
I.J. Modern Education and Computer Science, 2016, 4, 33-45
Published Online April 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2016.04.05

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 4, 33-45

Test Case Prioritization based on Fault

Dependency

Samia Jafrin
American International University-Bangladesh, Department of Computer Science, Dhaka, Bangladesh

Email: samia.jafrin.13@gmail.com

Dip Nandi, Sharfuddin Mahmood
American International University- Bangladesh, Dhaka, 1213, Bangladesh

Email: {dip.nandi,smahmood}@aiub.edu

Abstract—Software testers should prioritize test cases so

that important ones are run earlier in the regression

testing process to reduce the cost of regression testing.

Test case prioritization techniques schedule test cases for

execution in an order that improves the performance of

regression testing. One of the performance goals i.e. the

fault detection rate, measures how quickly faults are

detected during the testing process. Improved rate of fault

dependency detection can provide faster feedback on

software and let developers debug the leading faults at

first that cause other faults to appear later. Another

performance goal i.e. severity detection rate among faults,

measures how quickly more severe faults are detected

earlier during testing process. Previous studies addressed

the second goal, but did not consider dependency among

faults. In this paper an algorithm is proposed to prioritize

test cases based on rate of severity detection associated

with dependent faults. The aim is to detect more severe

leading faults earlier with least amount of execution time

and to identify the effectiveness of prioritized test case.

Index Terms—Software testing, Regression testing, Test

case prioritization, Fault dependency, Software quality.

I. INTRODUCTION

A software product, once developed, has a long life

and evolves through numerous additions and

modifications based on its faults, changes of user

requirements, changes of environments, and so forth.

With the evolution of a software product, assuring its

quality, is becoming more difficult because of numerous

release versions [1]. Users expect to get a new and better

quality software version than before. In some cases, the

quality of software becomes worse than before because of

the added or modified features which create additional

faults into the existing product as well as the newly

modified version. For assuring a good quality software,

testing is mandatory.

Evaluating a system with the intention of finding faults

is known as Software Testing. Once system has been

developed, it must be tested before implementation. It is

oriented towards Error-detection [2]. Software testing is

one of the major and primary techniques for achieving

high quality software. It is done to detect the presence of

faults, which cause software failure. It can also be

referred as the process of verifying and validating

software application or program to ensure that software

meets the technical as well as business requirements as

expected [3] [4].

For testing, a software engineer often use test cases. A

test case is a set of conditions or variables and inputs that

are developed for a particular goal or objective to be

achieved on a certain application to judge its capabilities

or features. It might take more than one test case to

determine the true functionality of the application being

tested. Every requirement or objective to be achieved

needs at least one test case. Some software development

methodologies like Rational Unified Process (RUP)

recommend creating at least two test cases for each

requirement or objective; one for performing testing

through positive perspective and the other through

negative perspective.

Regression testing is a kind of software testing that

focuses on selective retesting through various versions of

a software system [5]. The following is the formal

definition of regression testing used by IEEE.

“Selective retesting of a system or component to verify

that modifications have not caused unintended effects and

that the system or component still complies with its

specified requirement.”[6]

Another popular software testing technique is Test

Case Prioritization. In this technique, each test cases are

assigned a priority. Priority is set according to specific

criterion and test cases with highest priority are scheduled

first. Another criterion may be the rate at which fault is

detected. [7]

The goal of this research is to find a metric to quantify

the rate of dependency detection among faults and

provide an algorithm that prioritizes the test cases in an

order that has improved dependency detection rate

compared to non-prioritized test cases. By the definition

of the test case prioritization, problem represents a

quantification of such goals.

Test case prioritization is a strategy for improving

regression testing, an expensive but necessary process to

validate software systems. Despite its use by practitioners,

34 Test Case Prioritization based on Fault Dependency

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 4, 33-45

to date, there has been no work regarding how to

incorporate the dependent faults as well as independent

faults severities into any of the strategies proposed so far.

So in [8], researchers worked over both the independent

and fully dependent faults. But, we think test case

prioritization considering fault dependency is incomplete.

In the paper [8], researchers proposed an algorithm to

measure effectiveness of test case prioritization in

regression testing and a prioritization technique which

can be used to improve the fault detection process for

regression testing. In [8], researchers only considered the

dependent faults which are fully dependent on other

leading faults. But did not consider the fact that, there can

be faults that are not fully dependent rather mutually

dependent on more than one fault. The detection of the

independent and fully dependent faults is covered

simultaneously in this software testing approach. But, an

efficient example needed to be set along with the

independent and dependent faults (both fully & partially)

to make an efficient approach. Further, a sizable

performance gap can be seen as prioritization is done

only with taking the fully dependent faults into

consideration, not the partially dependent faults.

Hence, in order to overcome these issues, in current

research paper, we will extend this research work to

investigate the above mentioned weaknesses and will

provide an alternative or improved version of

prioritization technique including different methods of

fault detection methods. A thorough research in this field,

may help to detect faults as early as possible.

In this paper, we will extend the research of

prioritizing test cases considering fault dependency

mentioned in [8], as we think fault dependency

consideration is incomplete there. In this paper, our goal

is to include the fault dependency considering both fully

& mutually dependent faults for doing complete test case

prioritization.

II. RELATED WORKS

In this section we are going to discuss about Software

testing. Then we will focus about the importance of

software testing and test cases. Finally we will narrow

down the topic into test case structures, test case

designing and test cases. We will also focus on test case

prioritization technique, existing techniques for test case

prioritization, its problems and our focus area.

A. Software Testing

Every software product has a target audience. When an

organization develops or otherwise invests in a software

product, it can assess whether the software product will

be acceptable to its end users, its target audience, its

purchasers, and other stakeholders [9]. Software testing is

the process of attempting to make this assessment.

Software does not suffer from corrosion, wear-and-tear;

generally it will not change until upgrades, or until

obsolescence. So once the software is shipped, the design

defects or bugs will be buried in and remain latent until

activation. In system testing, there are two type of testing:

1. Functionality testing

2. Non-functionality testing

Functionality testing means the testing whether

application is functioning as per requirement or not.

There are several types non-functionality testing, e.g.

Load, stress, performance, reliability, security, usability,

configuration, compatibility (forward & backward) and

scalability.

Software testing is more than just error detection;

testing software is operating the software under

controlled conditions, to

1) verify that it behaves “as specified”;

2) detect errors, and

3) Validate that what has been specified is what the

user actually wanted. [10]

B. Importance of Software Testing

Testing can never completely identify all the defects

within software. Instead, it furnishes a criticism or

comparison that compares the state and behavior of the

product against principles or mechanisms by which

someone might recognize a problem. These oracles may

include specifications, contracts, comparable products,

past versions of the same product, inferences about

intended or expected purpose, user or customer

expectations, relevant standards, applicable laws, or other

criteria.

Software that does not satisfy the requirement of the

customer after development, needs to be changed

depending on the clients need. By changing any parts of

that software may lead to such fault(s) to occur, which

can affect the surrounding test cases and can easily come

out with redundant and unexpected or dependent faults.

