
I.J. Modern Education and Computer Science, 2016, 6, 27-34 
Published Online June 2016 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijmecs.2016.06.04 

Copyright © 2016 MECS                                                    I.J. Modern Education and Computer Science, 2016, 6, 27-34 

Empirical Analysis of HPC Using Different 

Programming Models 
 

Muhammad Usman Ashraf 
Department of Computer Science, King abdulaziz University Jeddah, Saudi Arabia 

Email: m.usmanashraf@yahoo.com 

 

Fadi Fouz 
Department of Computer Science, King abdulaziz University Jeddah, Saudi Arabia 

Email: ffouz@hotmail.com 

 

Fathy Alboraei Eassa 
Department of Computer Science, King abdulaziz University Jeddah, Saudi Arabia 

Email: Fathy55@yahoo.com 

 

 

Abstract—During the last decade, Heterogeneous 

systems are emerging for high performance computing 

[1]. In order to achieve high performance computing 

(HPC), existing technologies and programming models 

aims to see rapid growth toward intra-node parallelism 

[2]. The current high computational system and 

applications demand for a massive level of computation 

power. In last few years, Graphical processing unit (GPU) 

has been introduced an alternative of conventional CPU 

for highly parallel computing applications both for 

general purpose and graphic processing. Rather than 

using the traditional way of coding algorithms in serial by 

single CPU, many multithreading programming models 

has been introduced such as CUDA, OpenMP, and MPI 

to make parallel processing by using multicores. These 

parallel programming models are supportive to data 

driven multithreading (DDM) principle [3]. In this paper, 

we have presented performance based preliminary 

evaluation of these programming models and compared 

with the conventional single CPU serial processing 

system. We have implemented a massive computational 

operation for performance evaluation such as complex 

matrix multiplication operation. We used data driven 

multithreaded HPC system for performance evaluation 

and presented the results with a comprehensive analysis 

of these parallel programming models for HPC 

parallelism. 

 

Index Terms—HPC, GPU, DDM, CUDA, OpenMP, MPI, 

Parallel programming. 

 

I.  INTRODUCTION 

High performance parallel computing concept has been 

around since last decade [4]. According to Moore’s law, a 

rapid development is still outgrowth in system 

architecture and hardware to develop the high 

performance parallel machines while the growth in 

parallel software development is comparatively low. The 

one of the major reason of huge gap between parallel 

hardware and software might be the lack of availability of 

desirable parallel programming models [4] and this is the 

reason, traditional processing models are not 

approachable to the computational applications where a 

massive level parallelism is required. The concept of 

HPC is becoming more requiring day by day almost in 

every field and this demand is directly proportional to 

parallelizing coding schemes.    

During last decade, many multithreading programming 

models has been introduced such as Message passing 

interface (MPI) the most commonly usage for 

parallelizing cluster based application, Compute Unified 

Device Architecture (CUDA) to parallelism graphical 

processing unit (GPU) and another one shared memory 

model as Open Multi-Processing (OpenMP). These 

programming models facilitate to system by providing 

massive level parallelism in data and communication 

between multiple platforms. Another advantage to 

utilizing these models is the provision of distributed 

shared-memory models. Moreover, these parallel 

programming models are supportive for data driven with 

dynamic behavior by following data driven 

multithreading (DDM) principle. Keeping in view the 

principle of DDM, we have implemented these models 

for performance evaluation in multiple applications 

including massive amount of computation requiring 

operations are matrix multiplication. This high 

computational operation is evaluated using HPC system 

having GPU technology as well. In few years, NVIDIA 

introduced a general purpose programming model as 

CUDA which is used to write massive level parallel 

application by providing multithreaded blocks and shared 

memory [5]. This model is programmed specifically for 

multithreaded core GPUs to make it possible for HPC 

parallelism for both general purpose and graphic 

processing applications.   

