International Journal of Modern Education and Computer Science (IJMECS)

ISSN: 2075-0161 (Print), ISSN: 2075-017X (Online)

Published By: MECS Press

IJMECS Vol.9, No.4, Apr. 2017

Decision Mathematics as Preparation for Undergraduate Computer Science

Full Text (PDF, 771KB), PP.1-11

Views:84   Downloads:3


Ellie Darlington, Jessica Bowyer

Index Terms

Mathematics;transition;assessment;decision mathematics;A-level


In England and Wales, students commonly take what are called Advanced ‘A’ level examinations in their final two years of secondary school. Good passes in these examinations are required to be accepted onto university degree courses. 123 Computer Science students from 24 different UK universities participated in an online survey about their perceptions and experiences of A-level Mathematics and A-level Further Mathematics as preparation for the mathematical component of their degree. The majority reported that decision mathematics units that they had studied as part of either qualification had been good preparation for their degree. Additionally, those who had taken the Further Mathematics qualification were positive about their experience and its utility as preparation for undergraduate Computer Science. A-levels in Mathematics and Further Mathematics in England and Wales are currently undergoing significant reform. One of the major changes will see the removal of Decision Mathematics as an optional topic in A-level Mathematics, meaning that students who wish to study it must take Further Mathematics – a much less commonly studied subject. Consequently, this research might encourage admissions tutors to reconsider their admissions requirements for undergraduate Computer Science. 

Cite This Paper

Ellie Darlington, Jessica Bowyer,"Decision Mathematics as Preparation for Undergraduate Computer Science", International Journal of Modern Education and Computer Science(IJMECS), Vol.9, No.4, pp.1-11, 2017.DOI: 10.5815/ijmecs.2017.04.01


[1]Higher Education Statistics Agency. 2004. "Table 2e - All HE students by level of study, subject of study, domicile and gender 2002/03," [Online]. Available: [Accessed 25 Jan 2017].

[2]Higher Education Statistics Agency. 2016. "Students by subject of study, first year indicator, mode of study and level of study 2014/15," [Online]. Available: [Accessed 25 Jan 2017].

[3]Higher Education Statistics Agency. 2014. "Table SN3 - Percentage of all UK domiciled entrants to full-time other undergraduate courses in 2011/12 who are no longer in HE in 2012/13," [Online]. Available: [Accessed 25 Jan 2017].

[4]Beaubouef, T. and Mason, J. 2005. “Why the high attrition rate for computer science students: Some thoughts & observations”, Inroads - The SIGCSE Bulletin, 37(2), 103-106.

[5]Joint Council for Qualifications. 2016. "A-level results," [Online]. Available: [Accessed 25 Jan 2017].

[6]ALCAB. 2014. "Report of the alcab panel on mathematics & further mathematics," [Online]. Available: [Accessed 25 Jan 2017].

[7]Hillman, J. 2014. Mathematics after 16: The state of play, challenges and ways ahead. London, Nuffield Foundation.

[8]Alexander, S., Clark, M., Loose, K., Amillo, J., Daniels, M., Boyle, R., Laxer, C., and Shinners-Kennedy, D. 2003. “Case studies in admissions to amd early performance in computer science degrees”, ACM SIGCSE Bulletin conference, pp. 137-147.

[9]Gordon, N. 2004. “Mathematics and computing”, MSOR Connections, 4(2), 10-13.

[10]Gregory, P. 2004. “Motivating computing students to learn mathematics”, MSOR Connections, 4(3), 26-28.

[11]Porkess, R. 2013. A world full of data: Statistics opportunities across A-level subjects. London, Royal Statistical Society & the Institute & Faculty of Actuaries.

[12]OCR, 2015. "AS and A level computer science," [Online]. Available: [Accessed 25 Jan 2017].

[13]Boyle, R., Carter, J., and Clark, M. 2002. “What makes them succeed? Entry, progression and graduation in computer science”, Journal of Further and Higher Education, 26(1), 3-18.

[14]Baldwin, D., Walker, H.M., and Henderson, P.B. 2013. “The roles of mathematics in computer science”, ACM Inroads, 4(4), 74-80.