As a result, developers have to do all those testing again

which is time consuming and tiresome. Most significantly,

when developers require more time to produce improved

software consequently it takes higher cost than that of the

previous one which reduce customer’s attraction to avail

the software. Here testing is needed which can easily

solve the problem by tracing faults and bugs. [11]

The main aim of software testing is to find out the error

or bugs to improve the quality of the system [12]. During

the development phase of software system, cost of testing

a program is associated [13]. Tester has to write test plan

and test cases for setting up the proper equipment,

executing the test cases systematically. They also have to

follow up the problems that are identified as well as try to

remove most of the identified problems. It is simply

impossible to test every possible input-output

combination of the system. As a result testers need to

consider the economics of testing and strive to discover

test cases that will uncover as many faults using minimal

number of test cases [3]. That is why testing is necessary

when it couldn't guarantee 100% error free software

application. And also:

 Cost of fixing the bug will be more expensive if it

is found in later stage than it is found earlier.

 Test Case Prioritization based on Fault Dependency 35

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 4, 33-45

 Quality can be ensured only by testing. In the

competitive market, only Quality product can exist

for long time.

 Testing will be necessary even if it is not possible

to do 100% testing for an application.

C. Test Case

IEEE Standard 610 (1990) defines test case as follows:

“A set of test inputs, execution conditions, and expected

results developed for a particular objective, such as to

exercise a particular program path or to verify

compliance with a specific requirement.” (IEEE Std 829-

1983) defines test case as follows: “Documentation

specifying inputs, predicted results, and a set of execution

conditions for a test item.”

Table 1. Goals for Test Cases

Goal Description

Find defects Test is run to trigger failures that expose
defects in all parts of the product.

Maximize bug

count

Finding the most bugs in the time available

is more important than coverage to cover up
the high risk

Block premature

product releases

Tester stops premature shipment by finding

and fixing bugs.

Help managers

make ship / no-ship

decisions

Managers want to know about coverage and

how important the known problems are.

Problems which are not lead to customer
dissatisfaction are probably not relevant to

the ship decision.

Minimize technical
support cost

Working in conjunction with a technical
support group, the test team identifies the

issues that lead to calls for support. These
are often peripherally related to the product

under test.

Assess
conformance to

specification

In the specification, any claim made is
checked but the non-addressed program

characteristics are not checked.

Conform to
regulations

Test group is focusing on everything that is
covered by regulation and (in the context of

this objective) discard that is not covered by

regulation.

Minimize safety-

related lawsuit risk

Any error that could lead to an accident or

injury is needed to be addressed whereas

errors that lead to loss of time, data or
corrupt data carrying no risk of injury or

damage are out of scope.

Find safe scenarios

for use of the

product

Tester does not looking for bugs whereas

trying out ways to do a task through refining

and documenting.

Assess quality To assess quality, one probably need a clear
definition of the most important quality

criteria for this product, and then need a
theory that relates test results to the

definition.

Verify correctness
of the product

It is done by assessing test-based estimation
of the probability of errors.

Assure quality Quality assurance involves building a high

quality product which requires skilled
people who have appropriate balance of

direction and creative freedom. It is within
scope for the project manager and

associated executives.

In [14], researchers mentioned that, when a test case is

run, several goals can be achieved. The goals are

explained in the above table. 1.

D. Test Case Structure

A formal written test case comprises of three parts.

These are as follows:

Information: Information consists of general

information about the test case. Information incorporates

Identifier, test case creator, test case version, name of the

test case, purpose or brief description and test case

dependencies.

Activity: Activity consists of the actual test case

activities. Activity contains:

 information about the test case environment

 activities to be done at test case initialization

 the activities to be done after test case is

performed

 step by step actions to be done while testing

 Input data that is to be supplied for testing.

Results: Results are outcomes of a performed test case.

Result data consist of information about expected results

and the actual results.

E. Designing Test Cases

Test cases should be designed and written by someone

who understands the function or technology. A test case

should include the following information:

 Purpose of the test

 Software requirements and Hardware requirements

(if any)

 Specific setup or configuration requirements

 Description on how to perform the test(s)

 Expected results or success criteria for the test

Designing test cases can be time consuming in a testing

schedule, but they are worth giving time because they can

really avoid unnecessary re-testing or debugging or at

least lower it. Organizations can design the test cases

approaching their own context and according to their own

perspectives. Some follow a general step way approach

while others may opt for a more detailed and complex

approach. It is very important for us to decide between

the two extremes and judge on what would work.

Designing proper test cases is very vital for our software

testing plans. It can save save our time on continuous

debugging and re-testing test cases.

Regression Testing

36 Test Case Prioritization based on Fault Dependency

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 4, 33-45

Fig.1. Regression Testing

Regression testing is also known as verification testing.

Most common methods of regression testing include re-

running of previously run tests and then verifying

whether the program behavior has undergone any

changes as well as identifying if any previously fixed

faults have re-emerged or not. The main reason for

carrying out regression testing is that, it gets difficult for

a programmer or a developer to identify how a

modification in one part of the software affects other

parts of it. This is addressed by doing a comparison of

results of previous tests with the results of the current

tests being run.

Every custom software development organization

follows different strategies for regression testing. Some

strategies and factors to consider during this process

include the following:

 Test fixed bugs promptly.

 Keep an eye on what all can be the side effects of

bug fixes. It may be possible that a bug itself

might be fixed but that fix might cause occurrence

of other bugs.

 Write a regression test for every bug fixed.

 In case, any two or more tests are identical, try to

figure out which test is less effective and get rid of

it.

 Figure out the tests that the program consistently

faces and archive them.

 Rather than focusing on design or cosmetic issues,

focus on functional issues of an application.

Now, let P be a program, let P’ be a modified version

of P, and let, T be a test suite developed for P. Regression

testing is concerned with validating P’. To facilitate

regression testing, engineers typically reuse T, but new

test cases may also be required to test new functionality.

Both reuse of T and creation of new test cases are

important. However test case reusing is the main concern,

as such reuse typically forms a part of regression testing

processes. [11] [15]

As regression testing is highly expensive. Several

techniques have been researched for effective and

efficient regression testing [16, 17, 18]. There are four

major techniques for regression testing: retest-all [19],

regression test selection [20], test suite reduction [21],

and test case prioritization [15, 22]. Among them, test

case prioritization has been perceived as one of the most

effective and efficient techniques for regression testing

[15, 23].

F. Test Case Prioritization

Regression testing is the re-execution of some subset

of test that has already been conducted. It is an expensive

testing process used to detect regression faults [7].

Regression test suites are often simply test that software

engineers have previously developed and that have been

saved so that they can be used later to perform regression

testing [11]. Prioritizing test cases provide the

opportunity to maximize some performance goals or

effectiveness. One of the performance goals may be rate

of severity detection among faults. During software

testing, pragmatic experiences show that independent

faults can be directly detected and removed, but mutually

dependent faults can be removed if and only if the

leading faults have been removed. That is, dependent

(both fully and mutually) faults may not be immediately

removed and the fault removal process lags behind the

fault detection process. For example, if any software

takes limited number of inputs and after functioning,

generates several types of outputs then a single fault in

input module may generate a large number of faults in

output module if they are not mutually independent.

