
I.J. Modern Education and Computer Science, 2017, 12, 57-65
Published Online December 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2017.12.07

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 57-65

A Dynamic Feedback-based Load Balancing

Methodology

Xin ZHANG, Jinli LI*, Xin FENG
School of Computer Science and Technology

Changchun University of Science and Technology

Email: qianxiaweiguang@126.com

Received: 08 October 2017; Accepted: 08 November 2017; Published: 08 December 2017

Abstract—With the recent growth of Internet-based

application services, the concurrent accessing requests

arriving at the particular servers offering application

services are growing significantly. It is one of the critical

strategies that employing load balancing to cope with the

massive concurrent accessing requests and improve the

access performance is. To build up a better online service

to users, load balancing solutions achieve to deal with the

massive incoming concurrent requests in parallel through

assigning and scheduling the work executed by the

members within one server cluster. In this paper, we

propose a dynamic feedback-based load balancing

methodology. The method analyzes the real-time load

and response status of each single cluster member

through periodically collecting its work condition

information to evaluate the current load pressure by

comparing the learned load balancing performance with

the preset threshold. In this way, since the load arriving

at the cluster could be distributed dynamically with the

optimized manner, the load balancing performance could

thus be maintained so that the service throughput

capacity would correspondingly be improved and the

response delay to service requests would be reduced. The

proposed result is contributed to strengthening the

concurrent access capacity of server clusters. According

to the experiment report, the overall performance of

server system employing the proposed solution is better.

Index Terms—Load balancing, dynamic feedback,

server cluster, distributed computing

I. INTRODUCTION

In recent years, various Internet-based application

services have gradually been employed in all the areas of

human life. Through the response procedures, there are a

considerable number of service requests arriving at the

server within a short time and demanding to be answered

with less delay[1]. Therefore, it is the server throughput

that would directly affect the quality of application

services. It directly reflects the parallel processing

capability of servers (clusters) that support service

capabilities. The higher parallel processing capability

means that, within a fixed period, the number of service

requests to be dealt with can be relatively larger[2]. As a

solution to improve the parallel processing capability, the

load balancing technology groups a large number of

services requests with multi-point distribution to

averagely assign the requests to each of the member

servers (according to their responsibilities in the cluster,

we respectively categorize the member servers as

"master control node" and "working node") within the

same cluster[3]. Thus each of the working servers only

needs to cope with a similar number of the assigned

requests, and then the server cluster is enabled to provide

the parallel processing capability[4]. The access efficiency

of service requests is thus improved. In this paper, we

propose a load balancing method based on dynamic

feedback. By dynamic feedback mechanism, we collect

the working conditions of each working node in real time,

to dynamically adjust the workload distribution scheme

according to operating conditions during service request

access, so that each working node Undertake similar

workloads to the extent feasible and avoid unbalanced

load distribution. The method can efficiently adapt to

dynamic operating conditions during concurrent

processing and has good real-time capability and

flexibility.

II. RELATED WORK

The earliest balancing mechanism is performed by

employing DNS (Domain Name System) which

configures a host with multiple mapping addresses

through DNS configuration[5]. After the interactions with

the host from the arrived user service requests, the

requests are redirected by the host to the different

mapping addresses according to a preset principle[6]. The

servers at the mapping addresses would deal with the

requests in parallel, i.e., the preliminary load balancing

operations.

However, in this way, the load balancing efficiency is

relatively low and the working performance is limited by

the network topology. The load balancing doesn’t gain

much progress.

According to the research of Nikolaou et al., the actual

resource utilization rate of working nodes is the core

factor to achieve a better load balancing performance[7].

One of the main objectives of the load balancing scheme

58 A Dynamic Feedback-based Load Balancing Methodology

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 57-65

is to rationally plan the workload distribution and

equalize the resources of all working nodes. Cardellini

and Bryhni et al. compared and studied a variety of load

balancing methods, which suggests the advantages and

disadvantages of load balancing strategies based on

clients, servers, DNS and central allocators[8]. With

comparing the performance of various algorithms, the

contribution provides the solid support to load balancing

research. Referring to the commercial load balancing

products, a lot of Chinese and international companies

are making an effort to develop the software-based and

hardware-based load balancing products, such as LVS,

Lander Balance, Check Point, etc[9].

