictors in the same structure and sometimes also 

called hybrid branch prediction. In this paper, we aim to 

design a more accurate and robust two-level alloyed 

predictor, whose behavior is more dynamic on changing 

branch direction. 

 
Index Terms—Control hazard, Branch prediction, 

Alloying, hybrid branch predictors, dynamic, robust. 

 

I.  INTRODUCTION 

High-performance computers are embedded with the 

processors with deeper pipelining and also with higher 

parallelism in instruction fetch, and are called superscalar 

processors. The Increment in instruction fetch parallelism 

causes control and data hazards. Data forwarding units 

can be implemented to remove data hazards whereas 

branch predictors deal with control hazards. A lot of 

cycles get wasted in a single miss-prediction, that‟s why 

we need branch predictors having very high level of 

accuracy. One way of deploying this is to make adaptive 

branch predictor [11]. Such predictor uses the 

information about the behavior of a branch for fixed 

number of iterations (local history) or/and behavior of 

fixed number of past branches (global history) stored in it 

at the time of execution [3]. The new way of dealing with 

this problem is to use multiple advanced dynamic branch 

predictors in the same structure to maintain the accuracy 

of prediction throughout. This idea came into existence 

because every branch predictor has its characteristics and 

behaves differently with the change in frequency of 

branch directions. Branch prediction is an on-going 

subject.  

Branch prediction is also a point of interest for many 

researchers. There are several ways of deploying the 

branch predictors, but two-level alloyed predictor is 

considered to be most accurate [7]. The technique that a 

highly accurate predictor uses is recording the branch 

history and observing each branch scenario which 

predictor came across. Predictor learns from these 

scenarios and starts predicting better. Static selection is 

undesirable as the direction of individual branches varies 

dynamically, and there could be a need for both global 

and local history [1]. 

The need for global and local history made alloyed 

branch prediction technique came into existence. 

Alloying gives higher prediction accuracy over 

conventional branch predictors with the addition of 

nominal hardware to store branch/branches history. No 

advancement in prediction mechanism limits alloying 

technique to get efficiencies ranging in 70%-95% and in 

some situations the miss-prediction rate can be as high as 

35%. A new source of miss-prediction comes into 

account if we deploy components for both local and 

global history [9]. This miss-prediction happens when 

branch needs local history and predictors track the global 

one or vice-versa and hence poor behavior. This kind of 

prediction is called wrong-history miss-prediction. The 

Wrong history here doesn‟t mean that history bits are 

wrong, but the track is inappropriate for a particular 

branch [3]. Separate structures for global and local 

history can solve this problem but still alloyed branch 

predictor lacks in good prediction mechanism. This 

lacking in accuracy is the reason why alloyed predictors 

use other schemes such as Tournament predictors or 

Genetic Programming to increase performance.  An 

energy efficient branch predictor with less history size 

and self-learning capacity is our goal so that the 

predictions will become more robust and dynamic 

according to change in frequency of branch direction in 
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instruction fetch. 

This paper explains why and when our predictor 

performs well. The Genetic algorithm with a particular 

fitness function we have chosen works well for the class 

of continuously flipping branches (if-else branches) along 

with those branches whose flipping tendency is very less 

(loop branches). We know that programs tend to have 

branches, of which, these two kinds frequently occur but 

when they do not, our predictor may not perform as well 

as other techniques. Thus, our predictor works best in the 

conditions where branch transition probabilities are either 

too high or too less.  

Our predictor gives a hike in performance and reaches 

the accuracies as high as 98% with the128K budget in the 

two extreme cases mentioned above. On the other hand 

for other cases, the performance is not remarkable, and 

mispredictions rate reaches to 20-25%. 

This paper makes the following contributions. In 

section-I, we introduce the basic branch problem and 

validation of scheme proposed in this paper. In section-II, 

we provide a deep literature survey, which explains a 

wide variety of branch resolving techniques and covers 

major related work. Furthermore, in section-III, we 

proceed in our paper by giving a thorough explanation of 

how to integrate genetic algorithm in branch prediction. 

This section also explains genetic operations involved in 

GA. In section IV we explained the whole methodology, 

which we have used while integrating genetic algorithm 

with alloyed branch predictor. This section focuses on 

modeling GA and explains how genetic operations work 

to select the best predictor in present situation.  Section V 

includes results of our simulations and performance 

comparison of conventional branch predictors with 

proposed predictor has been done. Lastly, in section VI 

we concluded the performance analysis done in the 

previous section. This section also gives the validation of 

proposed work. Tabulated results are attached at the end 

of the paper. 

