
I.J. Modern Education and Computer Science, 2016, 6, 35-40
Published Online June 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2016.06.05

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 6, 35-40

Evaluation of Performance on Open MP Parallel

Platform based on Problem Size

Yajnaseni Dash
School of Studies in Computer Science & IT, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India, 492010

Email: yajnasenidash@gmail.com

Sanjay Kumar and V.K. Patle
School of Studies in Computer Science & IT, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India, 492010

Email: {sanraipur@rediffmail.com, patlevinod@gmail.com}

Abstract—This paper evaluates the performance of

matrix multiplication algorithm on dual core 2.0 GHz

processor with two threads. A novel methodology was

designed to implement this algorithm on Open MP

platform by selecting time of execution, speed up and

efficiency as performance parameters. Based on the

experimental analysis, it was found that a good

performance can be achieved by executing the problem in

parallel rather than sequential after a certain problem size.

Index Terms—Open MP, parallel algorithm, matrix

multiplication, performance analysis, speed up, efficiency

I. INTRODUCTION

Parallel computing is the instantaneous utilization of

several computer resources for solving a computational

problem. The requirement of parallel computing arises to

save time/money, to solve complex problems, to do

multiple things at a time, to make better use of parallel

hardware and to overcome memory constraints. The

parallel programs composed of many active processes all

at once solving a particular problem by divide and

conquer technique. Multi-core processors employ more

than one core to solve a problem. The advantage of using

multi-core processors is to execute multiple tasks at a

time. Performance evaluation is the process of assessing

the information of program parameters. One such

parameter for measuring the performance of an algorithm

is execution time [1][2]. We have applied Open MP

(OMP) parallel environment for evaluating the

performance of matrix multiplication.

This paper is organized as follows. Section 2 deals

with related work done in the current field.

Implementation details were presented in section 3.

Section 4 focuses on performance evaluation,

experimental results and discussion followed by

conclusion in section 5.

A. Open MP

Open MP stand for open multi-processing. It is the

standard programming interface which provides a

portable and scalable model for shared memory thread

based parallel programming applications. It is an

Application Programming Interface (API) which

jointly defined by a group of major computer hardware

and software vendors. This API supports C/C++ and

FORTRAN on broad variety of platforms including

UNIX, LINUX and Windows. The flexibility and easy to

use design of Open MP on a supported platform make it

as simple as adding some directives to the source code

[7][8][9][10][11].

All OMP programs begin as a single process i.e. the

master thread. The master thread runs sequentially until

the first parallel region construct is encountered. It uses

the fork-join model of parallel execution. Here the

approach to parallelism is explicit that means

programmer has the full control over the parallelization

[8][9][10][11]. Figure 1 represents the organization of

master and slave threads in the OMP parallel

environment.

Fig.1. Organization of master and slave threads

B. Matrix Multiplication Method

According to an academic research at Berkeley

University, USA [12] there were 13 problems important

for science and engineering applications. Within these 13

problems was the „Dense Linear Algebra‟ and it includes

matrix multiplication method. Other reasons to choose

matrix multiplication are its wide applicability in

numerical programming and flexibility of matrix

indexing. It is one of the essential parallel algorithms

with respect to data locality, cache coherency etc.

36 Evaluation of Performance on Open MP Parallel Platform based on Problem Size

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 6, 35-40

[13][14]. The problem of computing the product C = AxB

of two large (A and B), dense, matrices was considered.

II. RELATED WORK

Parallel computing has gained its popularity since 80‟s

after the development of supercomputers with massively

parallel architectures. There are several parallel

computing platforms such as Open MP, Message passing

Interface (MPI), Parallel Virtual Machine (PVM),

Compute Unified Device Architecture (CUDA), parallel

MATLAB etc. In the current study, we have selected

OMP parallel environment for evaluating the

performance of matrix multiplication algorithm.