III. DYNAMIC FEEDBACK-BASED LOAD BALANCING

METHODOLOGY

When facing a large number of concurrent service

requests from users, the core task of implementing load

balancing is to arrange the strategy through proper task

scheduling, so that the server cluster can meet the

requirements of the overall service duration, task

throughput, resource utilization efficiency, scalability

and many other constraints[10]. The dynamic feedback-

based load balancing method proposed in this paper

focuses on the load conditions and the dynamics of

access tasks within each work node, and then it provides

the task scheduling plan and the near-optimal execution

solution under the concurrent request working conditions.

This paper elaborates the load balancing method with

considering the following factors[11]:

(1) Node parameter: it refers to the real-time load

status of each working node, including the number of

tasks in the running queue, the speed of the system call,

the size of the free memory, etc.

(2) Evaluation strategy: it refers to assess whether to

re-transfer the follow-up tasks to other nodes for further

processing according to the current workload of the

working node. In this paper, we select to employ a

threshold-based approach to determine the task transfer.

(3) Transfer location: given the tasks that are suitable

for transferring to other work nodes, it is necessary to

specify the target work node for task transfer.

(4) Maintenance means: it refers to determine the list

of tasks to be transferred. Then the load scheduling plan

for transferring tasks is executed maintain load balancing.

Through analyzing the above four factors, we can

suggest the procedures for load balancing process. First,

collecting and identifying the relevant available

resources during the balancing execution[12]. The

resource concerns the available working nodes,

processing capabilities of nodes, available storage space

and memory[13]. Second, analyzing and determining the

execution condition of dealing with the arrived tasks. If

all the tasks have been completed, then the node

continues with waiting for new tasks. If there are some

pending tasks, then the tasks are analyzed by concerning

the arrival rate of tasks, the number of the tasks and the

memory occupancy of the tasks[14]. Through considering

the three factors, the strategy and the relevant parameters

of dealing with tasks are adjusted. Third, collecting the

parameters of tasks arriving at the working nodes to

determine the current processing performance. In this

way, the node and the feasible moment to start the load

balancing process are settled[15]. Then configuring and

executing the load balancing method, i.e., selecting the

task items to be moved out, the working node where the

items are located and the destination nodes to move in

the tasks. Fifth, determining whether there is a new task

to be moved in. If there is a new task, then identifying

and collecting the available resource as the procedures in

the previous step. If there is no new incoming task, then

completing the current load balancing tasks (Seen in

Figure 1).

Fig.1. The execution flow of load balancing method

3.1 Dynamic feedback strategy

Given the actual situation of parallel processing, this

paper proposes a global load balancing quality-oriented

dynamic feedback strategy with considering the key

factors under the load balancing scenario and the

interrelations among the factors. During the process of

accessing the service requests and making the response,

 A Dynamic Feedback-based Load Balancing Methodology 59

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 57-65

the load condition of all the nodes is collected and

analyzed continuously. Combined with the dynamic

feedback strategy, the balancing procedures are kept

available and useful.

This paper proposes to dynamically analyze the

current status of the working nodes relying on the

feedback control theory for evaluating the load indicators

to adjust and arrange the load balancing scheme, with

which the load balancing solution is thus arranged and

planned to gain the continuous effectiveness. (Seen

Figure 2).

Fig.2. The evaluating scheme of the dynamic feed

In this paper, the working status of each node is taken

as the starting point to continuously evaluate the resource

occupancy and then to analyze various characteristic data

during the task execution. Through continuously

assessing the performance of the server cluster system,

the task allocation plan is adjusted accordingly. Here are

two specific tasks:

(1) to evaluate the load status of the work node;

(2) to formulate the load threshold setting strategy

according to the load assessment and to dynamically

adjust the threshold value correspondingly.

3.1.1 Evaluating load status of node

Node load assessment mainly concerns evaluating the

working node's situation and the interactions between the

nodes. The corresponding working parameters are:

(1) Working node operation indicator (denoted as
i

NS ,

i refers to the identity of the current work node, N

represents the indicator is used to specify the parameter

of a working node): This indicator reflects the

performance of the current working node under the

corresponding load condition and mainly covers the

status of CPU (denoted as p), memory (denoted as r) and

network card (denoted as t) that are participating in the

task execution. This indicator reflects the performance of

the current working node under the corresponding load

condition and mainly covers the status of the core

components participating in the task execution, such as

CPU (denoted as p), memory (denoted as r) and network

card (denoted as t). Meanwhile, the status (denoted as
c

ES) of the other component (denoted as c) that could

affect the performance would also be concerned if

necessary.