 

II.  RELATED WORKS 

The literature on branch prediction schemes is huge 

[13][2][11][14][4][6]. Few of them from deep past were 

based on static predictions while others were dynamic in 

nature i.e. predictors which change its behavior in run-

time. Researchers have done Substantial research to 

decrease aliasing problem, power consumption problem, 

delay and hardware in branch predictors  [15][1][3].   Bi-

Modal branch predictor [13] is the simplest dynamic 

branch predictor. It is more accurate than one-bit branch 

predictor and one of the most widely used predictors. The 

accuracy of this predictor depends on the dynamic 

behavior of the branch, which limits the accuracy to 50% 

[2]. It also has a high level of aliasing in PHT (Pattern 

history table) that affects the accuracy. Two-level 

Adaptive Branch predictors and hybrid predictors such as 

YAGS (Yet Another Global Scheme) branch predictors 

can improve efficiency. These predictors consume less 

power and have improved accuracy with little aliasing 

[11][15][16]. The main advantage we get from the 

adaptive or dynamic branch predictor is they learn the 

repetitive pattern of change in branch direction if any, 

studies the branch behavior and acts accordingly. It does 

not alter its prediction very quickly but changes with 

changing scenario [11].  

A more accurate 2 level branch predictor, which takes 

the recent behavior of other branches into consideration, 

is called Correlating branch predictor [2][14]. A 

previously executed branch can affect the direction and 

outcome of the future branch if a previous branch runs 

source operands of the next branch. Correlated branch 

predictor handles these correlations between the branches 

and improves prediction mechanism by identifying the 

correlated branches from large history table. G-share 

branch predictor eradicates the problem of aliasing [12] 

in earlier branch predictors. When multiple branches 

mapped onto the same location in branch history table, it 

is called aliasing. Therefore, many positions of branch 

history table remain unmapped. G-share branch predictor 

[2] uses the XOR function to produce new bits, which 

will further point to the different locations in the history 

table. In G-share prediction mechanism XORing of „k‟ 

least significant bits of current PC address is being done 

with address bits of global history table [9]. This XORing 

gives a new address, which will point to a unique location 

of branch history table and we take prediction bit of that 

address to predict the current branch. Generation of 

unique address every time in G-share predictors prevents 

aliasing. Removal of aliasing helps in increasing the 

prediction accuracy but with a margin of 2-5%, and there 

is still a scope to recuperate the branch prediction 

techniques and algorithms [4]. The right amount of 

research on resolving multiple branches in a single cycle 

has also been done in recent past [17].  

Alloyed branch prediction has its importance in its 

robustness in using the local and global history in the 

same structure. Alloyed or hybrid predictors are designed 

to fulfill the requiring need of improvement in the 

accuracy of predictors and also its an effort to develop a 

structure to predict branches (T/NT) more dynamically. 

Alloyed predictors changed the prediction mechanism 

slightly which was earlier unaltered in conventional 

branch predictors  [6]. Hybrid predictors with different 

PHT for taken and not taken branches are efficient 

enough to improve prediction accuracy but with a large 

hardware budget. 

Branch prediction structures that use more than two 

single scheme predictors were introduced in the past. 

These predictors use two kinds of predictors: one with 

less warm-up time along with those who have highest 

prediction efficiency but have great warm-up time. These 

predictors are made keeping the fact in mind that most 

efficient predictors have large history tables and they 

need training time to get higher accuracies i.e. warm-up 

time of these predictors are large. Hybrid predictors [18] 

Initially use small single scheme predictor with less 

warm-up time. In the meantime, the history table gets 

filled with enough prediction bits to train the other 

predictor embedded in the structure. This predictor then 
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uses this history to predict with better accuracy and 

maintain it. Predictor that uses neural networks 

(perceptrons) has also been proposed [5]. These 

predictors with machine learning techniques are more 

sophisticated than conventional predictors. They claim to 

give higher accuracies of prediction in nominal hardware 

budget (4K byte). 

 

III.  BRANCH PREDICTION WITH GENETIC ALGORITHM 

(GA) 

Branch prediction with GA is a new way to predict the 

branch direction (T/NT). GA has a knack to generate 

potential solutions and to improve them, as it evolves. 

