
I.J. Modern Education and Computer Science, 2017, 12, 26-37
Published Online December 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2017.12.04

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 26-37

Latest Customizations of XP: A Systematic

Literature Review

Faiza Anwer, Shabib Aftab
Department of Computer Science, Virtual University of Pakistan

Email: {faiza.anwer28, shabib.aftab}@gmail.com

Received: 10 August 2017; Accepted: 16 October 2017; Published: 08 December 2017

Abstract—Software development process model plays a

key role in developing high quality software. However

there is no fit-for-all type of process model exist in

software industry. To accommodate some specific

project’s needs, process models have to be tailored.

Extreme Programming (XP) is a well-known agile model.

Due to its simplicity, best practices and disciplined

approach researchers tried to mold it for various types of

projects and situations. As a result a large number of

customized versions of XP are available now days. The

aim of this paper is to analyze the latest customizations of

XP. For this purpose a systematic literature review is

conducted on studies published during 2013 to 2017. This

detailed review identifies the objectives of customizations,

specific areas in which customizations are done and

practices & phases which are being targeted for

customizations. This work will not only serve the best for

scholars to find the current XP states but will also help

researchers to predict the future directions of software

development with XP.

Index Terms—Extreme Programming, XP, Agile,

Customized XP, Modified XP, Tailored XP, Systematic

Literature Review.

I. INTRODUCTION

Agile software development models provide a good,

light weight and cost-effective option for quality software

development. Agile manifesto defines the values and

principles which are applied in iterative fashion to obtain

quality software in limited time [25] [26] [36] [37] [38].

A number of agile software development models emerged

with the time having potential to handle various project

types with agility. Most commonly used agile models

incudes Extreme programming (XP), Scrum, Feature

Driven Development (FDD), Dynamic System

Development Method (DSDM), Kanban, Lean Software

Development (LSD), and Adaptive Software

Development (ASD) [27] [39].

Extreme Programming (XP) is one of the oldest known

agile models that gave new directions to software

development. Kent Beck presented XP model in 1999 but

still today it is one of the most debating topics in software

industry. XP revealed a new perspective of software

development that gives much importance to customer

satisfaction, changing requirements and team

collaboration than plan driven software development

models [30] [31] [36] [37]. XP works well for small scale,

low risk projects [28] [36]. It uses best software practices

in the disciplined way to develop high quality software

[27]. It can easily accommodate changing requirements

with good level of customer satisfaction and can deliver

qualitative software within limited time [32] [35]. XP

practices like pair programming, on-site customer,

collective code ownership, continuous integration and

continuous testing were new for software industry but

their satisfactory results enforced developers to adopt

them even in diversified projects. Due to XP’s flexibility

and simplicity, researchers showed great interest in

customizing XP. They tried to make it suitable for

various scenarios by tailoring its phases or by adding

more practices for some specific needs. As a result there

are a number of modified versions of XP available now

days. In this paper a systematic literature review is

conducted to explore the latest transformation of XP. This

SLR considered related literature published during 2013

to 2017 by applying inclusion and exclusion criteria.

Further organization of this paper is as follows. Section

II describes related work, section III defines research

methodology used for this SLR. Section IV presents

critical review of selected papers. Section V enlists and

discusses the finding of this detailed review. Section VI

finally concludes the paper.

II. RELATED WORK

Wide acceptance of agile methods fascinated many

researchers to explore different aspects of agile software

development. There are a number of SLR’s mentioned in

this section which provide valuable information about

different aspects of agile software development. However

it is observed that very little contribution is made for

extreme programming. Few literature reviews are

available which does not provide clear picture of XP's

current state. Agile methods are famous due to user

involvement during software development phases

especially in requirement engineering process. In [10]

authors conducted a systematic literature review to

explore the art of requirements engineering in agile

methods. This study mainly focused on various

methodologies used to invite stakeholders by presenting

 Latest Customizations of XP: A Systematic Literature Review 27

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 26-37

their perspective during requirements engineering and

management process. Another study in this regard is

conducted in [11], for this review authors selected

literature from 2002 to 2013 to extract data about

requirements engineering practices and challenges in

agile methods. A SLR was conducted in [12], to find the

direct and indirect effect of agile release practices on

software projects. Agile release practices are used for fast

and low cost software development. In [13], SLR was

conducted to find out the challenges, and success factors

identified during agile method’s transformation for large

scale industrial projects. Authors listed 35 challenges and

29 success factors for which selected papers are analyzed.

In [14], authors grabbed an emerging trend of combining

agile practices with outsourced software development.

This type of development faced the coordination and

communication problems. This study focused on finding

useful communication practices and then it differentiated

these practices from classical practices used in non-

distributed environment. In [15], authors presented

different agile methods tailoring aspects and criteria of

practice’s selection used for tailoring. This SLR

considered the literature published during 2002 to 2014 to

find the common trends and criteria used for process

tailoring. Another area of software development is

covered in [16]. Authors conducted SLR to present the

effort estimation methods used in agile software

development. They concluded that expert judgement

based technique, planning poker and use case points

technique are the most commonly used estimation

methods in agile development. In [17], authors used SLR

to find the security related issues in software

development using extreme programming (XP). Authors

used the literature published during 2002 to 2012. They

concluded that XP practices can be successfully

combined with security based practices for effective

results. In [18], authors studied the literature regarding

integration of user centered design with agile software

development models. They concluded that this integration

is mostly used for design and usability evaluation

however there is a lack of studies that provide its

empirical proof. Pair programming is one of the

distinguishing practices of XP, to find its effect on quality

and effort, a meta-analysis is conducted in [19]. Results

of this analysis showed that pair programming has a little

better performance in term of quality but also has

negative effect on effort used for software development.

Another systematic review to study the effect of pair

programming is conducted in [20]. The authors identified

the factors which can affect the usefulness of pair

programming. In [34], authors studied impact of user

involvement in the project success by performing a

systematic literature review. They analyzed 87 empirical

studies and found that user involvement plays a positive

role in project success.

