
I.J. Modern Education and Computer Science, 2016, 3, 11-21
Published Online March 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2016.03.02

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 3, 11-21

A Low Cost High Speed FPGA-Based Image

Processing Framework

Mohammad Reza Mahmoodi
Department of Electrical and Computer Engineering, Isfahan University of Technology, 8415683111 Isfahan, Iran

E-mail: mr.mahmoodi@ec.iut.ac.ir

Sayed Masoud Sayedi
Department of Electrical and Computer Engineering, Isfahan University of Technology, 8415683111 Isfahan, Iran

E-mail: m_sayedi@cc.iut.ac.ir

Abstract—In this paper, a high-speed and low-cost image

processing framework based on MATLAB-FPGA

interface is proposed that can be used in researches

aiming at developing wide variety of not only image

processing tasks but also many signal processing

applications. In addition, this new framework could be

exploited for several other tasks such as on-chip

verification, using PC as an enormous external RAM for

FPGA while preserving high speed data access,

developing hardware-software co-designs, etc. The

communication between FPGA and MATLAB is via

1Gbs Ethernet based on UDP/IP protocol which is very

promising for high speed data transmission in point-to-

point communications. UDP stack is efficiently designed

in FPGA based on a fully pipelined architecture with

minimum level of logic in order to reach high

performance.. Dynamic data transmission between the

UDP stack, memory and an arbitrary image processing

module makes it possible to practically simulate, debug

and implement most relevant applications. The hardware

system is relatively low-cost and it consumes a negligible

area of a Spartan-6 LXT45 Xilinx FPGA. Operating at 1

Gb/s, theoretically, the system is capable of processing

132 frames of 640*480 color images in a second. The

effectiveness of the system is evaluated by means of both

place and route simulation and practical implementation

of a skin detection algorithm and a motion detector.

Index Terms—FPGA, MATLAB, Hardware

Implementation, UDP Stack, Digital Signal Processing,

Image Processing.

I. INTRODUCTION

Digital signal processing has remodeled traditional

analog signal processing systems as a mature technology.

Though analog chip designs used to be implemented on

smaller die sizes, but currently, with the noise associated

with modern sub-micrometer circuits, digital systems are

often much more densely integrated than analog designs

and this has been yielded to a compact, low-power, and

low-cost designs [1]. DSP (digital signal processing) as a

subfield of signal processing is used in numerous

applications such as most of associated threads in

disparate fields of image processing, audio and speech

signal processing, digital communications, biomedicine,

etc. Developing both programmable DSP chips and

dedicated system-on-chip (SoC) solutions has been an

active area of development and research over the past

three decades [2]. Three important factors which have

undoubtedly affected digital signal processing are

development of an efficient way of computing DFT in 60s

[3], commercial production of programmable digital

signal processors in which calculation of fixed point

arithmetic operations in one clock cycle became possible

[1], and, finally introduction of modern FPGAs which

provides low cost and fast DSP arithmetic implementation

using a semi-ASIC architecture.

In order to deal with different design requirements on

digital signal processing including image processing

system; e.g., video codec as a paradigm application

utilized in many real-time applications for which many

hardware and software implementations are already

presented in literature [4-7]. Although software

implementations are easy to realize on general-purpose

microprocessors, multiprocessors, microcontrollers, or

digital signal processors, their sequentially executing

structure is not well suited for fast processing of

computational applications such as high resolution

compression/video scaling of motion pictures, satellite

communication modulator/demodulator, etc [8]. Even

though the implementations are various and directly

related to the application requirements, in general, they

can be grouped in four different categories and also

compared as shown in Table. I. In the table, the features

are evaluated comparatively. For example, considering the

density as a parameter; the 28 nm Virtex-7 Xilinx FPGAs

(Field Programmable Gate Arrays) are dense enough to

encompass many DSP based designs; however, compared

to Application Specific Integrated Circuits (ASICs) (in the

same technology), mainly due to the high volume of

configuration circuitry in FPGAs the effective density will

be much lower (approximately 1 fifth). This difference is

denoted in the table by using words Moderate and High,

respectively for FPGA and ASIC platforms. It can be

deduced from the table that for many applications, FPGAs,

compared with other platforms, are remarkable solution

12 A Low Cost High Speed FPGA-Based Image Processing Framework

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 3, 11-21

for implementation of DSP algorithms. A brief discussion

on this is in the following:

ASICs seem to be very promising solution in terms of

both performance and power [9]. However, this type of

implementation is not a straightforward solution mainly

because of high cost of prototyping and long time to

market. FPGAs on the other hand have some features

which make them very favourable. Their intrinsic parallel

structure, relatively low cost, relatively lower time to

market, and finally reconfigurable architecture make them

remarkable solution for many communicational and

processing algorithms [10]. In addition, their much higher

flexibility and lower turnaround time is very attractive

when comparing these devices with ASICs [11].