Various researches have been carried out to assess the

performance of different algorithms in parallel platform

since the last decade. Dash et al. provided the overview

of optimization techniques applicable for matrix

multiplication algorithm [1]. The performance analysis of

the matrix multiplication algorithm was studied by using

MPI [3]. In a previous study, matrix multiplication

problem has also been studied to recognize the effect of

problem size on parallelism. But this study was limited to

a smaller sample size [4]. Several studies [5][6][7] were

carried out for evaluating the performance of matrix

multiplication algorithm on multi-core processors by

using OMP environment. In similar studies reported in

papers [4][5][6][7], where efficiency was not calculated.

We have calculated efficiency as one of the performance

evaluation parameter. Earlier research was carried out for

comparatively on smaller sample sizes. However matrix

size up to 5000x5000 was considered for evaluating the

performance in the current study.

III. IMPLEMENTATION DETAILS

A sequential matrix multiplication algorithm was

implemented in OMP and executed in Fedora 17 Linux

operating system. The parallel codes have been written

using OMP and executed in Intel core2duo processors

with dual core for two threads only. The running time of

the algorithm on different processors was noted down and

the performance measures (speed up, efficiency) of the

systems were evaluated accordingly.

A. Implementation using multi-core processor

The algorithm was implemented using OMP parallel

environment using a multi-core processor. To overcome

the limitations of single core processors, which rapidly

reach the physical limits of possible complexity and

speed, currently multi-core processors are becoming the

new industry trend. In view of applicability, a multi-core

processor has acquired more than 20% of the new Top

500 supercomputer list [15]. The shifting trend to

decrease the size of chips while increasing the number of

transistors that they contain has led to enhanced computer

performance and reduction in cost. Manufacturers like

AMD, IBM, Intel, and Sun have also moved towards

production of chips with multiple cooler-running, more

energy-efficient processing cores for servers, desktops,

and laptops instead of one increasingly powerful core.

Though speed factor can be compromised sometimes by

use of multi-core chips than single-core models, but

adhering to Moore's law they improve overall

performance by handling more work in parallel [16].

Program for matrix multiplication was run in following

environment. The multi-core processor which was used in

this work with hardware descriptions are presented in the

Table1 as follows.

Table 1. Multicore Processor with Specifications

Components Specifications

Model Lenovo 3000 G430

Processor Cores Dual core

Processor Intel ™ Core2Duo CPU T5800 @ 2.00 GHz

RAM 3.00 GB (2.87 GB usable)

Operating System 32-bit OS

B. Implementation in OMP

Fig.2. Flow graph of OMP module

In our simulation, Fedora 17 Linux operating system

with Intel Core2Duo (2.00 GHz) processor was used. On

this system, matrix sizes of different orders ranging from

10x10 to 5000x5000 were multiplied without OMP and

with OMP. Elements of matrices randomly generated

using rand () function and for getting computational time

omp_get_wtime () function was used in OMP. In OMP,

when time computation is done without using pragma

directive, it is called serial time whereas with pragma

command it is called parallel time. In this section, all the

necessary steps of implementing the algorithm in OMP

are described. Figure 2 represents the flow graph of OMP

module.

C. Matrix multiplication without Open MP

Step 1: Declare variables to store allocated memory

Start

Dual Core Processor

Computation of Matrix Multiplication

Algorithm

OMP Parallel Programming

Thread 1 Thread 2

Terminate Threads and

Display Time Count

End

 Evaluation of Performance on Open MP Parallel Platform based on Problem Size 37

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 6, 35-40

Step 2: Declare variables to input matrix size

Step 3: Declare variable to calculate the time

difference between the start and end of the execution.

Step 4: Enter dimension „N‟ for „NxN‟ matrix (10-

5000)

Step 5: Allocate dynamic memory for matrix using

malloc function.

Step 6: Initialize first and second matrix using

randomization method.

for(i=0; i<n; ++i) {

 for(j=0; j<n; ++j) {

 arr1[i][j] = (rand() % n);

 arr2[i][j] = (rand() % n);}

}

Step 7: Start the timer.

 start = omp_get_wtime();

Step 9: Do naive matrix multiplication.

for(i=0; i<n; ++i) {

 for(j=0; j<n; ++j) {

 temp = 0;

 for(k=0; k<n; ++k) {

 temp += arr1[i][k] ×arr2[k][j];

 }

 arr3[i][j] = temp;

 }

 }

Step 10: End the timer.

 end = omp_get_wtime();

Step 11: Calculate the difference in start and end time.