III. RESEARCH METHODOLOGY

To conduct a successful SLR, we need a proper

research methodology that can help in achieving the

complete research objectives. Different studies are

available that provide the guidelines for systematic

literature review [22] [23] [24] [33]. By consulting these

studies we formulated a systematic research strategy to

follow.

In a broader view, SLR has three basic steps namely

plan review, conduct review and document review,

however further detail can be added to make it more

elaborative. Detailed steps are extracted from the

guidelines of [22] [23] [24]. The research methodology

which is followed includes following steps: 1) Define

research questions, 2) Find keywords to form query string,

3) Define research space to get data, 4) Set criteria to

include or exclude papers, 5) extract literature using

criteria, 6) Assess study quality, 7) Synthesize required

data, and finally 8) document results and outcomes Fig.

1.

Fig.1. Steps of Systematic Literature Review

A. Research Questions

Research questions represent the research objectives.

Answers to these research questions help in concluding

SLR. According to step 1 of our research strategy, here

are the research questions which will cover our research

objectives.

 RQ1: Which are the customized versions of XP

process model?

 RQ2: Do the customized versions tailor XP phases?

 RQ3: Which practices, roles or events are included

in XP to make it more effective and efficient?

 RQ4: What objectives are achieved through XP

customization?

 RQ5: Do these modified or improved models are

validated through empirical proof?

B. Search Space and Query String

Keywords extracted from the research questions are

“Agile”, “Extreme Programming”, “XP”, “process”,

28 Latest Customizations of XP: A Systematic Literature Review

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 26-37

“model”, “method”, “modified”, “improved”, “tailored”,

“changed”, “enhanced” and “customized”.

These keywords are arranged in following query.

(Modified OR improved OR customized OR tailored

OR changed OR enhanced AND (Agile AND (Extreme

Programming OR XP AND (Process OR Model OR

Method)))).

Search space represents libraries and repositories from

where data can be collected. In our case, we selected

Google Scholar to find the papers from 2013 to 2017.

Above mentioned query string is used to extract required

literature.

C. Selection Criteria

Selection of related material is done based on inclusion

and exclusion criteria defined in this section. IC

represents inclusion criteria whereas EC represents

exclusion criteria.

1) Inclusion Criteria

Inclusion criteria consist of following rules to extract

related material for this SLR.

 IC1: Papers which are published during 2013 to

2017.

 IC2: Papers which are available in journals,

conferences, proceedings of conferences or

workshops.

 IC3: papers which have presented modified form

of XP with the help of figure.

 IC4: papers which have tried to enhance XP

practices.

 IC5: papers which have provided practical proof

of modified XP model.

2) Exclusion Criteria

Exclusion criteria consist of following rules to exclude

un-related material for this SLR.

 EC1: Papers which are not published in the

duration of 2013 to 2017.

 EC2: Papers which are not written in English

language.

 EC3: papers whose full text is not available.

 EC4: Literature which is under review or part of

thesis report.

 EC5: Literature which is a part of any book.

 EC6: Papers that contain survey or review about

previous work.

 EC7: papers which provided only XP related

material other than modified model.

 EC8: papers that merged XP with any other

process model to form a hybrid model.

 EC9: papers which did not provide any pictorial

representation of proposed model.

 EC10: papers that proposed XP application in

some field other than software development.

 EC11: papers that introduced new tools to use XP

process models.

Using search strings based on identified keywords,

initially we found 9795 results. Step by step filter is

applied to select the most relevant papers based on our

selection criteria as shown in Fig. 2.

D. Quality Assessment

For a successful and useful review, the focus on quality

is very necessary. To make our SLR more useful, every

step is completed under the quality umbrella. To ensure

the higher quality, following measures are taken.

- All the literature is selected from authentic and

renowned libraries and databases.

- Only reputed journals publications are included in

review.

- All the literature is collected without any

biasedness and discriminations.

Search results

9795 Papers

Removed duplicates

9503 Papers

Filtered by selection criteria

598 Papers

Filtered by article�s title

128 Papers

Filtered by abstract

31 Papers

Filtered by reading full text

9 Papers

Fig.2. Search Process for Final Selection of Papers

E. Data Extraction and Classification

Data is extracted by considering the guidelines given in

[29]. By screening the papers finally nine most relevant

papers are selected for review. Data extraction and

classification is done according to format given in table 1.

 Latest Customizations of XP: A Systematic Literature Review 29

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 26-37

Table 1. Data Extraction and Classification Format

Description Detail

Bibliographic Detail

Paper’s title, author’s name, publication

year, type (journal, conference,

workshop)

Data Extraction

Model Model name/ Model title

Methodology used survey, empirical proof.

Project suitability
Small scale projects, medium scale

projects, large scale projects.

Data Synthesis/ Classification

Objectives of

Customization

Enhancement of model, elimination of

drawbacks, addition of new

functionality.

Strategy used for

customization

Alteration of phases/practices, addition

or removal of practices, addition of new

roles

Targeted XP practices
Which practices are used for

customization?

IV. CUSTOMIZED FORMS OF EXTREME PROGRAMMING

This section aims to explore the 9 selected papers to

identify the key problems and their proposed solution.

Moreover this section also highlights the modules,

practices, roles, phases and principles which are being

added, customized or removed by the authors in their

proposed solutions.

A. SXP: Simplified Extreme Programing Process Model.

SXP (Simplified Extreme Programming) is a modified

version of XP process model that provides a simpler way

of software development for small and medium scale

projects [1]. In this model, authors tried to cover the

limitations of classical XP related to design,

documentation and customer’s involvement. Authors

discussed that absence of proper architectural structure

and design can affect agility of development process and

software quality. Moreover authors highlighted some of

the XP practices like pair programming and on-site

customer, which cannot be used in all type of projects. It

is already discussed in previous researches that pair

programming and on-site customer practices are not

useful for each type of projects. Authors mentioned a

number of studies which tried to solve these problems but

a common lapse in these solutions was the loss of process

simplicity and agility. To overcome the limitations of

classical XP without effecting its simplicity and agility,

authors proposed SXP that introduced design and

documentation activities in the model. Unnecessary

rituals are eliminated from development process to

maintain the simplicity and agility. The proposed SXP

model consists of five development phases: 1)

Initialization, 2) Analysis, 3) Design, 4) Development &

Testing and 5) Release. SXP restricted the customer’s

involvement in first and last phase only. Main activities

performed during initialization phase are requirement

gathering and project planning. This phase involved

personnel’s from both customer and developer’s side to

decide the project scope, cost and technology used for

development. Requirements are collected through story

cards that have a small description of required

functionality along with priority assigned. A project plan

is created to document necessary details about project.

