
I.J. Modern Education and Computer Science, 2017, 12, 1-8
Published Online December 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2017.12.01

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 1-8

Study of Performance Evaluation of Binary

Search on Merge Sorted Array Using Different

Strategies

Sherin W. Hijazi
University of Jordan, Amman, Jordan

Email: sherinhijazi@yahoo.com

Mohammad Qatawneh

University of Jordan, Amman, Jordan

Email: mohd.qat@ju.edu.jo

Received: 12 October 2017; Accepted: 08 November 2017; Published: 08 December 2017

Abstract—Search algorithm, is an efficient algorithm,

which performs an important task that locates specific

data among a collection of data. Often, the difference

among search algorithms is the speed, and the key is to

use the appropriate algorithm for the data set. Binary

search is the best and fastest search algorithm that works

on the principle of ‘divide and conquer’. However, it

needs the data collection to be in sorted form, to work

properly. In this paper, we study the efficiency of binary

search, in terms of execution time and speed up, by

evaluating the performance improvement of the

combined search algorithms, which are sorted into three

different strategies: sequential, multithread, and parallel

using message passing interface. The experimental code

is written in ‘C language’ and applied on an IMAN1

supercomputer system. The experimental results show

that the decision variables are generated from the IMAN1

supercomputer system, which is the most efficient. It

varied for the three different strategies, which applies

binary search algorithm on merge sort. The improvement

in performance evaluation gained by using parallel code,

greatly depends on the size of data set used, and the

number of processors that the speed-up of the parallel

codes on 2, 4, 8, 16, 32, 64, 128, and 143 processors is

best executed, using between a 50,000 and 500,000

dataset size, respectively. Moreover, on a large number of

processors, parallel code achieves the best speed-up to a

maximum of 2.72.

Index Terms—Binary search, Merge Sort, Parallel,

Multithread, P-thread, MPI, Supercomputer

I. INTRODUCTION

Nowadays, there is an increasing interest in developing

parallel algorithms implemented with MPI and Open-MP

libraries, to achieve better performance. Very few parallel

algorithms achieve comparable optimal performance

speed-up, have a near-linear speed-up for small numbers

of processing elements and are dependent on the number

of processors used [13][2][4]. Programmers must find the

best locations in the application, where work load can be

divided equally, can run concurrently and determine

exactly which threads can communicate with each other

[5] [13].

Search algorithm is one of the fundamental fields

implemented in previous research. All the search

algorithms work well on most sets set of data, but may

encounter a set of data for which the performance is not

ideal [10]. There are many search algorithms available to

use, searching for data that is different in performance

and efficiency, depending on the data and on the manner

in which they are used. The efficiency of a search

algorithm is measured by the number of times a

comparison of the search key is done in the worst case.

Binary search is the most efficient of all the searching

techniques. The concept of efficiency is important when

used to determine how fast such a task can be completed

[3] [10].

In this paper, we have studied the performance

evaluation of binary search on merge sort array, in terms

of efficiency, by comparing the results of implementation

in three strategies: sequential, multithread and parallel.

Binary search is a ‘divide and conquer’ search

algorithm. The ‘divide and conquer’ approach means, that

the problem is divided into several small sub-problems,

then the sub-problems are solved recursively and

combined to get the solution of the original problem.

Binary search looks for a particular item, by comparing

the middle most item of the collection. If a match occurs,

then the index of item is returned. If the middle item is

greater than the item, then the item is searched in the sub-

array to the left of the middle item. Otherwise, the item is

searched for in the sub-array to the right of the middle

item. This process continues on the sub-array as well,

until the size of the sub-array reduces to zero [12]. Binary

search, also known as logarithmic search, finds the

position of a target value within a sorted array. Binary

search runs in at worst logarithmic time, making O (log n)

https://en.wikipedia.org/wiki/Time_complexity#logarithmic_time

2 Study of Performance Evaluation of Binary Search on Merge Sorted Array Using Different Strategies

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 1-8

comparisons, where n is the number of elements in the

array [21].

Merge sort is a ‘divide and conquer’ sorting algorithm.