Difference = (end – start) / Clocks_Per_Second.

Step 12: Print the time required for program execution

without OMP.

D. Matrix multiplication with Open MP

Step 1: Declare variables to store allocated memory

Step 2: Declare variables to input matrix size as i, j, k,

n and temp.

Step 3: Declare variables to be used by Open MP

function for finding the number of threads, maximum

number of threads and number of processors that can be

used in the execution of the program. Another function

[omp_in_parallel()] of OMP was also employed to know

whether the code execution occurring in parallel or not.

This function return 1 if code is in parallel otherwise it

returns 0.

Step 4: Declare variable to calculate the starting and

ending time for computation.

Step 5: Enter dimension „N‟ for „NxN‟ matrix (10-

5000)

Step 6: Allocate dynamic memory for matrix using

malloc function.

Step 7: Initialize first and second matrix using

randomization method.

for(i=0; i<n; ++i) {

 for(j=0; j<n; ++j) {

 arr1[i][j] = (rand() % n);

 arr2[i][j] = (rand() % n);}

}

Step 8: Start the timer.

 start = omp_get_wtime();

Step 9: The Actual Parallel region starts here

#pragma omp parallel for private (nthreads, tid, maxt,

procs, inpar)

{

/*obtain thread number*/

tid = omp_get_thread_num();

/* only master thread does this */

 if (tid==0)

{

printf ("Threads %d getting environment info...\n", tid);

Step 10: Get environment information

maxt = omp_get_max_threads();

nthreads = omp_get_num_threads();

procs= omp_get_num_procs();

inpar= omp_in_parallel();

}

Step 11: Print environment information

printf (“Maximum threads = %d\n”, maxt);

printf (“Number of threads = %d\n”, nthreads);

printf (“Number of processors = %d\n”, procs);

printf (“In parallel? = %d\n”, inpar);

}

}

Step 12: Do naive matrix multiplication using parallel

pragma directive of OMP.

 #pragma omp parallel for private (i, j, k, temp)

 for(i=0; i<n; ++i) {

 for(j=0; j<n; ++j) {

 temp = 0;

 for(k=0; k<n; ++k) {

 temp += arr1[i][k] ×arr2[k][j];

 }

 arr3[i][j] = temp;

 }

 }

Step 13: End the timer.

 end = omp_get_wtime();

Step 14: Calculate the difference in start and end time.

Difference = (end – start) / Clocks_Per_Second;

Step 15: Print the time required for program execution

with OMP.

IV. PERFORMANCE EVALUATION

The performance measures are employed to know the

timeliness, efficiency and quality of a particular system.

Here two performance measures i.e. speed up and

efficiency are used in our study to evaluate the

performance of matrix multiplication algorithm in OMP

parallel environment.

A. Performance Measures

Speedup: Speedup is the ratio of the time required to

execute a given program sequentially and the time

required to execute the same problem in parallel as given

in (1).

()
OMPSequntialTime

SpeedUp S
OMPParallelTime

 . (1)

38 Evaluation of Performance on Open MP Parallel Platform based on Problem Size

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 6, 35-40

Efficiency: It is one of the important metric used for

performance measurement of parallel computer system.

Efficiency metric is applied to find out how the resources

of the parallel systems are being utilized. This is also

called as degree of effectiveness. Here in this study, the

numbers of processors are 2 as dual core systems have

been used. The formula is given in (2).

()
. Pr (2)

OMPSpeedUp
Efficiency E

No of ocessors
 . (2)

B. OMP Execution Time Results

Computational execution times including both

sequential and parallel run were recorded in Open MP

parallel programming environment. These results were

shown in Table 2 and a graph was plotted accordingly in

Figure 3.