Next is the analysis phase, in which activities like

architectural structure, iteration plan and effort & cost

estimation is performed and documented. SXP

introduced an explicit design phase to overcome design

related issues. In this phase software is designed using

use-case and sequence diagrams which provide better

development guidance to the developers. Test planning

activity performed in this phase relates to the test first

strategy of classical XP. Development and testing phase

is an iterative phase in which coding and functional

testing is performed repeatedly until successful code is

integrated. After integration testing final acceptance

testing is performed by customer in release phase. In case

of successful testing final product is released to customer

with user manuals.

Shortcomings:

SXP model incorporated analysis and design phase and

produced documentation during each phase of the model.

Although it is a better approach for medium scale projects

having continuously changing requirements but for small

and simple projects, this can create extra overhead for the

development team. Furthermore there is an obvious need

of empirical proof to check the effectiveness and

efficiency of proposed model.

B. Component Based Software Architecture Refinement

and Refactoring Method into Extreme Programming.

In [2], classical XP is modified by incorporating

architectural and design related framework. This

framework adds ability of component based architecture

reusability in XP. Authors found that short term

development time in XP is a hazard in developing

reusable components. That’s why newly required

functionality can only be developed from scratch. To

overcome this problem authors suggested component

based architecture refinement framework for XP. They

claimed that incorporating this framework in XP can

reduce development time, effort and the cost of

development. The steps in proposed reuse process model

includes; i) Component search and retrieval ii) Identify

component to extend and refine iii) Generate target

component and iv) Repository management.

Proposed model suggested that instead of developing a

new component for required functionality, reusability of

already existing components should be checked. For this

purpose reusable repository is maintained and searched

before development of new functionality. In this step,

components that can be reused in particular requirements

30 Latest Customizations of XP: A Systematic Literature Review

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 26-37

are selected. In next step selected components are being

examined keenly to check which part is according to

requirements and which should be eliminated. Based on

their suitability these are identified as candidate for

customization, refactoring, or extension. If there are some

components that partially implement the functionality,

then these components can be customized or extended to

adopt required functionality. Refactoring can also be

applied to the selected components. Refactoring is a

stepwise activity in which a component is improved

without changing its external behavior. These extended,

customized or refactored components are refined further

for the sake of efficiency. In last step of this framework

repository is updated with newly created components for

later use.

Shortcomings:

Although proposed framework covers a very important

limitation of XP however reusability of existing

components requires some extra effort in managing

components repository. Moreover, in the absence of

empirical proof or case study it is difficult to understand

the working of framework in XP.

C. Proposal of Enhanced Extreme Programming Model.

In [3], authors proposed “Enhanced Extreme

Programming model that claimed to improve agility and

quality at same time. XP lacks documentation and design

activities and uses extreme testing and refactoring during

development iteration for quality enhancement. Due to

sequential execution of testing and refactoring in classical

XP, agility is affected badly. Authors found an inverse

relationship between quality and agility. Lack of

documentation and upfront design make it suitable for

small projects only. To overcome quality, agility,

documentation, design and response time related issues,

authors proposed an enhanced XP model. Proposed EXP

model introduced parallel refinement iteration along with

actual development iteration. This helped in handling

inverse relationship between agility and quality.

Proposed model has four phases; Initial iteration,

Incremental iteration, Final iteration and Quality iteration.

EXP keeps the classical XP development phases intact

and adds a parallel refinement phase for non-functional

requirements.

EXP development process starts with initial phase. In

this phase development starts with basic development

activities of XP like plan, design, code and test. However

during coding, a refactoring team member works with

programmers to understand and monitor coding activity.

Later during refactoring of code, this team member helps

other team members to resolve confusion and problems

about written code. Authors suggested that team leader

can be the best candidate for this role as he has to control

both coding and refactoring teams. He should have good

technical knowledge that helps to manage project easily.

Incremental iteration is an iterative phase that keeps

iterating until the set goal is reached. It is not main

development team’s responsibility to refine design, code

or test. Development team takes new requirements for

each iteration and repeat plan, design, code and test

activities with these requirements. On the other side,

refactoring team starts quality iteration in parallel to

incremental iteration to save time after completing first

development iteration. For that purpose all artifacts of

previous iteration are handed over to refactoring team.

This refactoring is completed in supervision of team

member that has previously monitored the designing and

coding phase and has good understanding about

developed code and design. First of all design and

architectural documents are refined that give sufficient

support for code refactoring. During code refactoring

technical team leader works with refactoring team.

Additional functionality can be added or previous code

can be changed during refactoring. Then tests are refined

according to added or changed functionality. In case of

bugs, new changes can be made accordingly. Finally

document refining team refines poorly written documents.

Final iteration is completed by successfully implementing

selected requirements of the iteration. Vague

requirements now more clear to programmers that give

better understanding about system.

Shortcomings of model:

This model used a parallel refinement cycle to ensure

quality however the software projects having higher

interdependencies among modules are difficult to build

using this model. Another problem with this model is the

need of more resources than usual. Parallel execution of

development and refinement cycle demands more team

members and other resources that increase development

cost.

D. Mapping Formal Methods to Extreme Programming

(XP) –A Futuristic Approach.

FXP is a modified version of XP that specially

designed for life critical projects. Classical XP is usually

used for small projects with no security and safety issues

involved. In [4] authors proposed a new model that map

formal methods on XP to incorporate agility in formal

methods. Formal methods are used for life and safety

critical projects. These methods are more precise and

mathematical in nature to handle critical projects.