In merge sort, there are a series of three steps: divide,

conquer and combine. Initially divide the given array

consisting of n elements into two parts of n/2 elements

each. Sort the left part and right part of the array

recursively. Merge the sorted left part and right part to get

a single sorted array [6][7][8][9]. Merge sort runs in at

worst logarithmic time, making O (n log n) [22]. Fig. 1

shows the sequential merge sort consisting of an array of

4 elements to be sorted. Merge sort in sequential, is based

on the fact that the recursive calls run in serial, with the

time complexity (1):

T(n) = Θ (n log (n)) + Θ (n) = Θ (n log (n)) (1)

Multithread merge sort, creates thread recursively, and

stops work when it reaches a certain size, with each

thread locally sorting its data. Then threads merge their

data by joining threads into a sorted main list. Fig. 2

shows the multithread merge sort that have array of 4

elements to be sorted. Merge sort in multithread is based

on the fact that the recursive calls run in parallel, so there

is only one n/2 term with the time complexity (2):

T(n) = Θ log(n) + Θ(n) = Θ(n) (2)

A thread is a stream of instructions that can be

scheduled as an independent unit. A thread exists within a

process, and uses the process resources, since threads are

very small compared with processes. Multithreaded

programs may have several threads running through

different code paths "simultaneously" [11][14][24]. P-

thread library is an execution model of (a POSIX C API)

that has standardized functions for using threads across

different platforms. P-threads are defined as a set of ‘C

language’ programming types and procedure calls. . It

allows a program to control multiple different flows of

work that overlap in time. Each flow of work’s creation

and control over these flows is achieved by making calls

to the POSIX Threads API [24].

Fig.1. Sequential Merge Sort

Fig.2. Multithread Merge Sort

Parallel merge sort, is repeatedly split into a main

array of parts, having the same size, and each part is

processed by a separate processor to the point of having

single-element lists. These elements are then merged

together to generate sorted sub-lists. One of the parallel

processes is designated as a master. This process

distributes the data parts among other worker’s parallel

processes that use the sequential version of merge sort, to

sort their own data. Then sorted sub-lists are sent to the

master. Finally, the master merges all the sorted sub-lists

into one sorted list [1] [23]. Merge sort in parallel, is

based on the fact that the recursive calls run locally on

each processor, so there is only one n/p term with the

time complexity (3) [6]:

T(n) = O ((n/p) * log(n/p)) + O(n) (3)

Message Passing Interface (MPI) is widely used to

implement parallel programs [1]. MPI standard has been

designed to enhance and reduce the gap between the

performance by a parallel architecture and the actual

performance [1] [21][22]. MPI offers several functions,

including send/receive operations. There are also several

implementations used in writing MPI programs, one of

which is parallel virtual machine. Parallel Virtual

Machine (PVM), is a software package that permits a

heterogeneous collection of UNIX or Windows

computers, hooked together by a network, to be used as a

single large parallel computer [1][23][24].

Combining both binary search and merge sort

algorithms, using function methods. In this paper the

algorithm is created with three different strategies, using

a generated random array dataset: sequential, multithread

and parallel. A sequential code, executing on a single

processor can only perform one computation at a time.

Whereas the multithread and parallel code is executed in

parallel and divide up perfectly among the multi-thread

and multi-processors. The main objective of this

algorithm is to study and evaluate the performance

execution time and speed up.

The results were conducted using IMAN1

supercomputer [20] which is Jordan's first and fastest

supercomputer. It is available for use by academia and

https://en.wikipedia.org/wiki/Time_complexity#logarithmic_time
https://en.wikipedia.org/wiki/Execution_model

 Study of Performance Evaluation of Binary Search on Merge Sorted Array Using Different Strategies 3

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 1-8

industry in Jordan and the region and provides multiple

resources and clusters to run and test High Performance

Computing (HPC) codes.

The remainder of the paper is organized as follows:

Section 2 presents related work. Section 3 presents

experimental and result evaluation. Section 4 presents

conclusion and future work.

II. RELATED WORK

There has been little work done to parallelize the

search algorithms, using different strategies and parallel

architectures. In [10] the author’s study is an evaluation

of critical factors affecting the efficiency of searching

techniques. They conclude that numbers of comparisons

is the most critical factor affecting the searching

techniques. They also show that binary search is the most

efficient of all searching techniques.