In this paper, we have implemented the computational 

operations by using data driven multithreaded 

programming models that has been discussed in other 



28 Empirical Analysis of HPC Using Different Programming Models  

Copyright © 2016 MECS                                                    I.J. Modern Education and Computer Science, 2016, 6, 27-34 

sections. Rest of the paper is documented as follows, in 

section II we have discussed the programming languages 

used in this paper, section III provides the related work 

where we have discussed the different approaches used 

for HPC provision. Section IV elaborates the experiments 

on operations using programming models, further section 

V consists of finding and results where we have 

compared the DDM programming models with traditional 

computing approaches.  

 

II.  PROGRAMMING MODELS 

In this section we have discussed the programming 

models/ languages that have been used in this paper for 

performance evaluation. We have discussed CUDA, 

OpenMP and MPI each one in detail with respect to HPC 

parallelism in a system. 

A.  CUDA 

Leading to programming model, in order to achieve a 

massive level parallelism, many computer companies are 

dramatically increasing on-chip parallelism. Moreover, in 

field of HPC parallelism, GPU is the maximum exponent 

hardware because of its low cost and massive parallel 

processing power. General-Purpose Graphics Processing 

Units is apparent promising building blocks for HPC. 

CUDA is one of a parallel computing model that could 

provide massive amount of parallelism in applications to 

gain the high performance and throughput [6]. CUDA is a 

programming paradigm to compute NVIDA GPU, which 

is supportive for different programming languages such 

as C++, FORTRAN [5]. 

 

 

Fig.1. GPU Process flow. 

The traditional processing system using CPU has 

multiple cores is still serial processing and 

implementation of this processing technique is very 

costly in various applications. Many real life applications 

are requiring high performance computation that enforces 

us to digging in parallelization concept in order to 

achieve the expected results. In recent years, NVIDIA 

emphasized for this challenge and introduced the parallel 

processing unit such as a graphical processing unit (GPU) 

that consist of millions of cores on a single chip. It has 

improved the programming ability for single instruction, 

multi data (SIMD) as well. The most interesting thing is 

GPU combining with the CPU are available nowadays to 

induce for both graphical processing and general purpose 

processing called GPGPU. The fact from the experience 

is that the use of GPGPU has enhanced the power of 

computation and mathematical calculations very 

efficiently. More specifically, the purpose of GPU design 

is to make faster execution of arithmetic and algebraic 

expressions by parallelizing the code. A basic flow of 

GPU working within a standalone machine is as follows 

in figure 1. 

B.  OpenMP 

In contrast, the OpenMP such a great programming 

model that that supports shared memory multi-processing 

programming platform which is supportive in many 

programming languages such as FORTRAN, Visual C++ 

and C. The basic idea behind OpenMP is data-shared 

parallel execution. Number of loops could be parallelized 

easily just by adding OpenMP directives. The code 

inserted in these directives executes in parallel on multi-

cores in the form of basic OpenMP unit called “Thread” 

[12].  As the basic objective of OpenMP is to achieve 

HPC by parallelizing programming code but during 

coding there are still some fallacies and unexpected 

observations from the experiments which enforce to 

digging in OpenMP deeply and provide the methods to 

stay away from these obstacles toward HPC parallelism 

[13]. 

C.  MPI 

In distributed memory system, almost this is 

unachievable to make possible the communication 

through sharing number of variables. ARMCI annoyed as 

Aggregate Remote Copy Interface is one of the model 

that make it possible to allow a programming model 

between shared memory and message passing [15]. A 

standardize form of this model was introduced as 

Message Passing Interface (MPI). MPI is very famous 

and cluster based programming model specifically for 

message passing between multi-core systems. MPI offers 

significant set of libraries that are used to parallelize the 

application letting in collective and message passing 

operations. The advantage to use MPI is standardization 

in syntax that is implementable on any architecture. MPI 

library is necessary to be linked whenever a program 

followed by MPI is going to be compiled using ordinary 

compilers. On distributed computing system architectures, 

MPI is currently the de facto standard for HPC 

applications [22]. 