Because the instantaneous CPU load cannot truly

reflect the real working conditions during the continuous

execution of computing tasks, this paper selects to use

the average CPU working condition assessment method

based on moving inspection time window to calculate the

CPU work when calculating CPU performance. With this

method, the CPU usage conditions are collected at the

start time point and end time point of the inspection time

window. Then the overall CPU usage is calculated as the

percentage of the CPU runtime during the inspection

window out of the total CPU runtime. We take the

percentage value as the assessing result of investigating

the CPU (denoted as cpuusage
 and formulated as eq.(1)).

2 1 2 1(1 () / ()) 100%cpuusage idle idle cpu cpu     (1)

In eq.(1), the variable denoted as idle represents the

idle time of CPU at the corresponding time point, and the

variable denoted as cpu represents the corresponding

total CPU runtime.

In calculating the memory work condition (i.e.,
r

ES),

the percentage of the actual memory cost spent in the

calculation out of the total memory capacity is used as

the memory assessment result (denoted as memusage

calculated by eq.(2)).

() /memusage MemTotal MemFree MemTotal  (2)

60 A Dynamic Feedback-based Load Balancing Methodology

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 57-65

In eq.(2), MemTotal represents the total physical

capacity of memory and MemFree represents the

memory that is not used yet.

During calculating the network card work condition,

we employ a network test tool to measure the data flow

within the inspection time window. The network card

work condition is assessed as a percentage of the

maximum data flow value out of the network card

bandwidth parameter.

Based on the working status assessments onto all the

components within one working node, the working

condition of the working node is expressed as:

+ 1

i p r t c

N p E r E t E c E

p r t c

S S S S S   

   

        


  

 (3)

In eq.(3),  represents the weight of the

corresponding component during the measurement and it

is called component performance weight. All the

working conditions of all the components are notated in

form of percentage (from 0% to 100%). 0% indicates that

the components are not used, whereas 100% means the

component has reached the full load working condition.

(2) The node interaction indicator (denoted as
i

IS , i

refers to the identity of the current work node, I

represents the indicator is used to specify the interaction

among the working nodes): the indicator reflects the

communication performance between the current

working node and the master node (i.e., the node in

responsible for managing the distribution of tasks to all

the other work nodes).

The interaction indicator is expressed as:

1

0

1

k

I

m
k

I
i k
I

disconnected
s

connected

s

S
m



 
 




 



 (4)

In eq.(4), m represents the sum number of the links

from the current node to the other ones;
k

Is represents

the specific communication status and conditions from

the current node (whose identity is k) to the other ones. If

the interaction exists (i.e., the link is connected), then the

value of
k

Is is assigned with 1. Otherwise, the value is

assigned with 0.

With the above indicator, the load status assessment of

each working node is expressed as:

i i i

L N N I IS S S     (5)

In eq.(5),  represents the weight of one indicator

during the assessment and is called node performance

weight.

3.1.2 The strategy of configuring load threshold

Through the computing process mentioned above, the

strategy of scheduling tasks to the working nodes can be

established with the above load indicators, during which

we employ two thresholds as the scheduling decision

parameters, i.e.,
1 and

2 (
1 2 ).

(1) When 1

i

LS  , it means that the working load of

the current working node is relatively small. The

working node can complete the scheduled even earlier

and it could be assigned with new tasks in advance.

(2) When 1 2

i

LS   , it means that the working

load of the current working node is normal. The working

node can finish the tasks as planned and it could be

assigned with the new tasks requiring small load.

(3) When 2

i

LS  , it means that the working load of

the current working node is too large. And the working

node should not be assigned with new tasks in order to

prevent the overload that might lead to server crash. In

this case, after completing the current task, the load

assessment indicator would be reset as 0. The node

should re-participate in the load information feedback

process to obtain the new tasks in the further scheduling.

Through analyzing eq.(3), eq.(4) and eq.(5), the load

indicator denoted as S reflects the load status and

working conditions of the nodes as well as their

interactions. The component performance weight

denoted as  and the node performance weight denoted

as  reflects the criticality of either load condition (i.e.,

node working condition or component working condition)

during feeding back the assessment.