GA is all about moving to the fittest solutions and 

maintaining the selection of the same. This property of 

GA motivates us to design an environment, where GA 

selects the most suitable predictor to be used and also 

picks up the prediction bit of the same predictor [5]. 

A. Why GA 

The motivation of integrating our primary alloyed 

branch prediction mechanism with the GA is to improve 

the conventional prediction scheme and to have a 

substantial growth in prediction accuracy. GA is efficient 

in elucidating two of the biggest problems, which we 

come across while predicting through conventional 

Hybrid predictors: One is how to know which predictor is 

making the correct predictions and the second is how to 

ensure that the prediction bit generated by our 

conventional predictors is right in the present scenario. 

GA does this job efficiently as we can encode the type of 

predictor with its characteristics in the binary string that 

are called chromosomes. The genetic operations help us 

in selecting the winner chromosome. The prediction of 

the predictor encoded in the winner chromosome can then 

be made.  

B. How GA Works 

 

Fig.1. GA mechanism 

Generating Initial Population- The very first step in 

GA is to create an initial population of solutions, which 

we call chromosomes. These chromosomes are the binary 

strings as shown in Figure 4 whose bits are the properties 

of the different predictors such as the warm-up time, 

more accurate predictor, and probability difference 

between the last few taken/not-taken branches.  

Applying Fitness Function- The next step is to find the 

winner chromosome among all the chromosomes selected 

and for this, we use fitness function over our 

chromosomal strings as shown in the second phase of 

Figure 4. The fittest chromosome is selected and the 

prediction bit of the predictor encoded in the winner 

chromosome is taken into account [8]. 

Mutation -Mutation is done on a single bit or multiple 

points of current generation. It is a step to prevent 

convergence in multiple offspring. Mutation is done in 

the binary chromosomal string to flip few of the bits, 

which will try to make every new generation unique [8]. 

Crossover - Crossover is done to copy useful bits from 

winner chromosome to other offspring. It is done to 

generate healthier future generation from the recipient 

chromosome. In this way, the new generation produced 

will be healthier than the old generation of solutions [8]. 

 

IV.  PROPOSED METHODOLOGY 

The use of 2-bit counter in traditional predictors such 

as correlated and G-share gives miss-prediction whenever 

counter is at corrupt state. This type of miss-prediction 

reduces the accuracy. Which led us to create a 

mechanism, which can work accurately even when the 

counter goes wrong. Integrating GA with alloyed 

predictor does the same. GA not only selects the 

prediction bit of best predictor but also tries to predict 

branch correctly when selected predictor fails. So in this 

way scope of wrong predictions decreases. The criterion 

of prediction used by GA in the cases when the counter 

goes wrong is to calculate probability difference of last 8 

T/NT branches. GA gives its forecast as taken if the 

probability of the number of taken branches is more or 

vice-versa. 

A. GA Implementation 

GA starts with encoding binary strings called 

chromosomes, and each chromosomal string contains 9 

bits, and each bit has its significant meaning regarding 

the features of predictor: Starting two bits signifies the 

type of predictor: (00) for bi-modal, (01) for G-share, (11) 

for correlated predictor. Next, two bits mean the wake-up 

time of the particular predictor. The wake-up time is 

highest for bi-modal and lowest for the correlated 

predictor, therefore initially (00) is used for highest and 

(11) is for the lowest wake-up time. Least significant 5 

bits show the probability difference of the last 8 T/NT 

branches, where 4 bits represent the binary equivalent of 

the integral value of probability difference and fifth bit is 

signed bit for the difference. 

The next step in GA is to apply fitness function over 

the chromosomes to find most suitable predictor. Fitness 

function used in our algorithm is the number of ones in 

the chromosome, more the number of ones in the binary 

string, healthier the chromosome will be. 
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Fig.2. (a) Initial Populations (b) Winner Chromosome 

Further, the algorithm proceeds by setting mutation 

probability (0.55) and mutation point (5th bit) as shown 

in Figure 6 (a).  

Mutation point can be a single bit or multiple bits. This 

process is simple, which includes flipping the bit of the 

chromosome on variation point. 