 

III.  RELATED WORK 

In this section we have discussed the some parallel 

programming models and techniques that have been 

adopted to enhance HPC parallelism provision by using 

multicores. Some of these models are useful and 

applicable toward HPC parallelism if the weak areas 

could be addressed pointed by the authors. 



 Empirical Analysis of HPC Using Different Programming Models 29 

Copyright © 2016 MECS                                                    I.J. Modern Education and Computer Science, 2016, 6, 27-34 

A.  DDM applications 

C. Christofi, G. Michael and P. Evripidou, discussed 

HPC parallelism where they evaluated preliminary data 

driven multithreading. In their experiments, they used 

DDM directives to get efficient results for large level 

applications.  Further they computed three massive level 

operations to evaluate the performance between DDM 

approaches and PLASMA. PLASMA was developed to 

solve Linear Algebraic Package problems (LAPAK). 

They implemented DDM approach for different complex 

problem computation such as large number of matrix 

multiplication, LU decomposition which is very complex 

arithmetic operation and Cholesky decomposition 

operation. At 48 cores system configuration, they 

concluded from the experiments that the DDM approach 

generated much better results than the PLASMA with 

respect to performance and scalability. But on increasing 

the number of cores the performance is low in DDM in 

LU and Cholesky operations [8].   

B.  PLASMA 

Another one most famous parallel computing model is 

PLASMA library for multicore processors implemented 

in many linear algebraic computing applications using C 

and FORTRAN programming languages. It is applicable 

for dense systems where a high computation power is 

required such as matrix calculation and factorization, 

linear equations etc.  In order to accomplish the high 

performance using multicore architectures, PLASMA 

trusts only on such kind of algorithms which provide fine 

results with granularity parallelism [9]. In an empirical 

study, some experiments were carried on different 

multicore architectures to compare PLASMA with two 

another linear algebraic packages such as ScaLAPACK 

and LAPACK and concluded that PLASMA is one linear 

algebraic package which provides data distribution 

facility on cores. The interesting thing for PLASMA is 

that it support the dynamic scheduling between different 

tasks by imposing data dependency [8]. On other hand, 

PLASMA doesn’t support to eigenvalue problems and 

band matrices as the same behavior was found in 

LAPACK [9]. 

C.  TFluxSCC 

TFluxSCC is another DDM based approach to run on 

multicore processor for large level computation 

applications. TFluxSCC is an acronym for TFlux single-

chip Cloud Computing that is basically an extension of 

DDM developed to exploit the multicore processors 

parallelism. Therefore, in order to reduce the resource 

consumption, a non-centralized runtime system was as 

TFluxSCC was proposed where TSU (having control of 

execution unit) functionalities were distributed on each 

core. One major advantage of TFluxSCC is the scalability 

in high performance computing parallelism for multicore 

processors without demanding cache-coherency support. 

The proposed approach was implemented on 48-core 

Intel Single-chip which is very small amount of cores as 

compare to HPC parallelism requirement. So, using this 

approach, a lot of work is required to meet HPC 

parallelism [10]. 

D.  SMPS 

Symmetric Multiprocessors superscalar is a 

programing model that emphasized on multicore 

processing. SMPS is DDM based parallel computing 

model that employ the pragmas which has ability to 

detection of atomic parts of code and which are 

capsulized in several functions. Further these pragmas 

information is utilized by SMPS compiler to parallelize 

the application [11]. SMPS is just like Cilk scheduling 

algorithm that also supportive multithreaded 

programming but MSPS has some extra features 

including tasks call handling living within the tasks just 

like simple function calls whereas Cilk doesn’t support 

the recursive feature [11]. 

 

IV.  MATHEMATICAL OPERATION 

In this section, we have discussed a very common but 

massive level computational mathematical operation such 

as Matrix multiplication that have been implemented in 

next experiment section using different programming 

models such as CUDA, OpenMP, MPI and Simple C-

language to calculate the performance. Let’s have a basic 

overview of this operation before moving toward the 

experimental stage. 