However these models are laborious and costly to use

both in term of effort and resources. Whereas XP model

has limitations related to software design and architecture.

To overcome these drawbacks, authors combined the

strengths of both models in [4]. FXP used formal

methods like Software Cost Reduction (SCR), Algebraic

Specification and Design by Contract (DbC) in different

phases to make it suitable for safety critical projects.

First step of FXP is about requirement gathering. FXP

used story cards to collect requirement. This is same as

used in classical XP where customer writes story cards to

describe the required functionality in the system. The

only difference is that a formal method Software Cost

Reduction (SCR) is used in this process to formally

represent the requirements. SCR used four tables

(Condition Table, Event Transition Table, Linkage Table,

and Directory) to represent requirement’s conditions and

 Latest Customizations of XP: A Systematic Literature Review 31

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 26-37

their association [4]. In condition table all the possible

conditions used for a mode are listed. This is done for

each mode to represent complete functionality of the

system. Event transition table showed output regarding

each mode, event and value. Whereas linkage table

represents the association among different modes.

Directory is used to keep the record of each datatype.

Second phase of FXP is release plan. As the name

suggest, a complete plan is developed for the project

keeping in view the requirements collected in previous

phase. Priority table is built to define order of

development using condition table. In next step a Gantt

chart is drawn to show the development time for each

task. Concurrent task are also identified here to speed up

development. Important decision about team size, code

ownership, working hours, sitting arrangement and pair

programming are taken in this phase. The authors have

adopted most of the things from XP perspective however

in pair programming it is considered that one of the

programmer must be expert in formal methods. Next

phase of FXP is iteration to release phase in which tasks

are grouped in iterations. Each iteration can include new

task to implement or task that failed to pass acceptance

test in previous iteration. All possible test cases are also

written in this phase. For this purpose a formal method

called algebraic expression is used. Algebraic expression

is a mathematical way of representing functions with

their signature, return type and axioms. After completing

this, programmers convert this specification in code. In

next phase, implemented code is tested for final

acceptance. FXP used Design by Contract (DbC) formal

method. In DbC a contract is written using languages

like java, JML or Eiffiel. This contract includes

preconditions, invariants and post conditions. All the

implementation is checked against this contract. In case

of any nonconformity, code is fixed later by developers.

Finally after successful acceptance testing recently

implemented built is released to customer.

Shortcomings of model:

Incorporation of formal method in XP demands some

extra training and expertise of development team. To

prove the validity of FXP model, authors only relied on

expert’s opinion. A case study or empirical proof is

strongly needed to prove the efficiency and authenticity

of model.

E. Extended Iterative Maintenance Life Cycle Using

eXtreme Programming.

Software maintenance is a continuous and unavoidable

process for a software. Good maintenance can increase

the quality and operational life of a software. in [5]

authors found that most of the existing models of

software maintenance are derived from traditional water

fall model and hence not suitable for handling problems

related to unstructured code, team morale, poor project

visibility, communication and test suits. Authors

suggested that these problems can be solved by using

agile methodologies. Their iterative and incremental

nature and emphasis on team collaboration, customer

interaction makes them suitable for software maintenance

[5]. Authors chose XP for this purpose due to its best

practices and proposed an extended model for software

maintenance that used IEEE 1219 standard from XP

perspective. This extended model consists of seven

phases that includes identification and categorization,

planning, analysis, design revision, change

implementation, acceptance testing and release. Request

of change stories (RC stories and old software are input

for this extended model. Authors have explained all the

steps of this extended maintenance model using a case

study however its general description is discussed here.

In first phase of identification and categorization end

users submit change request in the form of RC stories.

These stories are then analyzed by system analyst or

service engineers to categorize in corrective, adaptive or

perfective maintenance. This phase is conducted using

planning game practice of XP moreover on-site customer

practice is used to get customer opinion about change

requests. In planning phase, release plan and iteration

plan is developed. These plans are created by considering

priority of RC stories however urgent RC can bypass

planning and analysis phase. In this phase, estimation

error can be occurred due to non familiarity of existing

code. To handle this problem planning poker technique is

used. Effort and cost estimation is completed along with

decision about final release date. In analysis phase

feasibility of requested maintenance is checked to create

detailed analysis and feasibility report. Metaphor and on-

site customer practices are used during this phase. Next

phase is design revision phase that used feasibility and

analysis report as input. Using these documents design of

desired artifacts is changed without effecting overall

integrity of the system. An updated design baseline is

generated as output. Customer collaboration and

prototypes are used to aid this process. Change

implementation phase is the phase where change is

actually made. Code is written which is then go through

unit and integration testing. This phase used pair

programming, test driven development, collective code

ownership, continuous integration, standup meeting and

refactoring practices of XP. Acceptance testing is

conducted to check whether implemented change can

give desired results. In case of successful testing user

manuals, installation guide and training material is

reviewed. Finally, release phase consists of activities like

installation of software, final testing, user notification,

deployment and user training. Authors presented the

results of case studies which showed that using XP

practices during software maintenance give much better

results including improved team productivity and

confidence.

Shortcomings of model:

The proposed model is applied in academic

environment that is far more different from real scenarios.

Proposed model is needed to be checked for real life

problems.

32 Latest Customizations of XP: A Systematic Literature Review

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 26-37

F. A Framework for Partial Implementation of PSP in

Extreme Programming.

In [6] authors proposed a modified version of XP by

combining it with Personal Software Process (PSP). The

aim behind this study was to combine the strengths of XP

and PSP to develop high quality software. Authors

suggested that using PSP, developers can improve their

planning and estimation capabilities and can strive for

quality by lowering the defect rate. Modified XP model

presented in this paper showed that how all these personal

qualities can be used with XP phases. This model

includes six practices form XP and six practices from

PSP. Proposed model in [6] consists of five phases

named as Exploration phase, Planning phase, Personal

Planning Phase, Iteration to release phase and

Productionizing phase.

Exploration phase is same as in classical XP where

requirements are collected through story cards.

Development team also considers different possible

architectural structures, tools and techniques for the

developed system. In planning phase, stories are

prioritized and selected for the current release.