Table 2. Execution Time of OMP

Matrix size Sequential time Parallel time

10x10 0.000046 0.000273

50x50 0.001535 0.001167

100x100 0.01327 0.009603

200x200 0.029811 0.021555

300x300 0.335226 0.228125

400x400 1.000831 0.667475

500x500 2.127931 1.421125

600x600 3.94911 2.539687

700x700 6.070147 3.931948

800x800 10.625654 6.459272

900x900 15.43963 9.550435

1000x1000 21.336303 13.137191

1500x1500 112.655111 69.802859

2000x2000 177.362122 112.565785

2500x2500 418.590416 188.201826

3000x3000 574.658692 298.450969

3500x3500 812.505873 465.223017

4000x4000 1328.852847 850.408619

4500x4500 1770.902282 1042.201657

5000x5000 2213.815603 1203.885703

Table2 illustrates the comparison of both the sequential

and parallel time of the matrix multiplication algorithm.

The highest sequential time required to execute

5000x5000 matrix sizes is 2213.815603 seconds whereas

it has taken only 1203.885703 seconds for parallel

execution using OMP.

10 50 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1,500

2000

2500

Matrix Size

E
x

e
c
u

t
io

n
 T

im
e
 (

S
e
c
)

OMP Sequential Time

OMP Parallel Time

Fig.3. Execution time of OMP

C. OMP Performance Results

Speed up and efficiency measures were calculated to

analyse the performance of matrix multiplication

algorithm in Open MP programming platform. These

results were presented in Table 3 and Figure 4.

Table 3. Performance Metrics Results for OMP

Matrix size Speed up Efficiency

10x10 0.168498168 0.084249084

50x50 1.315338475 0.657669237

100x100 1.381859835 0.690929918

200x200 1.383020181 0.69151009

300x300 1.469483836 0.734741918

400x400 1.499428443 0.749714222

500x500 1.497356672 0.748678336

600x600 1.554959332 0.777479666

700x700 1.543801444 0.771900722

800x800 1.645023464 0.822511732

900x900 1.616641546 0.808320773

1000x1000 1.624114546 0.812057273

1500x1500 1.613903966 0.806951983

2000x2000 1.575630837 0.787815418

2500x2500 2.224157039 1.112078519

3000x3000 1.925471021 0.962735511

3500x3500 1.746486832 0.873243416

4000x4000 1.562605102 0.781302551

4500x4500 1.699193501 0.84959675

5000x5000 1.838891846 0.919445923

 Evaluation of Performance on Open MP Parallel Platform based on Problem Size 39

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 6, 35-40

D. Discussion

A dataset of 10x10, 50x50, 100x100, 200x200, …., up

to 5000x5000 was considered for performance evaluation

purpose. It was observed from the study, that in OMP, the

time required for the sequential execution of

multiplication of 10x10 matrix size was less as compared

to the parallel execution time. However, the parallel

execution gives better result from 50x50 size matrix

onwards. This signifies that the size of problem also

matters in achieving better parallelism. The small

problem size leads to a parallel slowdown phenomenon,

which results from the communication bottleneck. This

means parallelism should be adopted beyond a certain

size of problem only [4]. In current case for OMP and

2.00 GHz processor, parallelism is effective only after

50x50 matrix multiplication. Thus, effective parallelism

can be achieved after 50x50 matrix size in OMP. It was

also observed that speed up and efficiency both increase

slowly with matrix size (problem size).

From this study it has been found that

1) ST < PT (for below 50x50 matrix size)

2) ST > PT (for above 50x50 matrix size)

Here, ST denotes sequential time and PT denotes

parallel time.

10 50 100 200 300 400 500 600 700 800 900 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

Matrix Size

S
c
o

r
e

Speed Up

Efficiency

Fig.4. Performance of OMP

V. CONCLUSION

OMP is a great tool for parallel computing

environment having richness of functionalities. In this

study, it was observed that the parallel algorithm cannot

perform better than sequential algorithm when data set

size is small. However, as we increase the size of the data

set the execution of parallel algorithm starts performing

better and provides much better outcomes than the

sequential execution.

REFERENCES

[1] Y. Dash, S. Kumar, V.K Patle. , “A Survey on Serial and

Parallel Optimization Techniques Applicable for Matrix

Multiplication Algorithm,” American Journal of Computer

Science and Engineering Survey (AJCSES), vol 3, issue 1,

Feb 2015.