A.  Matric Multiplication 

Matrix multiplication is another mathematical 

operation that is being used very commonly almost in all 

science fields. With the passage of time, it’s becoming 

more complex and requiring high computation to get the 

appropriate results. To make possible, many algorithms 

and mathematical formulas have been proposed whereas 

computer technology contribute in different way to 

overcome this challenge. One of the appropriate solution 

is parallel computation that has made the ease in all 

computational operations. In order to provide the parallel 

computation for matrix multiplication operations, many 

programming models have been proposed. We have 

discussed three models such as CUDA, OpenMP and 

MPI to compute matrix operations and evaluated the 

performance by empirical analysis in these models. A 

general formula [17] for matrix multiplication is given as 

follows: 

 

         Cik =  Σj   Aij  Bjk     (1) 

 

c11  c12   - - -  c1 p          a11  a12   - - -  a1 m     b11  b12   - - -  b1 p  

c21  c22   - - -  c2 p   =    a12  a22   - - -  a2 m      b21  c22   - - -  b2 p 

                                                                 
cn1  cn2   - - -  cn p          an1  an2   - - -   an m    bm1  bm2   - - -  bmp 

 

Fig.2. Matrix multiplication A * B 

 



30 Empirical Analysis of HPC Using Different Programming Models  

Copyright © 2016 MECS                                                    I.J. Modern Education and Computer Science, 2016, 6, 27-34 

V.  SYSTEM SPECIFICATION  

This section consist of experiments of in different 

programming models to compute two common 

mathematical operation as massive amount of matrix 

multiplication, as it requires a high level computation 

hardware. Therefore we computed this operation on HPC 

server machine and evaluated the performance results in 

variation of matrix values. Let’s have a short overview of 

the machine specification that we used for the 

experiments. 

A. Hardware Specification 

The NVIDIA Tesla k-40 a powerful GPU device which 

has a better performance capable to deliver not only for 

graphical processing but for general purpose processing 

as well [18]. As Tesla k-40 GPU is the one best 

professional computing device that have ability of 

accuracy in results using built in features such as ECC 

Memory and double precision. In order to achieve better 

results for our experiments, we installed Tesla k-40 GPU 

on FUJITSU Primergy RX 350 S7 HPC machine having 
Intel Xeon E5-2667 0 @ 2.90 GHz CPU inside it which 
consists 12 Physical Cores and 24 Logical Cores in it. 
The main memory size was 16 GB and 2.25 TB HDD.  

B. Software Specification  

Regarding software specifications for our empirical 

analysis in different programming models, we used 

Windows 8.1 operation system on machine. We used 

Microsoft Visual Studio community 2013 as a 

development tool as which is integrated with new 

programming languages, features and development tools 

into this IDE [19]. While building application in visual 

studio, there are two modes such as “Release mode” and 

“Debug mode”. It depends nature of research and the 

language which is being used, but both has different 

configurations. Even we evaluated, the execution time is 

also vary on mode selection but in our case, we selected 

debug mode to build the project and made the 

experiments as presented in following section. We also 

have elaborated the necessary information for all the 

programming models used in this paper for experiments 

such as which system architecture has been implemented 

as shown in table 1.  

Table 1. Programming models specification 

 

 

 

 

 

VI.  EXPERIMENTS  

In different experiments, we computed matrix 

multiplication operations using simple visual studio C++, 

OpenMP, MPI and CUDA programming model with 

variation in matrix size as shown in table 2. In order CPU 

processing time calculation we could use the general 

formula as follow:  

 

CPU t = Seconds / program                    (2) 

 
As 
[Seconds / program = (Instructions / program) *(Cycle / 
Instructions) * (Second / Cycle)] 
Where   
CPI   =   CPU Clock Cycles   /    Instruction count    

 
 
 

Hence,  T =   I   *    CPI   *    C     [21] 
 

In our experiments, we computed the matrix 

multiplication operation with size variation on different 

programming models as shown in below table 1. For 

example in CUDA for private thread it has its own 

memory but for threads in block use shared memory. 