With reference to [6] the author’s studies of

performance evaluation of parallel quicksort, parallel

merge sort, and parallel merge-quicksort algorithms in

terms of running time, speedup, and efficiency using

open MPI library and the experiments conducted used

IMAN1 supercomputer, findings were as follows: Parallel

Quicksort has better running time for both small and large

data size, followed by Merge-Quicksort and then Merge

sort algorithms.

“Ref. [15]”, the author’s has proposed work

comparison of both single and multicore implementation

of number searching and sorting for a large database. The

results presented show that the multicores achieve better

speed up over single core. Multi-core reduced the time

for executed multiple threads in parallel.

III. EXPERIMENTAL AND EVALUATION RESULTS

We have implemented binary search algorithm in three

different scenarios: sequential code, multithread code and

parallel code, for binary search using merge sort and

random array dataset. We used IMAN1 supercomputer to

prepare experimentation to evaluate performance

execution time and speed up. The experiments were

conducted on different data set sizes, to find out the best

execution time and efficient results. First, the sequential

code was executed and the time taken for three positions:

generate random array, sort the random array, and search

the item on sorted array. Second, the multithread code

was executed and the time taken for about the same

positions of sequential code which can be divided into

threads using p-thread compiler. Third, the parallel code

task was divided into sequential code segments, using an

MPI compiler, which each segment runs on, with an

individual processor. Then we calculated the execution

time in each scenario of algorithm, to evaluate efficiency

and determine which one has the best performance

execution time and speed-up in different scenarios.

A. IMAN1 Supercomputer

IMAN1 is first Jordan's national supercomputer project

started in January 2010. IMAN1 system is the fastest high

performance computing resource, funded by JAEC and

SESAME and it completely developed in house by

Jordanian resources. IMAN1 is using in academic and

industry in Jordan and region [16]. IMAN1 using 2260

PlayStation3 devices which have performance of 25 Tera

FLOPS (25 x 1012 Flops i.e. 25 Trillion Floating Point

Operations Per Second) [20].

B. Design Code and Implementation

The experiment was done by IMAN1 supercomputer

center. We did our project in three scenarios. First, we

combined both binary search and merge sort in sequential

code. Then we implemented both binary search and

merge sort with a multithread method. Finally, we

implemented both binary search and merge sort, under

parallel method, using an MPI compiler. The sequential,

multithread and the parallel codes are explained below.

Sequential Code

Main function() with (stdio.h, stdlib.h and time.h) and

define the size of array:

Step 1: Declare functions and variables to store

allocated memory.

Step 2: Start the timer. clock_t start = clock();

Step 3: Declare srand to fill array with random

numbers.

Step 4: Partition and divide unsorted array into

subarray.

Step 4: Sort and merge the subarray into sorted array.

Step 5: Print sorted array.

Step 6: Find item within sorted array by use binary

search, and then print if found item successful or not with

position of item.

Step 7: End the timer. clock_t stop = clock();

Step 8: Calculate the difference in start and end time.

diff = (end – start) *1000 / CLOCKS_PER_SECOND;

Step 9: Return 0.

Multithread Code

Main function() with (stdio.h, pthread.h, stdlib.h and

time.h) and define: (size of array, number of thread and

struct node)

Step 1: Declare functions and variables to store

allocated memory.

Step 2: Start the timer. clock_t start = clock();

Step 3: Fill array with random numbers.

Step 4: Define node and create threads for partition and

divide unsorted array.

Step 5: Join thread to sort and merge the subarray into

sorted array.

Step 6: Print sorted array.

Step 7: Find item within sorted array by use binary

search, and then print if found item successful or not with

position of item.

Step 8: End the timer. clock_t stop = clock();

4 Study of Performance Evaluation of Binary Search on Merge Sorted Array Using Different Strategies

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 1-8

Step 9: Calculate the difference in start and end time.

diff = (end – start) *1000 / CLOCKS_PER_SECOND;

Step 10: Return 0.

Parallel Code

Main function() with (stdio.h, mpi.h, stdlib.h and

time.h) and define the size of array:

Step 1: Declare functions and variables to store

allocated memory.