Development schedule and cost is estimated on the basis

of selected stories. In this phase developers are free to

take their own decisions. While in personal planning

phase individual developer plan their activities and

estimate time required to fulfill assign tasks. Use of

coding standards, time and defect recording logs helped

developers to evaluate their daily performance. Iteration

to release phase can consists of many iterations to

complete a release. After successful code completion,

system moved towards productionizing phase. Some

more testing is performed to check the validity of the

developed system.

Shortcomings of model:

The proposed model can only be used for small scale

projects where teams are small and familiar with PSP.

Due to absence of practical application of this model, it is

difficult to decide about its usability.

G. Estimation of the New Agile XP Process Model for

Medium-Scale Projects Using Industrial Case Studies.

In [7], author tried to extend classical XP for medium

scale projects with large development teams. This model

tried to break the concept that XP can only be used for

small scale projects with small teams. Author introduced

analysis and risk management activity to overcome the

project failure risk. Proposed model also tried to cover

classical XP drawbacks like lack of up front design and

no documentation. Proposed model is validated through

two industrial case studies one for small scale projects

and other for medium scale projects.

Proposed model consists of four phases that are project

planning phase, analysis and risk management phase,

design and development phase and testing phase.

In project planning phase, proposal document is

prepared by using Cost-Benefit Analysis (CBA)

technique. This document contains economic, technical

and operational feasibility reports that help to check the

overall feasibility of the project. Furthermore

development team members are also selected in this

phase. Team size can be vary by considering project size,

and schedule. Analysis and risk management phase starts

after checking the feasibility of the project. Detailed

requirement are collected in this phase which are

documented properly. This model used story cards for

requirement elicitation like classical XP. Customer

prioritizes these story cards on the basis of his needs.

These story cards are then selected for current release

using planning poker technique. In design and

development phase, author combined design and

development activities for the sake of agility and

efficiency. Author used prototyping technique for design

and requirement verification whereas refactoring is used

during design and coding activities. This model used pair

programming for coding. Programmers write code for

current release’s stories and in the meanwhile Interface

Specification document for next release is also prepared.

Design and coding activities are repeated until whole

stories are implemented for the project. In the meanwhile

implemented code is integrated continuously. In next

phase implemented code is tested using unit testing,

integration testing and system testing. Finally acceptance

testing is conducted for customer verification. In case of

successful acceptance testing, system is deployed at

customer’s site. Deployment further consists of

installation, training and security activities.

Shortcomings of model:

Adding analysis and risk management phases in

classical XP can affect agility of development process.

H. Role –Based Extreme Programming (XP) for Secure

Software Development.

Although XP gives good performance in developing

software within limited time and cost however it is also a

fact that there is no emphasis on developing secure

software in this model. To overcome this limitation

authors proposed an additional role in [8]. Authors

explored that there is no practices or role that help to

develop secure software. In such situation developed

software is open to security threats. Although using XP, a

product can be delivered quickly but later it may require a

lot of repair due to security risks. Authors proposed that

by introducing a new role called “Security Master”, we

can lower down the effort and cost of later fixes which is

required to make the software secure. Authors actually

extend the model presented in [21] to develop secure

software using XP. Authors introduced a new role and

some additional security elements in XP practices to

make it suitable for secure software development. They

mentioned different practices for five major roles to

implement security measures in XP. Here is the detail of

XP practices for each role.

Customer: planning game, small releases, metaphor

and on-site customer.

Coach: small releases, coding standards.

 Latest Customizations of XP: A Systematic Literature Review 33

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 26-37

Manager: planning game, small releases, metaphor,

small design, continuous integration and coding standards.

Programmer: planning game, small releases, metaphor,

small design, refactoring, pair programming, collective

code ownership, continuous integration, 40-hours week,

coding standards.

Tester: testing, 40-hours week

However authors suggested that these practices cannot

be implemented correctly until a professional person

provide the guidance. Security master will be responsible

for providing proper training to other team members

regarding security, types of security attacks and their

effects on software quality. XP practices related to

security master includes planning game, small releases,

metaphor, small design, refactoring, pair programming,

collective code ownership, continuous integration, 40-

hours week and coding standards.

Shortcomings of model:

Paper does not provide the implementation detail about

role of security master. There is no guidance what type of

rights he has and what type of rules he has to follow

while interacting with other team members. There is no

practical application of this model to get any idea about

model authenticity.

I. Prioritizing CRC Cards as a Simple Design Tool in

Extreme Programming.

Some researchers tried to enhance XP practices for

better results. In [9], authors used Analytical Hierarchy

Process (AHP) for prioritizing Class Responsibility

Collaboration (CRC) cards. Authors found that among

different XP design tools CRC cards are more effective

tool for developing simple object oriented design. These

cards provide flexible and quick help in finding object

class, members and their relationship. However,

prioritizing these cards has great effects on decisions

regarding design. For example classes that are linked with

many responsibilities have great effect on system

coherence and need a lot of refactoring during

implementation whereas collaboration among classes

indicates the system coupling. To make this process

simple and systematic, authors recommended the use of

AHP in CRC cards prioritizing process.

AHP provides a systematic way of analyzing a

problem that have multiple criteria. AHP is a hierarchical

model that reflects human thinking process. As discussed

in [9] AHP consists of five steps. In first step a hierarchy

model is developed by breaking down the problem into

interrelated decision elements. In next step a criteria is

being defined to construct a pair wise comparison

matrix. Each criteria on the same level is compared with

other criteria with respect to their importance to the main

goal. In next step a pairwise matrix for alternatives is

constructed. Whereas consistency of judgment errors is

calculated using consistency ratio. Finally to choose the

highest score weighted average rating is calculated.

Using AHP authors defined following criteria to prioritize

CRC cards [9].

1: Which class responsibility has more effect on

system?

2: Which classes have strongest relationship with other

classes?

3: Which classes are stable and have fewer tendencies

towards change?

Authors conducted an experiment consisting of 12

Master’s students divided in two teams. These teams built

same projects with different design tools. Authors found

that team using AHP for CRC cards prioritization gave

better results than other team.