Similarly, for OpenMP is shared memory and for MPI is 

both distributed and shared. The logic of code written for 

matrix multiplication was almost same in all models but 

vary in implementation method in case of CUDA where 

we have to write some extra line of code (LOC) such as: 

 

// to load matrix data from device memory to shared 
memory 

As[ty][tx] = A[a + wA * ty + tx]; 
Bs[ty][tx] = B[b + wB * ty + tx]; 

// execute Synchronize to make sure the matrix data is 
loaded 

__syncthreads (); 
 

The time unit for evaluation was in “Sec” for all 

models as shown in Y-axis in graph figures.  

Table 2. Experiment data 

 
 

 

 

Experimental Data  

 

Experiment No.  1 2 3 4 5 

 

Matrix Size 

640  

x 
 640 

1280  

x  
1280 

2560  

x  
2560 

3840 

x 
3840 

5120  

x  
5120 

 

Implementation  CUDA OpenMP MPI 

Programming 

model 

threads Shared memory Message passing 

System 

architecture 

Private/

shared 

threads 

Shared Memory Distributed and 

shared memory 

Implementation Library Compiler Library 

 



 Empirical Analysis of HPC Using Different Programming Models 31 

Copyright © 2016 MECS                                                    I.J. Modern Education and Computer Science, 2016, 6, 27-34 

 

Fig.3. Matrix Multiplication without parallelism 

In small amount of matrix multiplication by 640x640 

and 1280x1280 matrix size, the results show clearly there 

is a small different in time execution which is negligible 

in C++, OpenMP and MPI. But if we notice this occurs 

only when we are not using the extra resource for parallel 

computing as GPU. The reason behind extra execution 

time in CUDA is the overhead of communication of 

between CPU and GPU when we Load the data from 

device memory to shared memory for each thread. We 

can conclude that at smaller level of processing, GPU 

utilization is not feasible by all aspects as time, coding 

and cost as well. Even if we notice the other evaluation 

time for 2560x2560 matrix size, Fig. 3,4,5 reveals the 

execution time is less than other methods in OpenMP 

with difference of 10 and 30 Sec C++, MPI respectively 

but we can see the big difference in CUDA time 

execution which is approximately more than 30%.  

Below is the code sample parallelized using OpenMP.  
 

#pragma omp parallel for default(none) shared(a,b,c) 

    for (int i = 0; i < size; ++i) { 

        for (int j = 0; j < size; ++j) { 
            for (int k = 0; k < size; ++k) { 

                c[i][j] += a[i][k] * b[k][j]; 
   //printf("   %f  ", c[i][j]); 

            } 

        } 
    } 

Code Sample 1: OpenMP  

 

 

Fig.4. Matrix Multiplication using OpenMP 

In 4
th

 experiment with 3840 x 3840 matrix 

multiplication operation, the execution time is increasing 

with prominent variation. One interesting point for 

OpenMP, throughout evaluation, OpenMP taking less 

time as compared to others except in first experiment (but 

there was not a big difference). One thing more, in this 

operation there was a slightly difference of 20 Seconds in 

execution time in CUDA and Visual C++.     

 

 

Fig.5. Matrix Multiplication using MPI 

In our last experiment with very large number 

5120x5120 matrix size, the output is totally different in 

all models. The parallelize code is showing the actual 

performance of parallel approach in this massive level 

operation. As we can see the code written in simple 

Visual studio, it takes almost 53 minutes which is very 

large time as compared to parallel computing models 

execution time as shown in fig 9. In contrast, OpenMP is 

showing still fast computation as compared to CUDA and 

MPI. CUDA is still take more time than MPI and 

OpenMP. 

 

 

Fig.6. Matrix Multiplication using CUDA both (GPU+CPU) 

To understand why CUDA is taking extra time even 

using GPU, we evaluated the actual processing time on 

GPU as shown in fig 8. The operation processing on GPU 

device excluding the CPU interaction with GPU is very 

small time in Mili-Seconds. As shown in fig 7, for 

processing of 5120x5120 matrix size, GPU takes less than 

6 Sec. On other hand, the complete processing takes 

1789.75 Secs which shows very large difference in CPU 

and GPU computation.  