Step 2: Start the timer. clock_t start = clock();

Step 3: Create and populate the array by fill array with

random numbers.

Step 4: Initialize MPI.

Step 5: Divide the unsorted array in equal-sized chunks.

Step 6: Send each subarray to each process.

Step 7: Perform the merge sort on each process.

Step 8: Gather the sorted subarrays into one.

Step 9: Make the final merge sort call.

Step 10: Print the sorted array

Step 11: Find item within sorted array by use binary

search, and then print if found item successful or not with

position of item.

Step 12: End the timer. clock_t stop = clock();

Step 13: Calculate the difference in start and end time.

diff = (end – start) *1000 / CLOCKS_PER_SECOND;

Step 14: Clean up root.

Step 15: Clean up rest.

Step 16: Finalize MPI.

C. Performance Evaluation and Results

Table 1, shows software and hardware requirements

and table 2 shows algorithms and the parameters used:

Table 1. Software and Hardware Requirements

Software and

Hardware
Type

Virtual tools
Oracle VM VirtualBox and IMAN1

system

Operating System Windows 10 64-bit and Linux 6.4

Languages C Language

Hardware

Specification

IMAN1 Supercomputer center

Intel core(TM) i7-4720HQ CPU

2.6GHz 16GB

Library interface stdio, stdlib, time, pthread, and mpi

Table 2. Algorithms and Parameters are used

Parameter Type

Algorithms Binary search and merge sort

Size of data set
489, 10000, 50000, 250000, 500000

and 1000000

Number of processor 1, 2, 4, 8, 16, 32, 64, 128 and 143

Strategy of scenario Sequential, multithreaded, and parallel

Array dataset Random number generation

Measurement Execution time and speed up

Run Time Evaluation

Tables 3, 4, 6, 7, and 8 show running time test code for

each strategy to different dataset size. All results are

performed on: 2, 4, 8, 16, 32, 64, 128, 143 processors. As

illustrated in the tables, as the data size increases, the run

time increases too, due to the increased number of

comparisons and the increased time required for data

splitting and gathering in a parallel strategy. Sequential

code has the best run time for small dataset, while parallel

code is the best in large dataset size, followed by

sequential code and then multithread code. Finally,

multithread code has the worst run time results.

Table 3. Test Data Set Size (489)

Sequential

Algorithm

Multithread

Algorithm
Parallel Algorithm

Run

Time

(MS)

Up

to

Run

Time

(MS)

Up to

Run

Time

(MS)

Processor

0 1 1120
2

Thread

30 2

50 4

120 8

130 16

250 32

130 64

220 128

200 143

From table 3 shows that the sequential code has better

running time in a small dataset, followed by parallel code

and then multithread code.

Table 4. Test Data Set Size (10,000)

Sequential

Algorithm

Multithread

Algorithm
Parallel Algorithm

Run

Time

(MS)

Up

to

Run

Time

(MS)

Up to

Run

Time

(MS)

Processor

10 1

Unable

to create

thread

2

Thread

0 2

60 4

150 8

70 16

130 32

70 64

300 128

130 143

From table 4 shows that the parallel code at two

processors has better running time at 10,000 elements,

followed by sequential. However, in this case the

multithread code could not create threads.

 Study of Performance Evaluation of Binary Search on Merge Sorted Array Using Different Strategies 5

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 1-8

Table 5. Test Data Set Size (50,000)

Sequential

Algorithm

Multithread

Algorithm
Parallel Algorithm

Run

Time

(MS)

Up

to

Run

Time

(MS)

Up to

Run

Time

(MS)

Processor

80 1

Unable

to create

thread

2

Thread

120 2

40 4

120 8

220 16

220 32

180 64

240 128

280 143

From table 5 shows that the parallel code at four

processors has optimal running time at 50,000 elements,

followed by sequential, also, in this case the multithread

code could not create threads.