[15]Quality Assurance Agency for Higher Education. 2007. Subject benchmark statement: Computing. Mansfield, QAA.

[16]Ofqual. 2014. GCE subject level conditions and requirements for computer science. Coventry, Ofqual.

[17]Nuffield Foundation. 2012. Mathematics in A-level assessments: A report on the mathematical content of A-level assessments in business studies, computing, economics, geography, psychology and sociology. London, Nuffield Foundation.

[18]Davenport, J.H., Wilson, D., Graham, I., Sankaran, G., Spence, A., Blake, J., and Kynaston, S. 2014. “Interdisciplinary teaching of computing to mathematics students: Programming and discrete mathematics”, MSOR Connections, 14(1), 1-8.

[19]LTSN MathsTEAM. 2003. Diagnostic testing for mathematics. LTSN MathsTEAM Project.

[20]Manning, S., and Dix, A. 2008. “Identifying students' mathematical skills from a multiple-choice diagnostic test using an iterative technique to minimise false positives”, Computers and Education, 51(3), 1154-1171.

[21]Cantwell Wilson, B. 2002. “A study of factors promoting success in computer science including gender differences”, Computer Science Education, 12(1-2), 141-164.

[22]Katz, S., Allbritton, D., Aronis, J., Wilson, C., and Soffa, M.L. 2006. “Gender, achievement, & persistence in an undergraduate computer science program”, ACM SIGMIS Database, 37(4), 42-57.

[23]Katz, S., Aronis, J., Allbritton, D., Wilson, C., and Soffa, M.L. 2003. A study to identify predictors of achievement in an introductory computer science course. SIGMIS Conference, pp. 157-161.

[24]Bruce, K.B., Drysdale, R.L.S., Kelemen, C., and Tucker, A. 2003. “Why math?”, Communications of the ACM, 46(9). 41-44.

[25]Gersting, J.L. 1990. “The other two rs in the discrete mathematics course”, Computer Science Education, 1(4), 293-298.

[26]Ralston, A. 1981. “Computer science, mathematics, and the undergraduate curricula in both”, The American Mathematical Monthly, 88(7), 472-485.

[27]Pioro, B.T. 2006. “Introductory computer programming: Gender, major, discrete mathematics, and calculus”, Journal of Computing Sciences in Colleges, 21(5), 123-129.

[28]Graham, R.L., Knuth, D.E., and Patashnik, O. 1994. Concrete mathematics: A foundation for computer science. Boston, Addison Wesley.

[29]Complete University Guide. 2016. "University subject tables 2016: Computer science" [Online]. Available: [Accessed 25 Jan 2017].

[30]University of Cambridge Faculty of Mathematics. 2014. "Mathematics for the natural sciences workbook," [Online]. Available: [Accessed 25 Jan 2017].

[31]Darlington, D. and Bowyer, J. 2016. “The mathematics needs of higher education”, Mathematics Today, 52(1), 9.

[32]Darlington, E. 2015. Students' perceptions of A-level further mathematics as preparation for undergraduate mathematics. British Society for Research into Learning Mathematics, pp. 13-18.

[33]UCAS. 2015. "More women than men in two thirds of subject areas," [Online]. Available: [Accessed 25 Jan 2017].

[34]Vidal Rodeiro, C.L. 2012. Progression from A level mathematics to higher education. Cambridge, Cambridge Assessment.

[35]Department for Education. 2014. Further Mathematics GCE AS and A level subject content. London, Department for Education.

[36]Department for Education. 2014. Mathematics GCE AS and A level subject content. London, Department for Education.

[37]Department for Education. 2016. Mathematics AS and A level content. London, Department for Education.

[38]Department for Education. 2016, Further mathematics AS and A level content. London, Department for Education.

[39]OCR. 2016. "A level specification: Computer science (H445)," [Online]. Available: [Accessed 25 Jan 2017].

[40]OCR. 2016. "GCSE (9-1) specification: Computer science (J276)," [Online]. Available: [Accessed 25 Jan 2017].