Intuitively the machine (or CPU) is said to be faster or 

has better performance running this program if the total 

execution time is shorter [21]. We can use the formula 

given in (3) to calculate speed up when using CPU along 

GPU multicores. 
 

Speed up = (CPUt – GPUt ) / CPUt * 100%     [20]    (3)  



32 Empirical Analysis of HPC Using Different Programming Models  

Copyright © 2016 MECS                                                    I.J. Modern Education and Computer Science, 2016, 6, 27-34 

 

Fig.7. Output screen in CUDA (GPU+CPU) execution 

Fig 8, clearly showing the utilization and processing 

time for only GPU device for all matrix multiplication 

operations. After evaluation, we can say that GPU 

performance is better than CPU with difference of 

millions of seconds. It provides us strong facts to 

emphasize on increasing the processing power on CPU in 

order to accomplish better performance. 

 

 

Fig.8. Matrix Multiplication using CUDA (only GPU) 

Furthermore, results in figure 9 are giving positive 

aspect to consider parallel programming models as hybrid 

in order to achieve HPC. The operation used in our 

experiments might be smaller as compared to other 

massive level computation requiring problems such as 

Computational Fluid Dynamics (CFD) [24], Cholesky 

decomposition [25], LU complexity operation [26] etc 

and many more in different fields.  

 

 

Fig.9. Matrix Multiplication in all programming models 

A. Hybrid Parallel Programming Model 

A hybrid approach as (Message Passing Interface and 

Inter-node parallelism) apparent a promising path to 

accomplish the exascale computing system [23]. In 

further our experiments, we evaluated the performance by 

computing the same mathematical operation through 

hybrid approaches as discussed below.  

OpenMP + MPI and OpenMP + CUDA 

Hybrid parallelization approaches permit us to take 

advantage of the new generation parallel machines 

possessing connected SMP nodes [27]. In this section we 

computed the same computational operation on two 

hybrid approaches. Firstly we evaluated operation by 

combining OpenMP with MPI messaging passing that 

employs both shared and message passing between 

multiple cores. Second hybrid approach was combining 

OpenMP with CUDA to parallelize the code at both CPU 

and GPU level. In Results shown in figure 10 shows, 

second hybrid approach is through very slow in 

performance than all the approach except simple C++. In 

contrast, the first hybrid approach is much faster than 

even single CUDA and OpenMP. For OpenMP/MPI there 

is no a massive level difference at small level of 

computation but its shows a clear difference among all 

other approaches when we compare at large matrix size. 

 

 

Fig.10. Matrix Multiplication with Hybrid Models 

 

VII.  CONCLUSION 

In order to HPC analysis, we made an empirical 

analysis of three parallel programming models as (CUDA, 

MPI and OpenMP). We used matrix multiplication as an 

operation and computed on parallel programming models. 

With variation in matrix size, we evaluated the results by 

parallelizing the code using these parallel programming 

models. We also evaluated the results by computing 

matrix multiplication operation in simple Visual C++ 

language. From the results, we found OpenMP as fast 

execution model than others. After OpenMP, MPI gave 

better results as compare to visual C++ and CUDA.     

Use of CUDA for a smaller computation operation is 

costly as compare to all other models including C++. But 

when we computed high level of matrix multiplication 

operation, there was an extensive variation in results in 

all models. We also evaluated the processing time of 

GPU device excluding CPU interaction that was very 

small even in Mili-Secs. Further we computed the same 

mathematical operations using hybrid approaches 

including CUDA + MPI and CUDA + OpenMP. The 



 Empirical Analysis of HPC Using Different Programming Models 33 

Copyright © 2016 MECS                                                    I.J. Modern Education and Computer Science, 2016, 6, 27-34 

execution time in hybrid approaches was half in 

difference from previous results found in single 

programming model.  