Table 6. Test Data Set Size (250,000)

Sequential

Algorithm

Multithread

Algorithm
Parallel Algorithm

Run

Time

(MS)

Up

to

Run

Time

(MS)

Up to

Run

Time

(MS)

Processor

490 1

Unable

to create

thread

2

Thread

180 2

180 4

280 8

340 16

360 32

350 64

610 128

390 143

Table 6 shows that the parallel code at two and four

processors, has optimal running time at 250,000 elements,

and has better running time up to 143 processors

compared with sequential, except the case of 128

processors; again, in this case the multithread code could

not create threads.

Table 7 shows that the parallel code at 8 processors has

optimal running time at 500,000 elements, and has better

running time at up to 143 processors compared with

sequential, but there exist some differences in running

time among processors, due to the delay of entire

communication of functions and remote connection

network.

Table 7. Test Data Set Size (500,000)

Sequential

Algorithm

Multithread

Algorithm
Parallel Algorithm

Run

Time

(MS)

Up

to

Run

Time

(MS)

Up to

Run

Time

(MS)

Processor

910 1

Unable

to create

thread

2

Thread

470 2

560 4

420 8

580 16

530 32

770 64

760 128

800 143

Table 8. Test Data Set Size (1000,000)

Sequential

Algorithm

Multithread

Algorithm
Parallel Algorithm

Run

Time

(MS)

Up

to

Run

Time

(MS)

Up to

Run

Time

(MS)

Processor

1870 1

Unable

to create

thread

2

Thread

760 2

750 4

920 8

1070 16

1230 32

1260 64

1280 128

1580 143

Table 8 shows the parallel code at 4 processors has

optimal running time at 1000,000 elements, and has

better running time up to 143 processors compared with

sequential, but there exists some differences in running

time among processors, due to the delay of entire

communication of functions and remote connection

network.

Table 9 shows comparisons of optimal running time

between sequential and parallel code. Table 3.10 shows a

comparison of the optimal number of processors, with

growth of dataset size.

Fig. 3 illustrates the run time, according to different

dataset sizes in both sequential and parallel algorithms,

the general behavior for two algorithms as the size of

dataset increases that run time is increased in both

algorithms, but that the parallel has the best run time

results, due to better load distribution among more

processors.

6 Study of Performance Evaluation of Binary Search on Merge Sorted Array Using Different Strategies

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 1-8

Table 9. Sequential and Parallel Running Time Comparison

Dataset Size Sequential Algorithm Parallel Algorithm

Run Time

(MS)

Optimal Run Time

(MS)

489 0 30

10,000 10 0

50,000 80 40

250,000 490 180

500,000 910 420

1000,000 1870 750

Fig.3. Sequential and Parallel Running Time Comparison

Table 10. Number of Processors with Dataset Size

Dataset Size
Optimal Number

of Processor

489 2

10,000 2

50,000 4

250,000 4

500,000 8

1000,000 4

Speed up Evaluation

The speed-up is the ratio between the sequential time

and the parallel time [6]. Table 11 and Fig. 4 illustrate the

speed-up of the parallel code on 2, 4, 8, 16, 32, 64, 128

and 143 processors with 50,000, 250,000, 500,000 and

million dataset sizes, respectively. The results show that

parallel code achieves the best speedups values, up to

2.72. The speed-up defined as equation (4):

Run time using sequential code
Speed up

Execution time using a parallel with p processors

(4)

Table 11. Speed up of Different Datasets with Different Number of

Processors

No. of

Processor

Speed

up of

50,000

Speed up

of

250,000

Speed up

of

500,000

Speed up

of

1000,000

2 0.67 2.72 1.94 2.46

4 2.00 2.72 1.63 2.49

8 0.67 1.75 2.17 2.03

16 0.36 1.44 1.57 1.75

32 0.36 1.36 1.72 1.52

64 0.44 1.40 1.18 1.48

128 0.33 0.80 1.20 1.46

143 0.29 1.26 1.14 1.18

Fig. 4. Speed up of Different datasets with Different Number of

Processors

From fig. 4 illustrate the speedup of the parallel codes

on 2, 4, 8, 16, 32, 64, 128, and 143 processors is the best

done between 50000 and 500000 dataset size,

respectively.

IV. CONCLUSIONS

We conduct binary search on merge sort experimental

by three different strategies: sequential, multithread and

parallel on IMAN1 supercomputer. The results obtained

from the experimental analysis performance execution

time and speed up, the combine binary search and merge

sort algorithms with parallel code performs better than

the sequential and multithread code after 489 elements,

followed by sequential and then multithread. As the array

size becomes large then the number of processor increase.