Hence in regression testing if the test cases that reveal the

faults of output module execute first and test cases

reveals faults of input module executes later then it will

be delayed and in many cases will take long time to

detect the original cause of output faults. If more faults

can be detected earlier in regression testing then

debugging can be started earlier and fault removal time

will improve. In this paper, we will present a metric

which measures fault severity detection and also present

an algorithm to improve the existing ordering. A

comparison between prioritized and non-prioritized test

cases is also shown with the help of new technique.

G. Test Case Prioritization with General Term

“Ref [11, 22]” define the test case prioritization

problem and describe several issues relevant to its

solution; this section reviews the portions of the material

that are necessary to understand this article.

Definition I: The Test Case Prioritization Problem

Given: T, a test suite; PT, the set of permutations of T;

f, a function from PT to the real numbers

Problem: Find T’ belongs to PT such that (for all T’’)

(T’’ belongs to PT) (T’’≠ T’) [f (T’) ≥ f (T’’)]

Here, PT represents the set of all possible prioritized

test case orderings of T, and f is a function that applied to

any such ordering, yields an award value for that

ordering (For simplicity and without loss of generality,

Definition II assumes that higher award values are

preferable to lower ones).

There are several aspects of the test case prioritization

problem that are worth describing further. First, there are

 Test Case Prioritization based on Fault Dependency 37

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 4, 33-45

many possible goals of prioritization, including the

following:

 Testers may wish to increase the rate of fault

detection of a test suite, that is, the likelihood of

revealing faults earlier in a run of regression tests

using that test suite.

 Testers may wish to increase the coverage of

coverable code in the system under test, at a faster

rate, allowing a code coverage criterion to be met

earlier in the test process.

 Testers may wish to increase their confidence in

the reliability of the system under test at a faster

rate.

 Testers may wish to increase the rate at which

high-risk faults are detected by a test suite, thus

locating such faults earlier in the testing process.

 Testers may wish to increase the likelihood of

revealing faults, related to specific code changes,

earlier in the regression testing process.

In the definition of the test case prioritization problem,

f represents a quantification of such a goal. Given any

prioritization goal, various test case prioritization

techniques may be used to meet that goal. For example,

to increase the rate of fault detection of test suites, we

might prioritize test cases in terms of the extent to which

they execute modules that have tended to fail in the past.

Alternatively, we might prioritize test cases in terms of

greatest-to- least coverage-per-cost of code components,

or in terms of greatest-to-least coverage-per-cost of

features listed in a requirements specification. In any case,

the intent behind the choice of a prioritization technique

is to increase the likelihood that the prioritized test suite

can better meet the goal than would an ad hoc or random

order of test cases.

In [22], researchers distinguished two types of test case

prioritization: general and version specific. In general test

case prioritization, given program P and test suite T, test

cases in T are prioritized with the goal of finding a test

case order that will be useful over a sequence of

subsequent modified versions of P. Thus, general test

case prioritization can be performed following the release

of some version of the program during off-peak hours and

the cost of performing the prioritization is amortized over

the subsequent releases. The expectation is that the

resulting prioritized suite will be more successful than the

original suite at meeting the goal of the prioritization, on

an average over those subsequent releases.

In contrast, in version-specific test case prioritization,

give program P and test suite T, test cases in T are

prioritized with the intent of finding an ordering that will

be useful on a specific version P’ of P. Version-specific

prioritization is performed after a set of changes have

been made to P and prior to regression testing P’.

Because this prioritization is performed after P’ is

available; care must be taken to prevent the cost of

prioritizing from excessively delaying the very regression

testing activities it is supposed to facilitate. The

prioritized test suite may be more effective at meeting the

goal of the prioritization for P’ in particular, than a test

suite resulting from general test case prioritization;

however may be less effective on average over a

succession of subsequent releases.

H. Test Case Prioritization Existing Techniques

Test case prioritization techniques schedule test cases

for execution in an order that attempts to maximize some

objective function. A variety of objective functions are

applicable; one such function involves rate of fault

detection - a measure of how quickly faults are detected

within the testing process. Test case prioritization

techniques [5,15] provide another method for assisting

with regression testing. These techniques let testers order

their test cases so that, those test cases with the highest

priority, are executed earlier in the regression testing

process. For example, testers might wish to schedule test

cases in an order that achieves code coverage at the

fastest rate possible, exercises features in order of

expected frequency of use or exercises subsystems in an

order that reflects their historically demonstrated

propensity to fail.

When the time required to re-execute an entire test

suite is short, test case prioritization may not be cost-

effective; but it may be sufficiently simple to schedule

test cases in any order.

When the time required to execute an entire test suite is

sufficiently long, test case prioritization may be

beneficial, as in this case, meeting testing goals earlier

can yield meaningful benefits. Test case prioritization

techniques do not themselves discard test cases. They can

avoid the drawbacks that can occur during regression test

selection. Alternatively, in cases where the discarding of

test cases is acceptable, test case prioritization can be

used in conjunction with regression test selection or test

suite minimization techniques to prioritize the test cases

in the selected or minimized test suite. Further, test case

prioritization can increase the likelihood that, if

regression testing activities are unexpectedly terminated,

testing time can be utilized more beneficially than if test

cases were not prioritized.

The prioritization process is further divided in number

of sub techniques to assign the priorities. Some of the test

case prioritization techniques are presented in table 2.

I. Focus Area

Our focus is in the regression testing part where we

want to prioritize test cases based on all types of fault

dependency. Therefore, we consider the areas where

associate faults of each test case are dependent both

mutually and fully on other faults. In our proposed theme,

we took the relationship of partially dependent faults into

consideration.

Let us discuss this fact with an example. Consider an

example of five test cases with ten faults. The test cases

are T1, T2, T3, T4, and T5 which exhibits some faults

named F1, F2, F3, F4, F5, F6, F7, F8, F9, and F10. Now,

we take fault F10 is dependent (totally) on fault F3; Fault

F2 is dependent (partially) on both F2 & F3 and so on.

We consider that associated faults of T1 and T3 are F1,

38 Test Case Prioritization based on Fault Dependency

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 4, 33-45

F4, F10 and F2, F5, F8, F9 respectively. Here, in this

case if we can detect and solve the leading faults F3 and

F4 then the partially dependent fault F2 and fully

dependent F10 will automatically be solved.

Table 2. Different Test Case Prioritization Techniques

Code Mnemonic Description

M1 unordered no prioritization (control)

M2 ordered randomized ordering

M3 optimal ordered to optimize rate of fault
detection

M4 branch-total prioritize in order of coverage of

branches

M5 branch-addtl

prioritize in order of coverage of
branches not yet covered

M6 FEP-total

prioritize in order of total probability of

exposing
faults

M7 FEP-addtl

prioritize in order of total probability of
exposing

faults, adjusted to consider effects of

previous tests

M8 stmt-total prioritize in order of coverage of

statements

M9 stmt-addtl

prioritize in order of coverage of
statements not yet

covered

In this paper, we will take those faults into

consideration which is both partially and fully dependent

on other leading faults in a test suite. From now, in our

proposed theme, dependency will always mean both

partial and fully. For this purpose, an algorithm will be

build such that it distinguishes the improvements and

differences between the independent and fully & partially

dependent faults exhibits by the test cases by measuring

the severity rates (severity/ execution time). After that,

we will analyze the improvement of our proposed

algorithm by plotting the graph of percentages of

dependent fault severity verses percentages of test case

executed which is going to give an efficient and improved

result compared to the graph of independent one.