Therefore, the configuration of the weight parameters

can introduce the load balancing scenario into the

process of formulating the schedule scheme. The weight

value mains origins relying on the experiences from the

data center engineers and they would be gradually

turning to stable through long-term running. Moreover,

the paper recommends to initialize the two scheduling

decision parameters (i.e.,
1 and

2) as 0.5 and 0.8

respectively based on the authors’ practices.

During load balancing process, the load parameters are

continuously collected to form the periodic assessment

onto the load indicators. Meanwhile, the period of

collecting parameters can also be adjusted corresponding

to the scenarios where to run load balancing solution.

The adjustment can prevent the larger consumption of

the system performance and the energy. According to the

practical experience, we recommend to configure the

collecting period between 10 seconds and 90 seconds

corresponding to the service request frequency.

 A Dynamic Feedback-based Load Balancing Methodology 61

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 57-65

During operating the dynamic feedback-based load

balancing method, we find that the situations that lead to

the dynamic adjustment of tasks in the cluster and invoke

the feedback actions mainly occur in three scenarios, i.e.,

new tasks are loaded in real-time, real-time dynamic

changes of network bandwidth is dynamically changed in

real-time, and instant load capacity of working nodes is

being adjusted.

During loading the new task, the joining of newly

added working node(s) will not have a negative impact

on overall mission planning and cluster performance if

the new working nodes are included in the load

balancing solution. The newly added work nodes will be

given the priority to perform tasks with a relatively short

time and are configured to complete and implement the

corresponding feedback measures according to the above

strategies.

3.2 Task scheduling in load balancing

In the server cluster that implements the load

balancing solution, the load balancing algorithm

deployed at the master node considers the real-time load

conditions and processing performance of all working

nodes, and it constantly adjusts the proportion of task

distribution to avoid various problems caused by

unbalanced task distribution . Because the load balance

dynamically changes with time, the workload of each

working node is roughly equal to the load threshold

through the dynamic adjustment of the threshold, so that

the tasks can be evenly distributed and the working

efficiency of each working node can be brought into full

performance.

Fig.3. Working process of load balancing

The load balancing process includes (Seen in Fig.3):

(1) Load balancing management is carried out on the

master control node, and the load of the system is

analyzed according to the working status of the existing

nodes and the load balancing threshold.

(2) Through the connection between the nodes, the

master control node distributes the work tasks to each

working node.

(3) Each working node processes the received tasks.

(4) The real-time load status information for each

worker node is collected.

(5) The working condition of each node is calculated

and evaluated according to the collected load status

information.

(6) Through comparing the working status of the node

with the load balancing threshold, the load balancing

threshold is adjusted according to the preset balancing

strategy in the further load balancing management.

During the information collection phase of load

balancing, the master control node collects information

about the real-time operation of other work nodes. The

collected information mainly includes the load of the

node, the task allocation, and the response speed. The

collection phase is executed periodically according to the

strategy and the actual situation. The more commonly

used mechanism is that the working node periodically

sends information to the master control node. The

working node periodically sends state information to the

master control node by using the heartbeat mechanism to

ensure that the master control node has a newer working

node status and enables the former to use this Judge

whether the working node exists.

Periodic information collection is relatively simple to

implement, but the problems are relatively obvious. First,

the periodic information transmission will increase the

load of the master control node. Since all the working

nodes send messages to the master control node, it will

cause greater communication overhead. Second, the

length of the message transmission is not easy to

determine. Too short period will cause the increase of

communication load whereas too long period will cause

the update is not executed in time. Third, if we send the

new tasks within a task allocation cycle for many times,

then it will cause the further tasks cannot be efficiently

processed. Conversely, when there are no new tasks

arriving between the two updating actions, the system

resources are wasted.

In view of the above situation, the periodic

information collection of the master node is not entirely

suitable for various situations occurring in practical

applications. Therefore, this paper extends the method of

collecting periodic information so that the master control

node collects the status information of the working nodes

according to the needs of the current task data along

collecting the periodic information. The idea of

collecting information according to the number of tasks

is that when the master control node receives a new task,

it actively sends a status query request to the working

node and collects the workload of the working node.

When the working node receives the status query request

from the master control node, it will send the current

load information, resource occupation information and

task allocation information to the master control node.