[2] K. Hwang, N. Jotwani, “Advanced Computer

Architecture”, Tata McGraw Hill education Private

Limited, Second Edition, 2001.

[3] J. Ali, R.Z. Khan, “Performance Analysis of Matrix

Multiplication Algorithms Using MPI,” International

Journal of Computer Science and Information

Technologies (IJCSIT), vol. 3 (1), pp. 3103 -3106, 2012.

[4] R. Patel, S. Kumar, “Effect of problem size on

parallelism”, Proc. of 2nd International conference on

Biomedical Engineering & Assistive Technologies at NIT

Jalandhar, pp. 418-420, 2012.

[5] S.K. Sharma, K. Gupta, “Performance Analysis of Parallel

Algorithms on Multi-core System using OpenMP

Programming Approaches”, International Journal of

Computer Science, Engineering and Information

Technology (IJCSEIT), vol.2, No.5, 2012.

[6] S. Kathavate, N.K. Srinath, “Efficiency of Parallel

Algorithms on Multi Core Systems Using OpenMP,”

International Journal of Advanced Research in Computer

and Communication Engineering, Vol. 3, Issue 10, pp.

8237-8241, October 2014..

[7] P. Kulkarni, S. Pathare, “Performance analysis of parallel

algorithm over sequential using OpenMP,” IOSR Journal

of Computer Engineering (IOSR-JCE), Volume 16, Issue 2,

pp. 58-62.

[8] P. Graham, “OpenMP: A Parallel Programming Model for

Shared Memory Architectures,” Edinburgh Parallel

Computing Centre, The University of Edinburgh, Version

1.1, March 1999.

[9] M. J. Quinn, “ Parallel Programming in C with MPI and

OpenMP,” McGraw Hill, 1st edition, 2004

[10] Uusheikh, “Begin Parallel Programming with OpenMP”

CPOL Malaysia 5 Jun 2007.

[11] OpenMP: https://computing.llnl.gov/tutorials/openMP/.

[12] K. Asanovic, R. Bodik, B. Catanzaro et al., “The

landscape of parallel computing research: A view from

Berkeley,” Technical Report UCB/EECS-2006-183, EECS

Department, University of California, Berkeley, December

2006.

[13] K. Thouti, S.R. Sathe, “Comparison of OpenMP and

OpenCL Parallel processing Technologies”, UACSA, vol.

3, issue 4, pp. 56-61, 2012.

[14] R. Choy, A. Edelman, “Parallel MATLAB: Doing it

Right,” Computer Science AI Laboratory, Massachusetts

Institute of Technology, Cambridge, MA 02139.

[15] L.Chai, “Understanding the Impact of Multi-Core

Architecture in Cluster Computing: A Case Study with

Intel Dual-Core System,” Seventh IEEE International

Symposium on Cluster Computing and the Grid, pp 471-

478, 14-17 May 2007.

[16] D. Geer, “Chip makers turn to multicore processors,”

Computer, IEEE Explore, Vol.38, May 2005, pp 11-13.

40 Evaluation of Performance on Open MP Parallel Platform based on Problem Size

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 6, 35-40

Authors’ Profiles

Yajnaseni Dash: She was a student at

School of Studies in Computer Science &

IT, Pt. Ravishankar Shukla University,

Raipur (Chhattisgarh), India. Her fields

of interest include soft computing, data

mining, software engineering and parallel

computing. She has published several

research papers in international journals

and conference proceedings. She is the member of MIAENG

and MICST.

Sanjay Kumar: Sanjay Kumar is

Associate Professor and Head of

Computer Science department at School

of Studies in Computer Science & IT, Pt.

Ravishankar Shukla University, Raipur

(Chhattisgarh), India. He has done B.E.

(Electrical), M.E. (CSE) and Ph.D. (CSE).

His areas of interest are computer

networking and parallel computing.

V.K. Patle: He is currently working as

Assistant Professor at School of Studies in

Computer Science & IT, Ravishankar

Shukla University, Raipur(Chhattisgarh),

India. His fields of interest include

wireless networking and parallel

computing.