However, we assume that, having these two graphs that

will be precisely shown by incurring the same

percentages test case execution, we will be able to find

more severities than the previous independent graph.

J. Literature Review

“Reference [25]”, first proposed the approach of test

case prioritization, but in the paper [26, 15] researchers

proposed and evaluated the approach in a more general

context. Later on, many researchers have studied this

technique with different goals and perspectives.

While the majority of the prioritization techniques [15,

22, 23] cover some structural coverage such as branch-

total, statement-total, Fault Exposing Potential (FEP)-

total, modified condition/decision coverage (MCDC)

criteria [26] and so on; there are prioritization based on

other criteria such as Case-Based Reasoning (CBR)

approach [27], Interleaved Clusters Prioritization (ICP)

technique [28], probabilistic approach [39], model based

approach [30], "coarse grained " techniques based on

function coverage [31] and so on. Authors of [32] used

Test Case Selection and Prioritization techniques such as

Genetic Algorithms, Ant Colony Optimization. In [33], a

hybrid technique was proposed by the researchers, that

combines modification, minimization and prioritization-

based selection. Which uses a list of source code changes

and the execution traces from test cases run on previous

versions.

Test case prioritization does not filter out test cases;

rather the entire test suite is executed, that is not always

cost effective. A number of cost-aware prioritization

technique [34],[35],[36] addressed this problem. With

respect to cost awareness, “Ref [35]” extended the basic

APFD (Average Percentage of Faults Detected) metric to

APFDC (Cost-Cognizant Weighted Average Percentage

of Faults Detected) that incorporates not only the cost of

test cases but also the severity of faults detected.

Researchers of [37], proposed the Historical Value-Based

Approach, which is based on the use of historical

information, to estimate the current cost and fault severity

for cost-cognizant test case prioritization. “Ref [38]”

presented a metric for assessing the rate of fault detection

of prioritized test cases, APFDc, that incorporates varying

test cases and fault costs. Authors of [39], proposed a

system of test cases sequencing as well as reduction by

using an intelligent dynamic approach

On the other hand, fault dependency [40], [41], [42]

has been studied in many cases such as in integration

testing [43], test case filtering [44], and software

reliability analysis [42] and so on.

While prioritizing test cases, fault dependency was not

considered earlier. Hence in an unpublished paper [8]

researchers included fault dependency in cost-aware test

case prioritization proposed in [11] [35]. They detected

more severe leading faults earlier with least amount of

execution. We also have compared this new approach

with the previous approach and have shown the

effectiveness of the new ordering.

In “Reference [8]”, authors discussed and defined fault

dependency as “faults can be dependent to one another

and without considering it the prioritization is less

effective”. In terms of dependency degree there are two

types of dependency:

 Fully dependent faults: If the leading fault is

removed then the dependent fault is also removed.

 Mutually/Partially dependent faults: The

dependent fault is not immediately removed after

the leading fault is removed, but requires some

correction to fully remove it. Because a fault may

depend on more than one leading faults.

During software testing, pragmatic experiences show

that independent faults can be directly detected and

removed, but dependent faults can be removed if and

only if the leading faults have been removed or solved.

That is, dependent faults may not be immediately

removed, and the fault removal process lags behind the

fault detection process [42].

In almost all software testing, maximum amount of

faults (in test cases) needed to be detected with the

highest degrees of severities. If more severities can be

 Test Case Prioritization based on Fault Dependency 39

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 4, 33-45

detected in the same cost (Execution time), then that will

be an efficient regression testing process. Regression

Testing is the selective re-testing of a system or a

component to verify that modifications have not caused

unintended effects and the system or component is still in

accordance with its specified requirements [45].

Regression testing activities are triggered based on

software changes or evolutions [46]. As a result, by

considering dependent faults one can detect more severe

faults in same amount of execution time than the previous

case.

Moreover, in some test cases, there can be both

independent and dependent faults. When there are all or

most of the faults are mutually independent, the

measurement of severity rate is quite normal. But there

remain problems with dependent faults. In test suites,

where a presence of dependent faults is seen, severity

calculations possess significant improvement in detecting

the severity rate of dependent faults than that of the

independent one. If we consider the dependent faults,

then severity of faults will surprisingly increase due to the

same percentages of test case execution.

Therefore in the software testing process, running same

test cases definitely will make the testing process

efficient and will eventually reduce the software cost

(prices) as well. For this purpose we will propose a

matrix where a significant amount of improvement will

occur in the field of severity rate detection of both totally

and mutually dependent faults in test cases.

III. PROBLEM FORMULATION AND PROPOSED WORK

In this section we will formulate the problem we have

found out from the previous discussions. Based on the

findings we will propose our technique to prioritize test

cases.

A. Cost Cognizant Test Case Prioritization

Majority of the prioritization techniques that are

concerned about some structural coverage do not consider

varying test costs and fault severities. But in practice

faults vary in severity and test cases vary in cost. In [1]

the authors proposed cost-cognizant test case

prioritization which tradeoffs between cost and severity.

Definition 3.1: (Cost Cognizant Test Case

Prioritization):

Given T, a test suite of n test cases with costs c1,

c2,….cn; F be a set of m faults revealed by T with

severities s1, s2, …….,sm; T′ be an ordering of T such that

if > then Ti appears before Tj in ordering T′.

The function fc(Ti) in its simplest form is calculated as:

fc (Ti) =∑k∈ Ri sk / ci . (1)

Where, Ti is the test case and ci is its corresponding

cost. sk is the severity of fault Fk and Ri is the set of fault

numbers revealed by test case Ti.

B. Dependency Cognizant Test Case Prioritization

In [8], researchers considered the fault dependency of

the test cases. The goal of this paper was to extend the

cost cognizant test case prioritization technique [11] by

introducing dependency among faults. More specifically

we replace the function fc (Ti) by fd (Ti) so that the leading

faults are identified earlier based on their severity per unit

cost. This proposed matrix showed a significant amount

of improvement occurred in the field of severity rate

detection of totally dependent faults in test cases.

Definition 3.2: (Dependency Cognizant Test Case

Prioritization):

Given T, a test suite of n test cases T1, T2…Tn, with

costs c1,c2,….,cn; F be a set of m faults F1, F2,….,Fm

revealed by T with severities s1, s2,……, sm; Fi ← Fd,

where Fd is a set of faults that are dependent on fault Fi;

T′ be an ordering of T such that if fd(Ti) > fd(Tj) then Ti

appears before Tj in ordering T′.