The next stage in GA is to copy the relevant bits from 

winner chromosome to rest of the chromosomes, and this 

process is called crossover. In our chromosome strings, 

relevant bits are the number of ones, so we do bitwise 

XORing of rest of the chromosome with winner 

chromosome. This step helps in copying the bits 

containing “1” present in recipient chromosome at the 

crossover points to rest of the offspring.  

 

 
 

 

Fig.3. (a) Chromosomes before and after Mutation (b) Chromosome 
before and after crossover 

After crossover, we get healthier generation. It can be 

observed from Figure 6 (b) that new chromosomal strings 

contain comparatively more number of ones, which 

means offspring of the new generation are healthier than 

the previous generation. This process is thus repeated in 

the next iteration, results in the production of new 

offspring from previous ones. It results in shifting to the 

fittest predictor, which will result in appropriate 

predictions every time. New population after the first 

iteration is shown in Figure 7. 

 

 

Fig.4. Chromosome After Applying GA 

Further improvement in prediction mechanism is 

achieved by selecting the winner chromosome along with 

calculating the probability of last 8 taken/Not taken 

branches. This probability is useful in the cases where 

Winner chromosome fails to predict correctly. This 

failure happens when the state of 2-bit counter goes 

wrong in such situations prediction is considered to be 

the one, which is more probable for e.g. If the number of 

taken branches are more in last eight branches then next 

prediction is found to be taken or vice-versa. The 

probability difference, which gets calculated earlier and 

mapped into the last 5 bits of chromosomal string, is used 

in this case. 

 

V.  RESULTS 

The designed alloyed branch predictor with Genetic 

algorithm simulates performance analysis on MATLAB. 

A 16- Instruction RISC ISA (Instruction set architecture) 

of a processor simulated with an instruction memory of 

1MB having instruction length of 16-bits. Two branch 

instructions included in this ISA: Branch if Zero and 

branch if negative. Only the fetch stage of a processor is 

simulated in MATLAB with the complete proposed 

predictor working in the fetch stage.  This simulation 

includes over 0.5 million instructions of which about 25% 

instructions are branch one. The mechanism to flip 

branch direction is kept random it depends upon the 

branch transition probabilities we set. Setting the branch 

transition probabilities allows us to have a controlled 

flow of branch instructions. High branch transition 

probability means a more random flipping of branches, 

which ultimately creates a robust environment for our 

predictor. 

To test and compare GA with other kinds of branch 

predictors, we did a rigorous analysis of designed 

predictor on several benchmark programs. Each program 

has 0.5 million instructions in which more than 0.15 

million instructions are branches. Statistically, every 

fourth instruction being a branch gives us an idea about 

the number of branches in a program. The branch 

resolving structure is kept just after the fetch stage to 

predict correct branch direction. The branch transition 

probability varies from 0.35 - 0.95 for each benchmark 

program. Different branch transition probabilities in 
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every benchmark program provide randomness in 

forward and backward branches. It means that larger the 

transition probability, greater is the flipping of branch 

directions. Branch resolving mechanism consists of three 

conventional predictors with genetic algorithm applied to 

it. To make the comparison more extensive we did 

various simulations with different branch transition 

probabilities. Each simulation with one value of transition 

probability tested for various history length of 128, 256, 

512, 1024, 2048 and 4096 entries. 

Observation from tabulated as well as graphical results 

explains that although our prediction based on GA is not 

attaining high accuracy for average branch transition 

probabilities like 0.35 to 0.75, it‟s raising with increasing 

history lengths and is ranging between 77%-89%. 

Furthermore, it is also not able to attain very high 

accuracy for low transition probability branches (0.15), 

but the prediction accuracy is consistent and near about 

96%. On the other side, efficiency is as high as 98% for 

high transition probability branches  (0.95) in significant 

history length. Our GA-based predictor is giving 

exceptional accuracy for high transition probability 

branches, and it is consistent for all history length.  

Our predictor can choose the best predictor out of three 

conventional branch predictors, which includes in the 

structure. This decision of which predictor is fittest is 

critical and should be done very carefully as the selected 

suitable predictor is going to generate the decision bits. 

Our GA-based predictor is also able to make its 

prediction whenever the chosen conventional predictor 

makes a wrong move. This prediction made by GA is 

correct almost all the time as this decision made by 

calculating the branch probability differences of taken 

and not-taken branches executed in the past. 