The scheduling process is stated as follows:

if (new task arrives)||(a new period starts)

 reset clock;

 the master node sends out query request and

receives the load information from the working nodes

 if (the current node denoted as i satisfies the

scheduling constraints)

 assign task to node i or add the node

into queue

 end if

end if

62 A Dynamic Feedback-based Load Balancing Methodology

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 57-65

The process of the current working node (denoted as i)

if the node receives the query request from the master

control node

 compose the load information to the master

control node

end if

In the interaction process among all the nodes, TCP

protocol can be used for message transmission to ensure

reliability. According to the transmission characteristics,

the working node accepts the task assignment from the

master control node and replies to the master control

node. In order to ensure the correctness of the

information replying to the master control node, After

receiving the task, the working node replies a message to

the master control node, which contains the working

node's own information and the partner node information

used in the load balancing adjustment process, and each

working node adds the carried time in the reply message.

The message is insert with the timestamp to ensure that

the information received by the master node is up to date.

The master control node updates the stored

corresponding working node information according to

the carried information, which can not only catch the

working node load information accurately but also

reduce the communication load between the nodes and

keep the scheduling algorithm simple and feasible. When

the system is idle, the working node waits for the master

control node to collect information and make decisions.

When the system is running, the working nodes process

the actual tasks and replies in parallel. The working

nodes do not continue to wait for the allocation of tasks

in order to take full advantage of system resources.

The master control node collects information only

when it submits a task. When the working pressure of the

system load balancing is relatively high and the number

of tasks performed during a specific time period is too

large, the master control node consumes more resources

and more time in task allocation. According to the

algorithm, the working node would send the latest its

own load information to the master control node after

receiving the task, the latter only updates the information

of the nodes that have accept the tasks. Referring to the

working nodes that haven’t received the tasks, they

would not send the updated information to the master

control node. In this way, it is possible to effectively

reduce the possibility of idle nodes receiving new tasks.

In combination with the periodic collection of node load

information, the master control node periodically collects

the information of all the nodes while maintaining the

on-demand collection manner, and increases the

possibility of accepting new tasks for nodes that have not

been assigned tasks in the near future. In summary, the

combination of periodic collection and on-demand

collection of work patterns, to ensure real-time load

information and reduce the amount of interaction

between nodes to improve the overall performance of the

system at the same time, better balanced load of each

node.

IV. VERIFICATION EXPERIMENTS

In this paper, we adopt a cloud computing simulation

platform— CloudSim to verify load balancing solutions

(version 4.0). Based on the discrete event model,

CloudSim is an application system for simulation, which

is developed by Java language. Thus, it has unique

features of Java language such as cross-platform

deployment. It can run on different operating systems

like Windows, Linux or MacOS. In addition, it can be

used for modeling and simulating for system

architectures and deployment plans in a cluster

environment.

In this work, we utilize some core components of

CloudSim to build the simulation environment, which

includes the following steps:

(1) DataCenter class: used for simulating the solutions

of data center located in the cluster infrastructure, and

encapsulating the related methods to configure the

corresponding work nodes.

(2) DataCenterBroker class: used for encapsulating the

related methods to manage the inside work nodes.

(3)Host class: used for simulating the mapping

relations between the physical hosts and the virtual hosts

in cluster environment.

(4) VirtualMachie class: used for simulating the

deployed virtual hosts in cluster. The virtual host acts as

a member in Host class to simulate the resource sharing

and internal scheduling.

(5) VMScheduler class: used for simulating the

policies of dispatching and managing among various

virtual machines.

(6)VMProvsioner class: used for configuring the

mapping relationship between Host object and

VirtualMachine object belonging to DataCenter objects.

(7) Cloudlet calss: used for simulating the tasks in

cluster, and configuring the resources.

In this work, we took advantage of three physical hosts

(identified by PH_LB_1601 、 PH_LB_1602 and

PH_LB_1603) to configure the load balancing simulation

environment. Each physical host installed and configured

JDK8.0, configured CloudSim4.0, and set environment

variables.