Here fd(Ti) computes severity/cost of Ti but it considers

all dependent faults that are discovered by Ti. The new

function thus equates severity/cost according to the

following equation:

 (2)

In paper [8], for simplicity they only considered the

fully dependent faults. But there could be mutually or

partially dependent faults too in the test suite. As a result,

in this paper, we will consider both types of dependencies

and from now on dependency will mean both partial and

fully dependency. So we will incorporate all sorts of

faults considering independent and dependent faults in

my proposed work.

C. Test Case Prioritization Considering Independent

Faults

To quantify how rapidly a prioritized test suite can

detect dependency among faults, an objective function is

required. For this reason, I first consider test cases’ with

independent faults; calculate severity rate and then

consider the same test cases with both fully and partially

dependent faults to calculate the total dependent severity.

In each case of severity detection process, we will

prioritize test cases in descending order. That means,

higher severity rate is given more award then rest of the

other.

From table. 3, we found that there are six test cases

with ten faults occurred in the test suite. In the test case

T1, the faults F1, F4 and F10 have occurred at first.

Similarly F3 and F8 are found in the test case T2. For T3,

faults F2, F5, F8 and F9, for test case T4, faults F7 and

F10, for test case T5, faults F3, F6 and F8 and finally for

test case T6, faults F2 and F9 are found.

Test suite generally contains several numbers of test

cases where there is various numbers of faults occurred in

each. Those faults may be of various types. They can be

independent, can be mutually (partially) dependent or

totally dependent among themselves in a test suite. I have

40 Test Case Prioritization based on Fault Dependency

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 4, 33-45

taken such an example with a dependency graph where

there are some independent and some dependent (both

mutually and totally) faults in the fig. 2.

We have total ten faults in a test suite and they are F1,

F2, F3, F4, F5, F6, F7, F8, F9 and F10. Now let us

consider the following fault dependencies:

F2 --> F3, F4; F10 --->F3;

Here as it can be seen from the table. 3 and fig. 2 that

the faults F1, F3, F4, F5, F6, F7, F8 and F9 are

independent faults which means they do not have any

dependency mentioned above. But the faults F2 and F10

are dependent faults. This means that fault F2 is mutually

dependent on both F3 and F4. Fault F10 is dependent on

F3.

Table 3.Example of Test Suite and Faults Exposed

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

T1 * * *

T2 * *

T3 * * * * *

T4 * *

T5 * * *

T6 * * *

Fig.2. Dependency Graph.

Table 4. Execution Time (Cost) of the Test Cases

Test cases Execution time

T1 8

T2 5

T3 8

T4 5

T5 6

T6 5

Total Execution Time 37

Table 5. Severities of the Faults

Fault Severity

F1 6

F2 4

F3 3

F4 7

F5 10

F6 4

F7 5

F8 4

F9 2

F10 3

Total Severity 48

The execution time (cost) of the six test cases and the

fault severities of the ten faults are mentioned above.

D. Analysis & Calculations

The steps to calculate the severity rate of six test cases

are given bellow:

1. At first, I have to look at the test suit to get the

information about the total number of faults and

test cases.

2. Then I have to keep track of which fault has

occurred in which test case.

3. Next task is to look at the dependency graph to get

the idea of independent and dependent faults.

4. After that, it is the time to build the calculation of

severity rate of each fault. For example, in the

above table, I can calculate the severity rate of

associated fault for each test case. For the test case

T1, three faults occurred. These are F1, F4 and

F10.

5. According to [11],

fc (Ti) =∑k∈ Ri sk / ci

The steps to calculate the severity rate of six test cases

are where, Ti is the test case and ci is its corresponding

cost. sk is the severity of fault Fk and Ri is the set of fault

numbers revealed by test case Ti.

Now the next step will be to calculate the severity rate

of independent faults following the Table. 3 & fig. 2.

For example: For the test case T1, three faults have

occurred F1, F6 and F10.The severity of the three faults

are 5, 4 and 1 respectively. As a result we take the

summation of those three fault severities and divide it by

the execution time of the test case T1.The execution time

can be found from the table. 4. So the desired result will

be: T1= (6+7+3)/8=2;

Now, the calculations are shown below:

Table 6. Severities Considering Independent Faults

Severity Rate (Independent Faults) of each Test Case, fc (Ti)

T1 = (6+7+3)/8 = 2

T2 = (3+4)/5 = 1.4

T3 = (4+3+10+4+2)/8 = 2.875

T4 = (5+3)/5 = 1.6

T5 = (3+4+4)/6 = 1.83

T6 = (4+3+5)/5 = 2.4

 Test Case Prioritization based on Fault Dependency 41

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 4, 33-45

6. Once all the severities of six test cases is calculated

then all the test cases is rearranged in a descending

order. Therefore, following the above steps the

desired order will be:

T3-T6-T1-T5-T4-T2

The above steps covered have taken only the

independent faults into consideration. But now my newly

proposed theme will be implemented and I will show the

improvement and difference between the independent and

dependent (both fully and mutually) faults associated

with the test cases.

E. Test Case Prioritization Considering Dependent (Both

Fully & Mutually) Faults

Now, we will consider the fault dependency of the test

cases. In [8], researchers discussed about the types of

dependencies. Dependencies could be of two types (fully

& partially). Here for simplicity we only considered the

fully dependent faults and kept the partially dependent

faults for future research. Now, in this paper

mutually/partially dependent fault will be the main focus

to be considered. The partially dependent fault is not

immediately removed after the leading fault is removed

and requires some correction to fully remove it.

Hence the goal of this paper is to extend the

dependency cognizant test case prioritization technique [8]

by incorporating both types of dependency (full and

mutual) among faults. More specifically, we will replace

the function fd(Ti) by fpf so that the leading faults are

identified earlier based on their severity per unit cost.

Definition: Given T, a test suite of n test cases T1,

T2…Tn, with costs c1, c2,…., cn; F be a set of m faults F1,

F2,….,Fm revealed by T with severities s1, s2,……, sm; Fi

← Fpf, where fpf is a set of faults that are dependent on

fault Fi; T′ be an ordering of T such that if fpd(Ti)> fpd(Tj)

then Ti appears before Tj in ordering T′.

Here fpd(Ti) computes severity/cost of Ti but it

considers all dependent (both partial and fully) faults that

are discovered by Ti. The new function thus equates

severity/cost according to the following equation:

 = . (3)

If the equation is generalized, then it will be as

following:

 (4)

Here, Ti is the test case and ci is its corresponding cost.

sk is the severity of the dependent fault Fk and Ri is the

set of fault numbers revealed by test case Ti. DpFk
is the

set of the faults on which Fk is mutually dependent.

In this proposed algorithm, we have the input and

output part. The aim is to show that if the fault

dependency (both partial and fully) is considered then

more severity can get than from the independent one

through prioritizing the test cases. For simplicity, we

consider that, the mutually dependent fault will be

dependent with an equal dependency rate that means it

will equally be dependent on its associate faults on which

it depends.