GA provides a considerable amount of increment in the 

prediction accuracies and can also perform well even if 

the history table is short. Moreover, we can see that 

during instruction fetch, branches that are usually 

encountered are either with very low transition 

probability (loop branches) or with very high transition 

probability (if-else branches). Higher accuracies in 0.15 

and 0.95 branch transition probabilities make our branch-

resolving structure more suitable for the environment 

where branch direction is randomly flipping at a very 

high rate and also in the environment where it is not 

flipping much. 
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Fig.5. Prediction Accuracy for Different Predictors at Different History 

Length 

 

VI.  CONCLUSION 

In this paper, we systematically studied the efficiency 

of GA in the context of alloyed branch prediction. Our 

idea of applying GA in choosing fit predictor among 

conventional branch predictors proved to be a source of 

better prediction mechanism. It is evident from our results 

that applying GA can improve the prediction mechanism 

and gives a considerable amount of increment in 

prediction accuracy for different branch transition 

probabilities. This increment is more than 10% in few 

cases of branch transition probabilities such as 0.35, 0.55 

and 0.75, whereas it‟s more than 20% for 0.15 and 0.95-

branch transition probabilities. Moreover, the substantial 

increment in accuracy can be achieved even for small 

history length whereas for large history length of 4096 

entries; accuracy reaches as high as 98%. This makes our 

overall prediction mechanism more robust and reliable in 

conditions where branch directions are continuously 

flipping as seen in the case of if-else branches and also in 

conditions where branches are flipping at a very slow rate 

as seen in loop branches.  
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SUMMARY OF RESULTS 

Table 1. Prediction Accuracy (%) when Branch Transition Probability is 0.15 

Type of predictor 128 Entries 256 Entries 512 Entries 1024 Entries 2048 Entries 4096 Entries 

Bi-modal 74.7332 74.5448 74.5563 74.5511 74.6037 74.7038 

Correlated 84.5975 84.3679 84.4228 84.4531 84.4303 84.4414 

G-share 84.4102 84.4034 84.4354 84.4142 84.4714 84.5864 

Genetic algorithm 96.5381 96.9031 96.8808 96.9300 96.9128 96.9225 

Table 2. Prediction Accuracy (%) when Branch Transition Probability is 0.35 

Type of predictor 128 Entries 256 Entries 512 Entries 1024 Entries 2048 Entries 4096 Entries 

Bi-modal 50.2328 50.7558 50.7404 50.7338 50.8696 51.2456 

Correlated 65.4424 65.5290 65.6538 65.7279 65.7691 66.3231 

G-share 65.2612 65.7008 65.5584 65.7390 65.7595 66.4679 

Genetic algorithm 86.5602 88.2742 87.6113 88.4593 87.8712 89.4123 

Table 3. Prediction Accuracy (%) when Branch Transition Probability is 0.55 

Type of predictor 128 Entries 256 Entries 512 Entries 1024 Entries 2048 Entries 4096 Entries 

Bi-modal 36.0330 36.0663 35.9496 36.0571 36.2910 37.9508 

Correlated 52.3182 52.5252 52.6824 52.8677 52.8014 54.4699 

G-share 52.2722 52.5704 52.6413 52.5481 52.8517 55.1713 

Genetic algorithm 77.6711 79.3096 77.4923 79.3159 77.6484 81.9421 

Table 4. Prediction Accuracy (%) when Branch Transition Probability is 0.75 

Type of predictor 128 Entries 256 Entries 512 Entries 1024 Entries 2048 Entries 4096 Entries 

Bi-modal 37.4525 37.4347 37.5521 37.3746 37.1817 38.3432 

Correlated 53.7087 53.8850 53.7928 53.6989 53.2564 54.5643 

G-share 57.7247 53.4613 53.6096 53.4522 53.4178 56.3654 

Genetic algorithm 77.2412 78.3468 78.4986 78.3978 78.2489 82.2012 

Table 5. Prediction Accuracy (%) when Branch Transition Probability is 0.95 

Type of predictor 128 Entries 256 Entries 512 Entries 1024 Entries 2048 Entries 4096 Entries 

Bi-modal 81.0605 80.9782 80.8621 80.6099 80.1575 80.1775 

Correlated 88.7983 88.7320 88.8631 88.4700 88.1646 86.2334 

G-share 88.8023 88.6610 88.2921 87.9359 86.8487 88.4656 

Genetic algorithm 96.5824 98.1196 98.0172 97.8342 97.8487 98.5313 
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