The load balancing simulation environment set the

three physical hosts mentioned above to one DataCenter

object (identified by CS_DC_LB). The host

PH_LB_1601 set two VirtualMachine objects (identified

by VM_CL_1601_01 and VM_LB_CTL_1601_02

separately) in DataCenter object as a load balancing

controller, used for dispatching and managing the load

balance. Physical hosts PH_LB_1602 and PH_LB_1603

build three VirtualMachine objects separately (identified

by VM_LB_1602_01 、 VM_LB_1602_02 、

VM_LB_1602_03 、 VM_LB_1603_01 、

VM_LB_1603_02 and VM_LB_1603_03). The inside

VirtualMachine object creates a load balancing solution

consisting of seven nodes. The network topology of the

above nodes is illustrated as Figure 4:

 A Dynamic Feedback-based Load Balancing Methodology 63

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 57-65

Fig.4. The network topology of the experiment

Based on the afore mentioned network topology, we

called the Host object and VMScheduler object to deploy

the load balancing strategy and scheduling algorithm

based on Dynamic Feedback to the physical hosts

PH_LB_1601, PH_LB_1602 and PH_LB_1603.

For testing the load balancing scheme, this paper

configures the load task generated by Httperf in the

VirtualMachine object VM_CL_1601_01 in order to test

the accessing capability of service request. The test

scenario focuses on two performance measures: (1) the

association between the average response time of service

requests and the number of concurrent connections to

reflect the service access performance of the solution; (2)

the number of available concurrent connections in a

given service request scenario to reflect the maximum

concurrent access capability. In the experimental

environment, the average response time of a cluster

consisting of multiple servers to multiple concurrent

connections is relatively stable, and the test data is shown

in Table-1. From the above experimental results, it can

be seen that the cluster-based load balancing scheme has

good performance in handling concurrent requests. When

the number of concurrent connections continues to rise,

the response time remains within 7 ms. It can be seen

that the load balancing scheme built by clustering can

effectively control the server to process the request

access time.

Table-1. The response of load balancing solution

Concurrent connections 200 400 600 800

Response time（ms） 3.4 3.5 3.9 6.7

For evaluating the load balancing strategy, we mainly

studied the actual number of concurrent connections to

analyze the performance of the load balancing algorithm

based on dynamic feedback, and compared it with the

Nginx-based IP Hash algorithm. Among them, the core

idea of IP Hash algorithm is to hash map according to the

IP address of the service request source, and to use the

result of hash operation as the basis to select the server

node that actually answers the service request, and then

to allocate the service request to the corresponding server

node (See Table-2).

Table-2. Actual concurrent connections between the algorithms

Concurrent

connections

IP Hash algorithm

Actual concurrent

connection amount

(access rate)

Dynamic feedback-

based load balancing

algorithm

Actual concurrent

connection amount

(access rate)

200 200（100%） 200（100%）

400 399.8（99.9%） 399.8（99.9%）

600 599.2（99.9%） 599.1（99.9%）

800 798.2（99.8%） 794.9（99.4%）

1000 682（68.2%） 980.4（98.0%）

1200 562.1（46.8%） 734.2（61.2%）

1400 513.7（36.7%） 662.2（47.3%）

Figure 5 shows that when the number of concurrent

connections is low (lower than 800), the actual number

of concurrent connections is basically the same as the

number of concurrent requests. With occasional small

loss (the rate of loss of IP Hash algorithm is 0.2% and

the loss of load balancing algorithm based on the

dynamic feedback is 0.6%), it can maintain the basic

normal request access performance. When the number of

concurrent connections continues to increase and reaches

1000, the IP hash algorithm shows a significant loss of

concurrent connection requests, which results in a loss

64 A Dynamic Feedback-based Load Balancing Methodology

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 57-65

rate of 31.8%. In contrast, the rate of loss based on

dynamic feedback load balancing algorithm is only 2%.

In conclude, the latter has better service request access

performance.

Fig.5. Comparison of actual concurrent connection amount

V. CONCLUSION

In this paper, the dynamic feedback-based load

balancing method is introduced to optimize the dynamic

feedback strategy in the process of dynamic load

balancing. In the real case, load balancing task

scheduling is optimized and task queue scheduling in

load balancing is analyzed in detail. The paper first

realizes an assessment of the load of the nodes and then

optimizes the load balancing optimization strategy by

setting the threshold of the load balancing. The

experimental results are verified by setting up an

experimental environment. It is proved that the optimized

load balancing algorithm based on dynamic feedback is

better than IP Hash algorithm in solving high data

concurrency. With the increasing amount of data in the

network, the research on network load balancing

optimization requires more optimized algorithms in the

process of data high concurrent processing. More

research will be conducted in this respect in future work.