Multithread code used p-thread, but parallel written with

MPI library. Moreover, the speedup of the parallel codes

on 2, 4, 8, 16, 32, 64, 128, and 143 processors is up to

2.72, and the best is done between 50000 and 500000

dataset sizes, respectively. The future of this work seeks

to use binary search on other sorting algorithms to

evaluate performance in terms of execution time and

speed up. And use other methods with multithread code

such as MPI library.

ACKNOWLEDGMENT

We would like to acknowledge eng. Zaid Abudayyeh

for his support to accomplish this work.

 Study of Performance Evaluation of Binary Search on Merge Sorted Array Using Different Strategies 7

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 1-8

REFERENCES

[1] A. El-Nashar. “2011”. Parallel Performance of MPI

Sorting Algorithms On Dual–Core Processor Windows-

Based Systems. International Journal of Distributed and

Parallel Systems (IJDPS) Vol.2, No.3, May 2011

[2] A. Madsen, F. Jensen, A. Salmeron, H. Langseth and Th.

Nielsen. “2017”. A parallel algorithm for Bayesian

network structure learning from large data sets.

Knowledge base system, 117(2017) 46-55 Elsevier.

[3] A. Singh, Monika, Vandana and S. Kaur. “2011”.

Assortment of Different Sorting Algorithms. Asian

Journal of Computer Science and Information Technology,

ISSN 2249- 5126.

[4] D. Penas, P. Gonzalez, J. Egea, J. Banga and R. Doallo.

“2015”. Parallel metaheuristics in computational biology:

an asynchronous cooperative enhanced Scatter Search

method. ICCS 2015 International Conference On

Computational Science, Volume 51, 2015, Pages 630-639,

Elsevier.

[5] M. Geiger. “2017”. A multithread local search algorithm

and computer implementation for the multimode,

resource- constrained multi-project scheduling problem.

European Journal of Operation Research. 0377-2217/@

2016 Elesvier B.V.

[6] M. Saadeh, H. Saadeh and M. Qatawneh. “2016”.

Performance Evaluation of Parallel Sorting Algorithms on

IMAN1 Supercomputer. International Journal of

Advanced Science and Technology Vol.95 (2016), pp.57-

72

[7] M. Dawra, and Priti. “2012”. Parallel Implementation of

Sorting Algorithms. IJCSI International Journal of

Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012

ISSN (Online): 1694-0814.

[8] M Rajasekhara Babu, M Khalid, Sachin Soni, Sunil

Chowdari Babu, Mahesh. “2011”. Performance Analysis

of Counting Sort Algorithm using various Parallel

Programming Models. International Journal of Computer

Science and Information Technologies, Vol. 2 (5) , 2011,

2284-2287.

[9] Mustafa B. and Waseem Ahmed. Parallel Algorithm

Performance Analysis using OpenMP for Multicore

Machines. International Journal of Advanced Computer

Technology (IJACT), VOLUME 4, NUMBER 5,

ISSN:2319-7900.

[10] Olabiyisi S.O, Aladesae T.S. , Oyeyinka F.I. , and Oladipo

Oluwasegun. “2013”. Evaluation of Critical Factors

Affecting The Efficiency of Searching Techniques.

International Journal of Advanced Research in

Computer Science and Software Engineering, Volume 3,

Issue 7, July 2013, ISSN: 2277 128X.

[11] P. Kulkarni and S. Pathare. “2014”. Performance Analysis

of Parallel Algorithm over Sequential using OpenMP.

IOSR Journal of Computer Engineering (IOSR-JCE) e-

ISSN: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 2,

Ver. X (Mar-Apr. 2014), PP 58-62.

[12] R. Banos, J. Ortega, C. Gil, F. de Toro and M. Montoya.

“2016”. Analysis of OpenMP andMPI implementations of

meta-heuristics for vehicle routing problems. Applied Soft

Computing, 1568-4946/@2016 Elesvier B.V.