Table 1. Different Implementation Platform’s Features

Platform ASIC DSP

General

Purpose

Processors

FPGA

Performance Highest Moderate Lowest High

Unit Cost

(Prototyping)
Highest Moderate Lowest Moderate

Power Lowest Moderate Highest Moderate

Flexibility Lowest Moderate Highest High

Design Effort

(Complexity)
Highest Moderate Lowest Moderate

Time-to-

Market
Highest Moderate Low Moderate

Density High Low Highest Moderate

Whenever a system with moderate cost and

performance is needed, specialized microprocessors can

be utilized. DSP chips are capable of both fixed-point and

floating-point arithmetic operations. However, their

moderate performance is not suitable for implementation

of all signal processing applications. FPGAs have a

technical advantage over today’s DSPs for example in

their silicon technology which can be much more

advanced [12]. For instance, modern FPGAs use hardcore

dedicated DSP blocks with comparable performance with

ASICs. A standard DSP processor (Dual core DSP)

running at 300 MHz is capable of performing 2 operations

in one clock cycle leading to (300*2)/1=600 MMACS
1
.

However, using DSP48A1 dedicated blocks in a Spartan-6

LX45 device running at 250 MHz, leads to

58*250/1=14,500 MMACS due to their both fully parallel

and dedicated (ASIC-like) architecture [13]. Of course,

whether or not this technical advantage is enough to make

FPGAs more attractive than DSPs is heavily depend on

application, budget and technology focus.

General purpose computers are the most available,

cheapest and simplest choice of design specifically when

real-time processing is not in the first priority. Though

they seem to have lowest performance and highest power

consumption, they are the most common platform for

prototyping DSP algorithms mainly due to their simple

design flow and low cost of developing. Different

software developing platforms are available in computers

1
 MMACS = Millions of Multiply-accumulate per second (measure of

DSP performance)

among which MATLAB (Matrix Laboratory) is a very

important and commonly used one. MATLAB is a fourth-

generation programming language and it has been a

critical tool in developing variety of algorithms. It would

be very useful, and sometimes critical, to have a high

speed link between general purpose computers and

FPGAs as it has many applications though the main focus

of this paper is development of an image processing

framework.

Developing a MATLAB-FPGA communication link is

useful not only in algorithm development, but also in

applications which are mostly affiliated with fully or

partially development of FPGA based designs. This

platform makes it possible to compare two different

implementation of one algorithm in terms of speed,

accuracy, etc. Also it is beneficial in tasks such as

performing on-chip verification, loading parameters or

coefficients of an algorithm to the FPGA (repeatedly),

measuring an algorithm’s performance or accuracy based

on variety of inputs and outputs, etc. For example, in

biomedical digital signal processing on FPGA (brain-

computer interface or voice processing), various DSP

algorithms are implemented on FPGA [14-16] which can

leverage the proposed setup as a high speed controlling

interface between the master PC and slave FPGA.

Another application is when it is necessary to transfer a

huge amount of information and it cannot be stored in

FPGA or even off-chip SDRAM memories. For example,

in an intensive searching application [17], FPGAs are

employed in a highly computational comparison tasks

between a sample of data (query) and a large size database.

Another application is related to the capability of

MATLAB in modeling different digital and analog

systems. For example, in linearization of RF power

amplifiers, one big branch in linearization techniques is

based on digital pre-distorters and in general on digital

techniques. These digital systems are sometimes

implemented using FPGAs [18, 19]. Due to the

MATLAB’s capability in modeling RF amplifiers as well

as other RF systems, using a high speed FPGA-MATLAB

interface is a typical solution to test these systems.

A high speed FPGA-MATLAB connection makes it

possible to transfer high computational parts of algorithms

to the FPGAs, as these parallel architecture devices often

outperform software based algorithms. In other words, the

system provides a point-to-point FPGA-PC

communication which can be directly utilized in

implementation of hardware-software co-designs. For

example, in a high computational face recognition

application [20] it is necessary that the processor access

the computer RAM many times while lots of arithmetic

operations are executed. But, these algorithms can be

partially and effectively implemented in hardware.

Another example is implementation of BLAST (Basic

Local Alignment Search Tool) algorithm [21].

The aim of this paper is to present a new high speed

solution to MATLAB-FPGA interface with negligible

hardware resource consumption to provide enough room

for execution of other main DSP (particularly image

processing) algorithms. The rest of the paper is as follows.

 A Low Cost High Speed FPGA-Based Image Processing Framework 13

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 3, 11-21

The design of the system is elucidated in section II and

two applications of the proposed system i.e.

implementation of skin detection and motion detection

algorithms and their practical results are provided in

section III. Finally, conclusion is provided in section IV.

II. SYSTEM LEVEL DESIGN

The MATLAB-FPGA interface is a couple node system

consisting of a PC and a FPGA. In Fig. 1, the overall

architecture of the system is depicted focusing on image

processing applications. By revising in minor parts of the

FPGA design and input/output external devices,

implementation of other relative applications is possible.