Algorithm: Test Case Prioritization Considering

Dependent Faults

Algorithm Input: Test suite T, Fault severity f, and

test costs or execution time of each test case t

Output: Prioritized test suite T′

1: begin

2: set T′ empty

3: for each test case t ∈ T do

4: Take (the summation of number of fault

severities f covered by t + the severities of the

totally dependent faults of occurred fault covered

by t + (sum of partially dependent fault severities

covered by t /2)) / execution time of each t

5: end for

7: sort T in descending order based on the

award value of each test case

8: let T′ be T

9: end

First the same faults and test suite with same above

dependency graph is considered. Severities of the faults

and the execution time of the test cases are same too.

Following is the simple representation of the dependency

graph.

Table 7. Severities Considering Dependent Faults

Severity Rate (Dependent Faults) of each Test Case,

T1= 2+ (3/8) = 2.375

T2= 1.4

T3= 2.875+ {(()+3)/8} = 3.875

T4=1.6+ (3/5)=2.2

T5=1.83

T6=2.4 + {(()+3)/5} = 4

Fault F10 is dependent on F3. Fault F2 is mutually

dependent on both of the faults F3 and F4. For

simplicity,we consider that fault F2 depends on both F3

and F4 with an equal dependency rate that is 50% each.

Therefore, by applying the above proposed algorithm and

(4), we get the new dependency fault severity rate of the

corresponding test cases. For example:

In the test case T1 our previous severity rate was 2 and

as F1, F4 and F10 have occurred in test case T1. Among

the three faults F10 is dependent on F3. So, F3 will be

considered here. The severity of F3 is 3 and the execution

time of test case T1 is 8.Therefore, the total dependent

severity rate will be: T1= 2+ (3/8) = 2.375;

Then we repeat the same heuristics to calculate the

severity rates of the rest. Eventually the following table is

found. The calculation shown is done using (4)

considering the dependency graph fig. 3. These severity

rates are given in Table 7.

42 Test Case Prioritization based on Fault Dependency

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 4, 33-45

Therefore, following the proposed algorithm &

formula (4), the new desired order will be:

T6-T3-T1-T4-T5-T2

Test case ordering considering Independent faults:

T3-T6-T1-T5-T4-T2

Test case ordering considering Dependent (both fully

& mutually) faults:

T6-T3-T1-T4-T5-T2

From table 7., we observe that, in the previous order T3

was in the first position but in my improved one, we

found T6 at the highest award value because in the test

case T6, faults F2, F3 & F7 occurred where F2 has the

highest amount of dependencies than rest of the other and

the fault F3 have dependent fault F10. In the test case T6,

the occurred faults are F2, F3 and F7 which is even less

in number than the test case T3 (possesses faults F2, F3,

F5, F8 & F9). But the fact is T6 has higher amount of

dependencies F3 and F4 as F2 depends on F3 & F4 as

well F10 as it depends on F3. Therefore, if I consider the

dependencies (using the proposed algorithm) and add

their severities to the previous severity rate of T6, then we

will have greater award value than that of T3.That is why

in my improved test case ordering, T6 gets the highest

award value than of the other test cases.

Similarly, in previous order T5 comes before T4

whereas in the proposed ordering T4 comes before T5. T4

has the highest award value in T4, as faults F4, F7 & F10

occurred where F10 has the dependency that is F10

depends on F3. On the other hand, faults F3, F6 & F8

occur in test case T5 and these faults do not have any

dependency. So following the proposed algorithm, T4

gets the highest award value than T5 and thus it came

before T5.

The new ordering is evidently showing the strength of

considering the dependent fault severities in prioritizing

the test cases. Now plotting is done into graph for the

both previously and newly proposed test case orderings to

show that the new ordering can cover more severities due

to the same percentage of test case execution than the old

ordering system without considering total dependent

faults. Then according to [11], two graphs are plotted to

show the cumulative fault severity detected and its

associated cost.

In table 8, the ordering of both new and existing one

has shown. Now, first the cumulative of the previous one

is taken in table 9.

The previous ordering is:

T3-T6-T1-T5-T4-T2.

Then I take the cumulative of proposed ordering in

table 10.

The proposed ordering is:

T6-T3-T1-T4-T5-T2.

Table 8. Comparison between the existing and new ordering

Previo

us Test

Case

Order

Execut

ion

Time

Severity New

Test

Case

Order

Execu

tion

Time

Improve

d

Severity

T3 21.622 47.92 T6 13.51 45.833

T6 13.51 10.42 T3 21.622 33.33

T1 21.622 33.33 T1 21.622 12.5

T5 16.22 8.33 T4 13.51 0

T4 13.51 0 T5 16.22 8.33

T2 13.51 0 T2 13.51 0

Table 9. Cumulative of the previous order

Cumulative of execution time Cumulative of Severity

21.622 47.92

35.132 58.34

56.754 91.67

72.974 100

86.484 100

100 100

Table 10. Cumulative of the new order

Cumulative of execution time Cumulative of Severity

13.51 45.833

35.132 79.163

56.754 91.663

70.264 91.663

86.484 100

100 100

Fig.3. Prioritization Graph without Considering Fault Dependency

In this example, fault of T4 and T2 i.e. F7, F10 and F3

and F4 respectively was already considered before. So I

get zero severities, i.e. no severity have found. But, in the

new ordering of test cases, as I considered, the dependent

fault T6 get the highest award value. Therefore there is no

question of redundant fault calculation. Here, in the new

order we can detect F3 and F4 merely earlier than the old

 Test Case Prioritization based on Fault Dependency 43

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 4, 33-45

detection technique. Fault F3 and F4 is detected in the

execution period of T6; whereas by using the old process

F3 and F4 can be detected in the execution of T1 and T5

which is in the third and fourth position.

According to [1], we have plotted two graphs to show

the cumulative fault severity detected and its associated

cost. Figure. 3 shows that without considering fault

dependency 22% (approx.) costs is incurred to cover

48% (approx.)of severity of the faults. Figre.4 shows that

if I consider fault dependency, 80% (approx.) of severity

is covered by executing the same percentage of cost in

this example. Therefore, it is obvious that the new

ordering is better one than the former one.

We consider this problem because we want to show

that, by the execution of same percentage of test cases we

can detect more total dependent severity rate than the

previous one. We are considering the dependent fault

because in our process no fault repetition will be taken.

For example:

T6= F2, F3, F7, F4, F10;

T3= F5, F8, F9;

T1 = F1;

T4 =0;

T5= F6;

T2=0;

Our previous ordering was:

T3-T6-T1-T5-T4-T2.

And the proposed order is:

T6-T3-T1-T4-T5-T2.

Fig.4. Prioritization Graph without Considering Fault Dependency

By applying this, we can omit the repetition of severity.

In test case T6, I take F2, F3, F7 and F4. But in test case

T3, I considered F5, F8 and F9 by omitting the repetition

of severities for F2 and F4. Similarly, in T1, I take only

F1. For the test case T5, only F6 have taken. For T4 and

T2 no fault will be taken as all faults are considered

earlier.

IV. CONCLUSION AND FUTURE WORK

Test case prioritization is a method to schedule and

prioritize test cases. The technique is developed in order

to run the test cases of higher priority for minimizing the

time, cost and effort during the software testing phase.