ACKNOWLEDGE

This work is supported by Jilin Provincial Science and

Technology Department via International Joint Research

Project (20150414055GH).

REFERENCE

[1] Al-Anbagi I, Erol-Kantarci M, Mouftah H T. A low

latency data transmission scheme for smart grid condition

monitoring applications[C]// Electrical Power and Energy

Conference. IEEE, 2013:20-25.

[2] Zhong C, Cai D, Yang F. Divisible loads scheduling

using concurrent sending data on multi-core cluster[J].

Journal of Computer Research & Development, 2014,

51(6):1281-1294.

[3] Wang S C, Yan K Q, Liao W P, et al. Towards a Load

Balancing in a three-level cloud computing network[C]//

IEEE International Conference on Computer Science and

Information Technology. IEEE, 2010:108-113.

[4] Bhogal K S, Lewis P D, Okunseinde F O, et al. Computer

data communications in a high speed, low latency data

communications environment[J]. 2015.

[5] Scharber J. CLIENT-SELECTABLE ROUTING USING

DNS REQUESTS:, US20150264009[P]. 2015.

[6] Stoltzfus A, O’Meara B, Whitacre J, et al. Sharing and re-

use of phylogenetic trees (and associated data) to

facilitate synthesis[J]. Bmc Research Notes, 2012, 5(1):1-

15.

[7] Leber A W, Knez A, Von Z F, et al. Quantification of

obstructive and nonobstructive coronary lesions by 64-

slice computed tomography: a comparative study with

quantitative coronary angiography and intravascular

ultrasound.[J]. Journal of the American College of

Cardiology, 2005, 46(1):147.

[8] Cardellini V, Colajanni M, Yu P S. Dynamic Load

Balancing on Web-Server Systems[J]. Internet

Computing IEEE, 1999, 3(3):28-39.

[9] Andrews J, Singh S, Ye Q, et al. An Overview of Load

Balancing in HetNets: Old Myths and Open Problems[J].

IEEE Wireless Communications, 2013, 21(2):18-25.

[10] Peng X. Research and Realization of Task Scheduling in

Coupling Distributed System[J]. Computer Technology &

Development, 2013.

[11] Bao-Tong D U, Bing L I, Yang R. Concurrent service

composition approach based on QoS fuzzy dominance[J].

Computer Engineering & Design, 2015.

[12] Debankur M, Borst S C, Van L J S H, et al. Universality

of load balancing schemes on the diffusion scale[J].

Journal of Applied Probability, 2016, 53(4):1111-1124.

[13] Kai H, Shen H. Locality-Preserving Clustering and

Discovery of Resources in Wide-Area Distributed

Computational Grids[J]. IEEE Transactions on

Computers, 2012, 61(4):458-473.

[14] Zhang N, Yan Y, Xu S, et al. A distributed data storage

and processing framework for next-generation residential

distribution systems[J]. Electric Power Systems Research,

2014, 116(11):174-181.

[15] Yang W C, Huang W T. A load transfer scheme of radial

distribution feeders considering distributed

generation[C]// Cybernetics and Intelligent Systems.

IEEE, 2010:243-248.

Authors’ Profiles

Xin ZHANG, Ph.D., lecturer at School of

Computer Science and Technology in

Changchun University of Science and

Technology. His interests include: Mobile

Internet, design engineering, software

engineering and system engineering.

Jinli LI, Master candidate at School of

Computer Science and Technology in

Changchun University of Science and

Technology. Her research interests include

Internet of Things and applications,

computer network, software engineering.

 A Dynamic Feedback-based Load Balancing Methodology 65

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 57-65

Xin FENG, Ph.D.，Associate Professor of

School of Computer Science and

Technology in Changchun University of

Science and Technology. His research

interests include Internet of Things

technology and applications, software

engineering and information system,

database and data mining.

How to cite this paper: Xin ZHANG, Jinli LI, Xin FENG, "A Dynamic Feedback-based Load Balancing

Methodology", International Journal of Modern Education and Computer Science(IJMECS), Vol.9, No.12, pp. 57-65,

2017.DOI: 10.5815/ijmecs.2017.12.07