 By future perspective, as we noticed GPU device took 

a very small time of execution but the communication 

overhead between CPU and GPU effect overall 

performance. By minimizing this overhead, we must 

consider more hybrid parallel computing dual-level and 

tri-level approaches in order to achieve HPC parallelism.  

ACKNOWLEDGMENT 

I would like to say thanks to Professor Fadi Fouz from 

King abdulaziz University Jeddah KSA, for teaching the 

advance stuff related to latest technologies and Professor 

Fathy Alboraei Eassa for supporting and giving me 

access of high performance machine to accomplish the 

work. 

REFERENCES 

[1] Jia, Xun, Peter Ziegenhein, and Steve B. Jiang. 

"GPUbased high-performance computing for radiation 

therapy." Physics in medicine and biology 59.4 (2014): 

R151. 

[2] Brooks, Alex, et al. "PPL: An abstract runtime system for 

hybrid parallel programming." Proceedings of the First 

International Workshop on Extreme Scale Programming 

Models and Middleware. ACM, 2015. 

[3] Allan, Robert John, et al., eds. High-performance 

computing. Springer Science & Business Media, 2012. 

[4] Brodman, James, and Peng Tu, eds. Languages and 

Compilers for Parallel Computing: 27th International 

Workshop, LCPC 2014, Hillsboro, OR, USA, September 

15-17, 2014, Revised Selected Papers. Vol. 8967. Springer, 

2015. 

[5] Yang, Chao-Tung, Chih-Lin Huang, and Cheng-Fang Lin. 

"Hybrid CUDA, OpenMP, and MPI parallel programming 

on multicore GPU clusters." Computer Physics 

Communications 182.1 (2011): 266-269. 

[6] Navarro, Cristobal A., Nancy Hitschfeld-Kahler, and Luis 

Mateu. "A survey on parallel computing and its 

applications in data-parallel problems using GPU 

architectures." Communications in Computational Physics 

15.02 (2014): 285-329. 

[7] Kirk, David B., and W. Hwu Wen-mei. Programming 

massively parallel processors: a hands-on approach. 

Newnes, 2012. 

[8] Christofi, Constantinos, et al. "Exploring HPC parallelism 

with data-driven multithreating." Data-Flow Execution 

Models for Extreme Scale Computing (DFM), 2012. IEEE, 

2012. 

[9] E. Agullo, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, J. 

Langou, and H. Ltaief. PLASMA Users Guide. Technical 

report, ICL, UTK, 2009. 

[10] Diavastos, Andreas, Giannos Stylianou, and Pedro 

Trancoso. "TFluxSCC: Exploiting Performance on Future 

Many-Core Systems through Data-Flow."2015 23rd 

Euromicro International Conference on Parallel, 

Distributed and Network-Based Processing (PDP). IEEE, 

2015. 

[11] Perez J.M., Badia R.M., Labarta J.:A dependency-aware 

task-based programming environment for multi-core 

architectures. In Proceedings of 2008 IEEE International 

Conference on Cluster Computing, 2008.  

[12] Yang, Chao-Tung, Chih-Lin Huang, and Cheng-Fang Lin. 

"Hybrid CUDA, OpenMP, and MPI parallel programming 

on multicore GPU clusters." Computer Physics 

Communications 182.1 (2011): 266-269. 

[13] Ashraf, Muhammad Usman, and Fathy Elbouraey Eassa. 

"Hybrid Model Based Testing Tool Architecture for 

Exascale Computing System." International Journal of 

Computer Science and Security (IJCSS) 9.5 (2015): 245. 

[14] ZOTOS, KOSTAS, et al. "Object-Oriented Analysis of 

Fibonacci Series Regarding Energy Consumption." 

[15] Diaz, Javier, Camelia Munoz-Caro, and Alfonso Nino. "A 

survey of parallel programming models and tools in the 

multi and many-core era." Parallel and Distributed 

Systems, IEEE Transactions on 23.8 (2012): 1369-1386. 