The literature review shows that many researchers

propose many test case prioritization methods and

approaches to prioritize and reduce the effort, time and

cost in the software testing phase. Yet despite its use by

practitioners, to date, less work has been done regarding

to consider the dependent faults as well as independent

faults severities and to incorporate it into any of the

strategies proposed so far. This paper proposed an

algorithm to measure effectiveness of test case

prioritization in regression testing and a prioritization

technique which can be used to improve the fault

detection process for regression testing. Analysis is done

for dependent (both fully & mutually) and independent

test cases with the help of a proposed metric. Graphs

prove that considering the dependent faults in the test

cases make the detection more effective.

In this paper we proposed a new approach for test case

prioritization. Here, we did an extension work of our

unpublished research paper [8] which prioritizes the test

cases based on the fault dependency. In [8], there were

limitations of considering only the dependent faults

which are fully dependent on other leading faults. But the

fact is there can be faults that are not fully dependent

rather mutually/partially dependent on other faults.

Considering the dependent (both fully & mutually) fault

make the regression testing process more effective than

only considering the independent ones. By applying our

algorithm, we demonstrated how my proposed technique

is better than the existing one.

This report shows three primary contributions or gains

to attempt all types of dependent faults under

considerations.

 Firstly, as the algorithm contains the all types of

dependent faults, so one can detect more faults

earlier compared to the old version process. Here,

we overcome the limitations available in [8].

 Secondly, by fulfilling the purpose of generating

the new ordering using the improved algorithm,

one does not have to consider the repetition of

faults in the new ordering.

 Thirdly, our proposed algorithm detects both the

leading faults as well as the fully & mutually

dependent faults at a time. Detection and then

elimination of the leading faults will automatically

erase the dependent faults which lead less number

of test cases to run. Thus it becomes time effective

and less expensive due to the detection of

dependent faults at earlier stage.

44 Test Case Prioritization based on Fault Dependency

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 4, 33-45

For enhancing the proposed approach and providing

the best test case prioritization technique, we have many

future add-ons.

In our research, we have used a simple case or scenario

and verified it by examining and comparing its

improvement with the previous approach. In future, we

will consider more complex scenario and use real life

example or program with diversified data to make my

research more realistic.

In this paper, we have considered all types of

dependencies, showed how dependency consideration

helped in fault severity detection and compared the

improvement from the independent fault detection

process. We have consider mutually dependent fault to be

dependent with an equal dependency rate on its associate

faults. But in reality, dependency rate on associate faults

cannot always be equal. The percentage of dependency

rate may vary according to the scenario. So in future, we

may propose a new approach to calculate the percentage

of the dependency rate which may open new perspective

to the fault severity detection process.

We did not apply the APFDC metric, which assesses

the rate of fault detection of prioritized test cases that

incorporates varying test costs and fault severities. Test

costs are greatly diversified in software testing.

Depending on the criteria, a test cost can be refined

through several factors such as machine time, human time,

test case execution time, monetary value of the test

execution, and so forth [11]. So, we can make this

approach as a cost effective approach by including any of

these test cost factors under consideration. Then this

approach may generate a prioritization technique which

will be cost cognizant. It will make the approach more

improved.

REFERENCES

[1] H.Park, H.Ryu, & J.Baik, “Historical value-based

approach for cost-cognizant test case prioritization to

improve the effectiveness of regression testing In Secure

System Integration and Reliability Improvement”,

SSIRI'08. Second International Conference, IEEE pp. 39-

46, July, 2008.

[2] G. M. Kapfhammer, Software testing. In The Computer

Science Handbook, 2004.

[3] A. Singh, “Prioritizing Test Cases in Regression testing

using Fault Based Analysis”. International Journal of

Computer Science Issues (IJCSI) ,vol: 9(6),2012.

[4] N. Chauhan, “Software Testing: Principles and Practices.”

Oxford university press, 2010.

[5] W. E.Wong, J. R. Horgan, S. London, H. Agrawal, (1997,

November). “A study of effective regression testing in

practice”, The Eighth International Symposium on

Software Reliability Engineering Proceedings (pp. 264-

274). IEEE, November, 1997.

[6] Institute of Electrical and Electronics Engineers (IEEE).

IEEE Standard Computer Dictionary: A Compilation of

IEEE Standard Computer Glossaries. New York, NY:

1990.

[7] P. R. Srivastava, (2008). Test case prioritization. Journal

of Theoretical and Applied Information Technology, vol:

4(3), pp: 178-181.

[8] B. Hoq, S. Jafrin, S. Hosain, “Dependency Cognizant Test

Case Prioritization”. [Unpublished research work,

Undergraduate thesis].

[9] E. Dustin, “Effective Software Testing: 50 Ways to

Improve Your Software Testing”, Addison-Wesley

Longman Publishing Co. Inc., 2002.

[10] S. H. Trivedi, ”Software testing techniques”,

International Journal of Advanced Research in Computer

Science and Software Engineering, vol: 2(10), pp: 433-

438, 2012.

[11] A. G. Malishevsky, J. R.Ruthruff, G. Rothermel, & S.

Elbaum, “Cost-cognizant test case prioritization”,

Department of Computer Science and Engineering,

University of Nebraska-Lincoln, Techical Report.2006

[12] I. Sharma, J. Kaur, M. Sahni, “A Test Case Prioritization

Approach in Regression Testing”,2014.

[13] C. Sharma, S. Sabharwal,R. Sibal, ”A survey on software

testing techniques using genetic algorithm”, arXiv

preprint arXiv:1411.1154, 2014.

[14] C. Kaner, “What is a good test case”. Star East, 16, 2003

[15] G. Rothermel, R. H. Untch, , C. Chu, M. J. Harrold, “Test

case prioritization: An empirical study. In Software

Maintenance”, IEEE International Conference on

1999.(ICSM'99) Proceedings. , pp: 179-188, 1999.

[16] J. M. Kim, A. Porter, G. Rothermel, ”An empirical study

of regression test application frequency”, Software Testing,

Verification and Reliability, vol: 15(4), pp: 257-279,2005.

[17] G. Rothermel, S. Elbaum, , A. G. Malishevsky, P.

Kallakuri & X.Qiu, “On test suite composition and cost-

effective regression testing”, ACM Transactions on

Software Engineering and Methodology (TOSEM), vol:

13(3), pp: 277-331, 2004.

[18] A. Srivastava & J. Thiagarajan, “Effectively prioritizing

tests in development environment”, ACM SIGSOFT

Software Engineering Notes , vol. 27, No. 4, pp: 97-106),

July,2002

[19] H. K. Leung & L. White, “Insights into regression testing

[software testing]”, Software, Maintenance, 1989.,

Proceedings., Conference on, IEEE, pp. 60-69,

October,1989.

[20] G. Rothermel & M. J. Harrold, “Analyzing regression test

selection techniques” , Software Engineering, IEEE

Transactions on, vol: 22(8), pp: 529-551, 1996.

[21] S. Elbaum, D. Gable & G. Rothermel, “Understanding

and measuring the sources of variation in the prioritization

of regression test suites”, In Software Metrics Symposium,

2001. METRICS 2001. Proceedings. Seventh International

IEEE, pp: (pp. 169-179), 2001.