Shortcomings of model:

Proposed solution requires handful expertise in

applying AHP technique for CRC cards prioritization.

That can be achieved by giving training or by hiring some

expert in this field. However in both cases it will

overburden development process and may affect agility

and cost of development.

V. FINDINGS AND DISCUSSION

This section provides the descriptive results of this

mapping and gives answers to the research questions,

whereas in table 2 these results are summarized for the

quick view.

This mapping reveals that after 16 year of agile

method’s advent, it is still a hot area of research.

Researchers are working on the improvement of agile

process models, especially on customization and

integration of these models. XP is one of the oldest and

famous agile methods used in software industry. A large

number of customized forms of XP are proposed by

different researchers in past twenty years however this

research is focusing to find the recent customized

versions. The published literature which is considered for

this research is from 2013 to 2017. After applying the

selection criteria, we finally selected nine best

appropriate papers. After critical analysis of these papers,

following answers are found to the research questions.

RQ1: Which are the customized versions of XP process

model?

All the papers discussed from [1] to [9] are the

customized versions of XP. All these studies have done

customization of XP model by either integrating or

removing any particular practice, phase or role in the

process lifecycle. The summary of these tailored models

is presented in section IV of this research and also is

available for quick view in table 2 and 3.

RQ2: Do the customized versions tailor XP phases?

All papers except [8], have changed the XP phases to

make them according to their needs by introducing or

removing different practices, activities and roles as

shown in Table 2. In [8], a new role of security master is

added.

34 Latest Customizations of XP: A Systematic Literature Review

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 26-37

Table 2. Summary of Analyzed papers in SLR

RQ3: Which practices, roles or events are included in XP

to make it more effective and efficient?

The selected papers shows that the different practices,

values, phases and roles are included by researchers

during the customization. For improvement, they have

targeted almost all activities of XP life cycle for software

process improvement such as requirements gathering,

designing, testing, maintenance, security, quality control.

The detail regarding the nature of customization along

with the practices, roles, events, activities and phases is

provided in section IV of this research and also is

available for quick view in Table 2.

RQ4: What objectives are achieved through XP

customization?

It has been found that the primary objective of the

customization of each selected paper is to achieve the

good quality end product by improving software process

life cycle in an effective and efficient way. Researchers

have tailored the classical XP model by integrating or

removing particular phases, practices, events and roles to

make it fit for certain projects in certain circumstances.

The proposed model in [1] helped to develop medium

scale projects with better design and documentation

opportunities. Model proposed in [2] introduced concept

of reusability to overcome architectural issues. Model

proposed in [3] tried to improve quality without effecting

agility of the process. In [4], formal methods are used in

XP phases to make it suitable for safety critical projects.

In [5], an XP based model is proposed for software

maintenance. Paper [6] used Personal Software Process

(PSP) to improve the quality and project planning

abilities of developers. In [7], XP is customized to handle

large scale projects with big teams. In [8], a new role is

introduced to develop secure software. Paper [9]

introduced a new prioritizing technique for better design

decisions.

Model SXP

Component

Based

Architectur

e

refinement

in XP

Enhanced

Extreme

Programmi

ng

FXP

Extended

Maintenanc

e Cycle

Using XP

PSP in

Extreme

Programmi

ng

New XP

Process

model For

medium

scale

projects

Role Based

Extreme

Programmi

ng

Prioritizing

CRC cards

in Extreme

programmi

ng

Objective of

customizati

on

Resolving

issues

related to

design and

documentati

on for

medium

scale

projects

Adding

strength of

component

based

architectural

refinement

and

reusability

in XP

Improving

software

quality

without

effecting

agility of XP

Tailoring

XP process

for safety

critical

systems

Using XP

for

improvemen

t of

maintenance

process by

writing

maintainable

code

Increasing

developer’s

productivity

by

integrating

PSP

practices in

XP

Customizing

XP for large

and medium

scale

projects

having large

teams.

Using XP

for

developing

secure

software

Enhancing

and

simplifying

design

process

Suitable

Project

Medium and

Small Scale
Small scale Small scale

Safety

critical
N.A Small Scale

Medium

scale

Security

critical

software

N.A

Targeted

practice(s)/

role(s)

Pair

programmin

g,

On-site

customer

Simple

design,

Refactoring

All XP

practices

Pair

programmin

g,

Collective

Code

ownership,

40 hours per

week

All XP

practices

XP and PSP

practices

All XP

practices

All XP

practices

Not

mentioned

Strategy

used for

customizati

on

Added

analysis

phase and

design phase

in XP

Added

component

based

reusability

refinement

in XP

Added a

parallel

refinement

cycle to

development

cycle of XP

for the sake

of quality

Integrated

formal

methods in

XP

Software

maintenance

activities are

introduced

using XP

Added PSP

practices to

improve

developer’s

productivity

in XP

Changed XP

phases

Added a

new role in

XP

Used AHP

technique

for better

design

decisions

Changed

XP phases
Yes Yes Yes Yes Yes Yes Yes N.A No

Validation No No No Yes Yes Yes Yes No Yes

Methodolog

y used for

Validation

N.A N.A N.A Survey
Empirical

Proof
Survey

Empirical

Proof
N.A

Empirical

Proof

 Latest Customizations of XP: A Systematic Literature Review 35

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 26-37

RQ5: Do these modified or improved models are

validated through empirical proof?

Papers [1] [2] [3] and [8] gives no empirical validation

of proposed model whereas in paper [4] a survey is

conducted from software professionals to validate

proposed model. Papers [5] [6] [7] and [9] used empirical

proof to validate their studies.

Table 3. List of Selected Papers

VI. CONCLUSION

In this paper a systematic literature review is

conducted to explore the current state of XP

customizations. A research methodology is defined with

inclusion and exclusion criteria to extract relevant data.

According to defined criteria, nine most appropriate

papers are selected for review. Critical analysis of these

papers revealed that after almost twenty years of XP’s

invention, researchers are still working on its

transformation to make it more adoptable and effective.

Results showed that researchers customized XP phases

and practices to achieve best results in different projects.