[16] Goodrich, Michael T., and Roberto Tamassia. Algorithm 

design and applications. Wiley Publishing, 2014. 

[17] Coppersmith, Don, and Shmuel Winograd. "Matrix 

multiplication via arithmetic progressions." Proceedings of 

the nineteenth annual ACM symposium on Theory of 

computing. ACM, 1987. 

[18] “NVIDIA” http://www.nvidia.com/tesla, Mar 2014 [Nov, 

25. 2015]. 

[19] Studio, Visual. "Debugging DirectX Graphics." (2013). 

[20] Thomas, W.; Daruwala, R.D., "Performance comparison 

of CPU and GPU on a discrete heterogeneous 

architecture," in Circuits, Systems, Communication and 

Information Technology Applications (CSCITA), 2014 

International Conference on , vol., no., pp.271-276, 4-5 

April 2014.  

[21] Patterson, David A., and John L. Hennessy. Computer 

organization and design: the hardware/software interface. 

Newnes, 2013. 

[22] T.G. Mattson, B.A. Sanders, and B. Massingill, Patterns 

for Parallel Programming. Addison-Wesley Professional, 

2005. 

[23] Da Costa, Georges, et al. "Exascale Machines Require 

New Programming Paradigms and Runtimes." Super-

computing Frontiers and Innovations} 2 (2015): 6-27. 

[24] Chung, T. J. Computational fluid dynamics. Cambridge 

university press, 2010. 

[25] Bosilca, George, et al. "DAGuE: A generic distributed 

DAG engine for high performance computing." Parallel 

Computing 38.1 (2012): 37-51. 

[26] Goff, Stephen A., et al. "The iPlant collaborative: 

cyberinfrastructure for plant biology." Frontiers in plant 

science 2 (2011). 

[27] Su, Mehmet F., et al. "A novel FDTD application featuring 

OpenMP-MPI hybrid parallelization." Parallel Processing, 

2004. ICPP 2004. International Conference on. IEEE, 

2004. 

 

 

 

Authors’ Profiles 

 
Muhammad Usman Ashraf received his 

B.Sc degree from Govt. College 

Gujranwala in 2007, M.Sc degree in 

Computer Science from The University of 

Agriculture Faisalabad in 2009 and 

Master of Science in Computer Science 

from University of Lahore, Pakistan in 

2014. Currently, he is doing Ph.D in 

computer science from King abdulaziz 

University Jeddah,  



34 Empirical Analysis of HPC Using Different Programming Models  

Copyright © 2016 MECS                                                    I.J. Modern Education and Computer Science, 2016, 6, 27-34 

Saudi Arabia. His research interests include Exascale computing 

System, High Performance Computing, Ubiquitous Computing 

and Context awareness. He has presented many papers in 

National and International conferences.  

 

 

Fadi Fouz received M.Sc degree in 

Electronic Engineering from Warsaw 

Technical University, Polnad in 1974 and 

Ph.D degree in computer science from 

University of Sheffield England in 1981. 

He is a full professor with computer 

Science dept, Faculty of Computing and 

Information technology, King Abdullaziz 

University, Saudi Arabia. His research interests include agent 

based software engineering, cloud computing, software 

engineering, big data, distributed systems, exascale  system 

testing.  

 

 

Fathy E. Eassa received the B.Sc degree 

in electronics and electrical 

communication engineering from Cairo 

University, Egypt in 1978, and the M. Sc. 

degree in computers and Systems 

engineering from Al Azhar University, 

cairo, Egypt in 1984, and Ph.D degree in 

computers and systems engineering from 

Al-Azhar University , Cairo, Egypt with 

joint supervision with University of Colorado, U.S.A,  in 1989. 

He is a full professor with computer Science dept, Faculty of 

Computing and Information technology, King Abdullaziz 

University, Saudi Arabia. His research interests include agent 

based software engineering, cloud computing, software 

engineering, big data, distributed systems, exascale  system 

testing. 

 

 