[22] G. Rothermel, R. H. Untch, C. Chu & M. J. Harrold,

“Prioritizing test cases for regression testing”, Software

Engineering, IEEE Transactions on, vol: 27(10), pp: 929-

948, 2001.

[23] X. Zhang, C. Nie, B. Xu & B. Qu, “Test case

prioritization based on varying testing requirement

priorities and test case costs”, In Quality Software, 2007.

QSIC'07. Seventh International Conference on IEEE, pp.

15-24, October,2007.

[24] W. E. Wong, J. R. Horgan, A. P. Mathur & A. Pasquini,

(1999). “Test set size minimization and fault detection

effectiveness: A case study in a space application”,

Journal of Systems and Software, vol: 48(2), pp: 79-89,

1999.

[25] M. J. Harrold, “Testing evolving software”, Journal of

Systems and Software, vol: 47(2), pp: 173-181, 1999.

[26] J. A. Jones & M. J. Harrold, “Test-suite reduction and

prioritization for modified condition/decision coverage”,

 Test Case Prioritization based on Fault Dependency 45

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 4, 33-45

Software Engineering, IEEE Transactions on, vol: 29(3),

pp: 195-209,2003.

[27] P. Tonella, P. Avesani & A. Susi, “Using the case-based

ranking methodology for test case prioritization”, In

Software Maintenance, 2006. ICSM'06. 22nd IEEE

International Conference on IEEE, pp:123-133,

September, 2006 .

[28] S. Yoo, M.Harman, P. Tonella & A. Susi, “Clustering test

cases to achieve effective and scalable prioritization

incorporating expert knowledge”, In Proceedings of the

eighteenth international symposium on Software testing

and analysis ACM, pp. 201-212, July,2009.

[29] S.Mirarab & L. Tahvildari, “An empirical study on

bayesian network-based approach for test case

prioritization”, In Software Testing, Verification, and

Validation, 2008 1st International Conference on IEEE,

pp. :278-287, April,2008.

[30] B. Korel, G. Koutsogiannakis & L. H. Tahat, “Model-

based test prioritization heuristic methods and their

evaluation”, In Proceedings of the 3rd international

workshop on Advances in model-based testing ACM, pp:

34-43, July,2007.

[31] T. Parthiban, R. Kamalraj & S. Karthik, “Establishing a

Test Case Prioritization Technique Using Dependency

Estimation of Functional Requirement”, International

Conference on Engineering Technology and Science-

(ICETS’14). International Journal of Innovative Research

in Science, Engineering and Technology, 2014.

[32] P. Bansal, “A critical review on test case prioritization and

Optimization using soft computing techniques”, In 2nd

International Conference on Role Of Technology in

Nation Building (ICRTNB), ISBN: 97881925922-1-3,

2013.

[33] Sunita, & M. Gulia, “Study of Regression Test Selection

Technique”, International Journal of Advanced Research

in Computer Science and Software Engineering. India,

2014.

[34] H. Do, S. Mirarab, L.Tahvildari & G. Rothermel, (2008,

November). “An empirical study of the effect of time

constraints on the cost-benefits of regression testing”, In

Proceedings of the 16th ACM SIGSOFT International

Symposium on Foundations of software engineering ACM,

(pp. 71-82).

[35] S. Elbaum, A. Malishevsky & G. Rothermel,

“Incorporating varying test costs and fault severities into

test case prioritization”, In Proceedings of the 23rd

International Conference on Software Engineering. IEEE

Computer Society, pp. 329-338, July, 2001.

[36] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer & R. S.

Roos, (2006, July). “Time aware test suite prioritization”,

In Proceedings of the 2006 international symposium on

Software testing and analysis ACM, pp. 1-12, July, 2006.

[37] P. R. Srivastva, K. Kumar & G. Raghurama, (2008). “Test

case prioritization based on requirements and risk factors”,

ACM SIGSOFT Software Engineering Notes, vol: 33(4),

2008.

[38] M. A. Askarunisa, M. L. Shanmugapriya & D. N. Ramaraj,

“Cost and coverage metrics for measuring the

effectiveness of test case prioritization techniques”,

INFOCOMP Journal of Computer Science, vol: 9(1), pp:

43-52, 2010.

[39] A. Singh, (2012). “Prioritizing Test Cases in Regression

testing using Fault Based Analysis”, International

Journal of Computer Science Issues (IJCSI), vol: 9(6),

2012.

[40] V. B. Singh, P. K. Kapur & A. Tandon, “Measuring

reliability growth of software by considering fault

dependency, debugging time Lag functions and irregular

fluctuation”, ACM SIGSOFT Software Engineering Notes,

vol: 35(3), pp: 1-11, 2010.

[41] Y. Wu, R. H. Yap & R. Ramnath, “Comprehending

module dependencies and sharing”, In Software

Engineering, 2010 ACM/IEEE 32nd International

Conference on. IEEE. vol. 2, pp. 89-98, May,2010.

[42] C. Y. Huang & C. T. Lin, “Software reliability analysis by

considering fault dependency and debugging time lag”,

Reliability, IEEE Transactions on, vol:55(3), pp: 436-450,

2006.

[43] A. Srivastava, J. Thiagarajan & C. Schertz, “Efficient

integration testing using dependency analysis”, Microsoft

Research, TechReport MSR-TR-2005-94, 2005.

[44] D. Leon, W. Masri & A. Podgurski, “An empirical

evaluation of test case filtering techniques based on

exercising complex information flows”, In Proceedings

of the 27th international conference on Software

engineering ACM, pp. 412-421, May, 2005.

[45] H. Kumar, N. Chauhan, “A module coupling slice based

test case prioritization technique”, I.J. Modern Education

and Computer Science, vol: 7(7), pp: 8-16, 2015.

[46] I. Aslmadi, S. Alda, “Test cases reduction and selection

optimization in testing web services”, I.J. Information

Engineering and Electronic Business, vol: 4(5), pp: 1-8,

2012.

Authors’ Profiles

Samia Jafrin was born in Dhaka,

Bangladesh, in 29th June, 1989. She received

the BSc. degree in computer engineering

from the North South University, Dhaka,

Bangladesh, in 2010, and the MSc. degree in

computer science from American

International University Bangladesh, Dhaka,

Bangladesh, in September, 2015. She has done her major field

of study in software engineering.

In 2011, she joined a school named Scholastica, in Dhaka,

Bangladesh as a Teacher and continuing. Her current research

interests include software testing, regression testing, test case

prioritization and fault dependency.

Dip Nandi has completed his PhD in

Computer Science from RMIT University,

Melbourne, Australia. His research

interests include E-Learning, Software

Engineering and Information Systems.

Email: dip.nandi@aiub.edu

Sharfuddin Mahmood has completed his

B.Sc and M.Sc degree in Computer Science

from American International University-

Bangladesh. His major was Information and

Database Technologies. Currently his is

focusing on Data Mining technologies and

algorithms. His area of research is Data

mining and knowledge discovery, Software

Engineering and intelligent systems.