Some researchers merged more practices and elements to

make it applicable for specific needs. XP limitations

which make it difficult to use in large and critical natured

projects are eliminated by customization. However main

objective of these customizations is to make XP suitable

for different type and size of projects along with

maintaining the agility. High quality software

development with reduction in cost, time and effort is a

big achievement but lack of empirical proof make it

difficult to access the applicability of proposed models.

To prove the innovation and effectiveness of proposed

model, empirical validation is strongly recommended.

REFERENCES

[1] F. Anwer and S. Aftab, "SXP: Simplified Extreme

Programing Process Model,” International Journal of

Modern Education and Computer Science (IJMECS), vol.

9, no. 6, pp. 25-31, 2017.

[2] S. Nagalambika, R. Majunath and K.S. Praveen,

“Component Based Software Architecture Refinement

and Refactoring Method in Extreme Programming,”

International Journal of Advanced Research in Computer

and Communication Engineering, vol. 5, no. 12, 2016.

[3] M. R. J. Qureshi and J. S. Ikram, “Proposal of Enhanced

Extreme Programming Model,” International Journal of

Information Engineering and Electronic Business, vol. 7,

no. 1, p.37- 42, 2015.

[4] T. Saeed, S.S. Muhammad, M.A. Fahiem, S. Ahamd, M.T.

Pervez and A.B. Dogar, “Mapping Formal Methods to

Extreme Programming (XP)–A Futuristic Approach,”

International Journal of Natural and Engineering

Sciences, vol. 8, no. 3, pp.35-42, 2014.

Year of

Publicati

on

Paper’s Title Paper Type Journal/ Conference

Name

Objective of Research

2017 SXP: Simplified Extreme Programing

Process

Model [1]

Journal International Journal of

Modern Education and

Computer Science

 Using XP for medium scale projects.

 Handling design and documentation

related limitations

2016 Component Based Software

Architecture Refinement and

Refactoring Method into Extreme

Programming [2]

Journal International Journal of

Advanced Research in

Computer and

Communication

Engineering

 Introduction of reusability in XP

 Adding strength of component based

architectural refinement in XP

2015 Proposal of Enhanced Extreme

Programming

Model [3]

Journal International Journal of

Information

Engineering and

Electronic Business

 Improving software quality without

effecting agility

 Improving architectural design and

documentation

2014 Mapping Formal Methods to Extreme

Programming (XP) –A Futuristic

Approach [4]

Journal International Journal of

Natural and

Engineering Sciences

 Making XP suitable for safety critical

system

2014 Extended Iterative Maintenance Life

Cycle Using eXtreme Programming

[5]

Journal ACM SIGSOFT

Software Engineering

Notes

 Writing maintainable code that require

less maintenance effort later

 Speeding up maintenance process using

XP

2013 A framework for partial

implementation of PSP in Extreme

programming [6]

Journal International Journal of

Engineering Research

and Applications

 Improving developer’s productivity

 Improving software quality and project

planning

2013 Estimation of the New Agile XP

Process Model for Medium-Scale

Projects Using Industrial Case Studies

[7]

Journal International Journal of

Machine Learning and

Computing

 Making XP suitable for medium/ large

scale projects having large team

2013 Role Based Extreme Programming

(XP) for Secure Software

Development [8]

Journal Science International Using XP for developing secure

software

2013 Prioritizing CRC Cards as a Simple

Design Tool in

Extreme Programming [9]

Conference IEEE Canadian

Conference Of

Electrical And

Computer Engineering

 Enhancing and simplifying design

process

36 Latest Customizations of XP: A Systematic Literature Review

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 26-37

[5] J. Choudhari and U. Suman, “Extended iterative

maintenance life cycle using eXtreme programming,”

ACM SIGSOFT Software Engineering Notes, vol. 39, no.

1, pp.1-12, 2014.

[6] N. Iqbal, M.U. Hassan, A.R. Osman and M. Ahmad, “A

framework for partial implementation of PSP in Extreme

programming,” International Journal of Engineering

Research and Applications, vol. 3, no. 2, pp.604-60, 2013.

[7] M. Qureshi, “Estimation of the new agile XP process

model for medium-scale projects using industrial case

studies,” arXiv preprint arXiv:1408.6228, 2014.

[8] I. Ghani, N. Izzaty and A. Firdaus, “Role-based Extreme

Programming (XP) For Secure Software Development,”

in Special Issue-Agile Symposium, pp. 1071-1074, 2013.

[9] S. Alshehri and L. Benedicenti, "Prioritizing CRC cards

as a simple design tool in extreme programming," in

Electrical and Computer Engineering (CCECE), Regina

SK, 2013.

[10] E.M. Schön., J. Thomaschewski and M.J. Escalona,

“Agile requirements engineering: a systematic literature

review,” Computer Standards & Interfaces, vol. 49,

pp.79-91, 2017.

[11] I. Inayat, S.S. Salim, S. Marczak, M. Daneva and S.

Shamshirband, “A systematic literature review on agile

requirements engineering practices and challenges,”

Computers in human behavior, vol. 51, pp.915-929, 2015.

[12] T. Karvonen, W. Behutiye, M. Oivo and P. Kuvaja,

“Systematic literature review on the impacts of agile

release engineering practices,” Information and Software

Technology, 2017.

[13] K. Dikert, M. Paasivaara and C. Lassenius, “Challenges

and success factors for large-scale agile transformations:

A systematic literature review,” Journal of Systems and

Software, vol. 119, pp.87-108, 2016.

[14] T. Dreesen, R. Linden, C. Meures, N. Schmidt and C.

Rosenkranz, “Beyond the Border: A comparative

literature review on communication practices for agile

global outsourced software development projects,” System

Sciences (HICSS), 49th Hawaii International Conference

pp. 4932-4941, IEEE, 2016.

[15] A.S. Campanelli and F.S. Parreiras, “Agile methods

tailoring–A systematic literature review,” Journal of

Systems and Software, vol. 110, pp.85-100, 2015.