[13] Sh. Kathavate1 and N.K. Srinath. “2014”. Efficiency of

Parallel Algorithms on Multi Core Systems Using

OpenMP. International Journal of Advanced Research in

Computer and Communication Engineering Vol. 3, Issue

10, October 2014.

[14] S. K. Sharma and K. Gupta. “2012”. Performance

Analysis of Parallel Algorithms on Multi-core System

using OpenMP. International Journal of Computer

Science, Engineering and Information Technology

(IJCSEIT), Vol.2, No.5, October 2012.

[15] Venkata Siva Prasad Ch., Ravi S. and Karthikeyan V.

“2015”. Performance Improvement in Data Searching and

Sorting Using Multi-Core. ARPN Journal of Engineering

and Applied Sciences, VOL. 10, NO. 16, SEPTEMBER

2015, ISSN 1819-6608.

[16] Azzam Sleit, Wesam AlMobaideen, Mohammad

Qatawneh, Heba Saadeh.”2008”. Efficient Processing for

Binary Submatrix Matching. American Journal of Applied

Sciences 6 (1): 78-88, 2008, ISSN 1546-9239.

[17] Mohammad Qatawneh, Azzam Sleit, Wesam

Almobaideen. “2009”. Parallel Implementation of

Polygon Clipping Using Transputer. American Journal of

Applied Sciences 6 (2): 214-218, 2009. ISSN 1546-9239.

[18] Mohammad Qatawneh. “2011”.Multilayer Hex-Cells: A

New Class of Hex-Cell Interconnection Networks for

Massively Parallel Systems. Int. J. Communications,

Network and System Sciences, 2011, 4, 704-708.

[19] Mais Haj Qasem, Mohammad Qatawneh. “2017”. Parallel

Matrix Multiplication for Business Applications.

Proceedings of the Computational Methods in Systems

and Software. 201, 24-36.

[20] http://www.iman1.jo/iman1/index.php/about#.(Accessed

on 03-01-2017)

[21] https://en.wikipedia.org/wiki/Binary_search_algorithm.

(Accessed on 03-01- 2017).

[22] https://en.wikipedia.org/wiki/Merge_sort. (Accessed on

03-01- 2017).

[23] http://penguin.ewu.edu/~trolfe/ParallelMerge/ParallelMer

ge.html. (Accessed on 03-09- 2017)

[24] https://en.wikipedia.org/wiki/POSIX_Threads. (Accessed

on 03-09- 2017)

Authors’ Profiles

Sherin W. Hijazi, is obtained her Bc in

Management Information Systems from

An-Najah University in 2005, then she

completed her study in the master of

Information Technology and Computer

Science from Al Yarmouk University in

2012. She has 11 years' experiences in

computer information system and

programming. She worked in Palestine Technical University,

Tulkarem, Palestine as a lecturer, between 2007 until now. Now

she is a Ph.D. student in University of Jordan. She interests in

network security, data base system, information analysis and

design, and parallel algorithm.

Mohammad Qatawneh, is a Professor

at computer science department, the

University of Jordan. He received his

Ph.D. in computer engineering from

Kiev University in 1996. Dr. Qatawneh

published several papers in the areas of

parallel algorithms, networks and

embedding systems. His research

interests include parallel computing, embedding system, and

network security.

https://link.springer.com/chapter/10.1007/978-3-319-67621-0_3
https://link.springer.com/chapter/10.1007/978-3-319-67621-0_3
http://www.iman1.jo/iman1/index.php/about
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Merge_sort
http://penguin.ewu.edu/~trolfe/ParallelMerge/ParallelMerge.html
http://penguin.ewu.edu/~trolfe/ParallelMerge/ParallelMerge.html
https://en.wikipedia.org/wiki/POSIX_Threads

8 Study of Performance Evaluation of Binary Search on Merge Sorted Array Using Different Strategies

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 12, 1-8

How to cite this paper: Sherin W. Hijazi, Mohammad Qatawneh, "Study of Performance Evaluation of Binary Search

on Merge Sorted Array Using Different Strategies", International Journal of Modern Education and Computer

Science(IJMECS), Vol.9, No.12, pp. 1-8, 2017.DOI: 10.5815/ijmecs.2017.12.01