[16] M. Usman, E. Mendes, F. Weidt, and R. Britto, “Effort

estimation in agile software development: a systematic

literature review,” in Proceedings of the 10th

International Conference on Predictive Models in

Software Engineering, pp. 82-91, ACM, 2014.

[17] I. Ghani and I. Yasin, “Software Security Engineering in

Extreme Programming Methodology: A Systematic

Literature Review,” Science International, vol. 25, no. 2,

2013.

[18] T.S. Da Silva, A. Martin, F. Maurer and M. Silveira,

“User-centered design and agile methods: a systematic

review,” in Agile Conference (AGILE), pp. 77-86, IEEE,

2011.

[19] J.E. Hannay, T. Dybå, E. Arisholm and D.I. Sjøberg, “The

effectiveness of pair programming: A meta-analysis,”

Information and Software Technology, vol. 51, no. 7,

pp.1110-1122, 2009.

[20] N. Salleh, “A systematic review of pair programming

research-initial results,” in Proc. New Zealand Computer

Science Research Student Conference (NZCSRSC08),

Christchurch, 2008.

[21] S. Musa, N. Norwawi, M. Selamat and K. Sharif,

"Improved Extreme Programming Methodology with

Inbuilt Security," in Computers & Informatics (ISCI),

Kuala Lumpur , 2011.

[22] P. Brereton, B.A. Kitchenham, D. Budgen, M. Turner, and

M. Khalil, “Lessons from applying the systematic

literature review process within the software engineering

domain,” Journal of systems and software, vol. 80 no. 4,

pp. 571-583, 2007.

[23] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W.

Jones, D. C. Hoaglin, K. El Emam, and J. Rosenberg,

“Preliminary guidelines for empirical research in software

engineering,” IEEE Transactions on software engineering,

vol. 28, no. 8, pp.721-734, 2002.

[24] B. A. Kitchenham and S. Charters, “Procedures for

Performing Systematic Literature Review in Software

Engineering,” EBSE Technical Report version 2.3, EBSE-

2007-01, Software Eng. Group.

[25] A. Alliance. 2001 "Agile manifesto," [Online]. Available:

http://agilemanifesto.org/

[26] F. Anwer, S. Aftab, U. Waheed, and S. S. Muhammad,

“Agile Software Development Models TDD, FDD,

DSDM, and Crystal Methods: A Survey,” International

Journal of Multidisciplinary Sciences and Engineering,

vol. 8, no. 2, 2017.

[27] F. Anwer, S. Aftab, U. Waheed, and S. S. Muhammad,

“Comparative Analysis of Two Popular Agile Process

Models: Extreme Programming and Scrum,”

International Journal of Computer Science and

Telecommunications vol. 8, no. 2, March 2017.

[28] J. Newkirk, “Introduction to agile processes and extreme

programming,” in Proc. 24th International Conference of

Software engineering, pp. 695-696, May 2002.

[29] K. Petersen, R. Feldt, S. Mujtaba and M. Mattsson,

“Systematic Mapping Studies in Software Engineering,”

in EASE, vol. 8, pp. 68-77, 2008.

[30] K. Beck, “Extreme programming explained: embrace

change,” addison-wesley professional, 2000.

[31] P. Abrahamsson, O. Salo, J. Ronkainen and J. Warsta,

“Agile software development methods: Review and

analysis,” VTT publ., pp. 3-107 2002.

[32] R. Juric, “Extreme programming and its development

practices,” in. Proc. 22nd Int. Conf. Information

Technology Interfaces, IEEE, pp. 97-104, Jun. 2000.

[33] B. Kitchenham, O.P. Brereton, D. Budgen, M. Turner, J.

Bailey and S. Linkman, “Systematic literature reviews in

software engineering–a systematic literature review,”

Information and software technology, vol. 51 no. 1, pp.7-

15, 2009.

[34] M Bano. and D. Zowghi, “User involvement in software

development and system success: a systematic literature

review,” in Proceedings of the 17th International

Conference on Evaluation and Assessment in Software

Engineering, pp. 125-130, ACM, 2013.

[35] O. Kobayashi, M. Kawabata, M. Sakai and E. Parkinson,

“Analysis of the interaction between practices for

introducing XP effectively,” in Proc. 28th International

conference of Software Engineering, pp. 544-550, May

2006.

[36] F. Anwer, S. Aftab and I. Ali, “Proposal of Tailored

Extreme Programming Model for Small Projects,”

International Journal of Computer Applications (IJCA),

vol. 171, no. 7, pp. 23-27, 2017.

[37] G. Rasool, S. Aftab, S. Hussain and D. Streitferdt,

“eXRUP: A Hybrid Software Development Model for

Small to Medium Scale Projects,” Journal of Software

Engineering and Applications, vol. 6, no. 09, p.446, 2013.

[38] S. Ashraf and S. Aftab, “Latest Transformations in Scrum:

A State of the Art Review,” International Journal of

 Latest Customizations of XP: A Systematic Literature Review 37

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 26-37

Modern Education and Computer Science (IJMECS), vol.

9, no.7, pp.12-22, 2017.

[39] Z. Nawaz, S. Aftab and F. Anwer, “ Simplified FDD

Process Model,” International Journal of Modern

Education and Computer Science (IJMECS), vol. 9, no.9,

pp. 53-59, 2017.

Authors’ Profiles

Faiza Anwer is student of MS Computer

Science with the specialization of

Software Engineering in Virtual

University of Pakistan. Her areas of

interest are Software Process

Improvement and Agile Development

Models.

Shabib Aftab is working as Lecturer in

Computer Science Department at Virtual

University of Pakistan. He completed MS

degree in Computer Science from

COMSATS Institute of Information

Technology, Lahore and previously he

got M.Sc degree in Information

Technology from Punjab University

College of Information Technology

(PUCIT), Lahore. His areas of research are Data Mining and

Software Process Improvement.

How to cite this paper: Faiza Anwer, Shabib Aftab, "Latest Customizations of XP: A Systematic Literature Review",

International Journal of Modern Education and Computer Science(IJMECS), Vol.9, No.12, pp. 26-37, 2017.DOI:

10.5815/ijmecs.2017.12.04