MATLAB initiates the entire operation. The Software

core which is developed in PC is capable of capturing the

image from either an external device camera or computer

hard disk and sending it via the communication link in a

user-friendly manner. These packets are sent over a high

speed one gigabit Ethernet technology. In the FPGA, input

packets are received and depend on the content of the data

and packets, further processes will be executed. Two

standard protocols are utilized here; the first one is ARP

(address resolution protocol) and the other one is the UDP

which carries the main data. The former one is

prerequisite in order to establish the connection; in fact,

after global reset of the FPGA applied and execution of

first MATLAB instructions, PC broadcasts ARP packets.

ARP protocol is employed in order to convert the IP

address to a physical address. FPGA should be able to

transmit ARP request and reply frames to inform the PC

of its own address. The latter protocol i.e. UDP, due to its

desirable features, is used for transferring the main signal.

The main operation starts by loading data into the

FPGA and it will be stored in an off-chip high dense

SDRAM. Before buffering the data, it is possible to

perform particular kind of operations. For example, it is

possible to implement an in-pixel processor to perform

specific task (e.g. filtering, edge detection, etc). Most DSP

applications require large memories for storage and

buffering data and using FPGA internal RAMs is not

efficient at all. SDRAMs offer a high capacity (up to a

number of gigabits) as well as high levels of bandwidth

for data transmission with the cost of area, power and

management complexity. The latter one is critical since

different modules should be able to access SDRAM at the

same time, and the former is essential as in many

applications such as image processing algorithms,

SDRAM should be able to store a huge amount of data.

SDRAM’s operation is controlled by means of a dedicated

memory controller inside the FPGA. Any module which is

required to access SDRAM’s data is associated with the

memory controller. The main module which is the

hardware implementation of the DSP algorithm has also a

dedicated access to the memory controller; thus, the data

will be written and read back whenever it is needed. A

controller is provided to control the overall operation and

manage memory addressing tasks. An optional interface to

output device (here it is a monitor) is also utilized to

observe the results if desired, even though it is possible to

send the processed data back to the software core.

A. Ethernet Connection

In order to provide the PC-FPGA connection, Ethernet

technology is utilized. The USB 2.0 can provide

approximately 500 Mb/s transfer rate, but it is not enough

for many applications and also it is not applicable for long

length cables. Higher versions such as USB 3.0 and USB

3.1 provide much higher bandwidth, but they are not

always compatible with current systems. RapidIO, PCIe

and Ethernet are other standard choices. Among them,

Ethernet (defined and standardized in IEEE 802.3-2008)

seems more preferable. It is fast enough for many

applications, has low cost, and is available almost

wherever there is a computer. PCIe is the fastest

interconnect technology available for FPGA-PC

connection, but it has several drawbacks [22]. In past, for

a simple point to point communication, the need for

additional circuits could increase the overall cost of the

system and a processor was required to implement a

network stack [23]. Currently, FPGAs make it possible to

cost-effectively implement the stack very straightforward.

Besides choosing a hardware platform, e.g., FPGA, and

interconnect technology, e.g., gigabit Ethernet, a protocol

is also chosen to run in upper layers (network and

transport). Regarding protocols and standards, several

points should be considered before designing the stack. In

some usages, the accuracy has strictly the first priority,

while in many others it is not that important. In data

streaming applications such as real-time image processing

systems, most of the time, it is crucial that input interface

be able to provide several gigabits of bandwidth, but it

would be okay if some bytes of data get lost. UDP, due to

use of a least protocol mechanism without any special

handshaking between the server and clients, seems to be

an unreliable protocol. TCP, on the other hand, is a

connection-oriented protocol that provides a safe and error

free system by sending and receiving acknowledgements

and by retransmissions and timeouts [24]. Even though

UDP is not suitable for some applications, there are

certain situations in which UDP is preferred. According to

[25], UDP is very suitable for simple query-response

protocols such as DNS and it is stateless, thus, suitable for

media streaming applications such as IPTV and video-

conferencing. And also, lack of retransmission delay

makes this network protocol very useful for real-time

applications. An important aspect of a UDP structure

compared with a TCP implementation is its less used

resources. In fact, due to the more complexity of the TCP,

more resources and area is needed for its implementation.

Also, the long header of TCP reduces the protocol

efficiency compared to that of the shorter UDP header.

The overall architecture of the proposed stack is

depicted in Fig. 2. It consists of several sub-modules. The

PHY implementation is possible either using on-chip

cores such as SGMII LogiCORE or Ethernet 1000Base-X

PCA/PMA (offered by Xilinx or other similar cores by

other vendors) or employing off-chip ICs such as Marvell

Alaska PHY device. The physical layer is implemented

4

4

14 A Low Cost High Speed FPGA-Based Image Processing Framework

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 3, 11-21

off-chip using BASE-T standard. Marvell Alaska PHY

device is used as an interface for Ethernet

communications at 10, 100 or 1000 Mb/s speeds. PHY

connection to Ethernet cable is through a connector with

built-in magnetic. PHY connection to upper layers could

be managed through predefined standards such as GMII,

RGMII, SGMII, etc which depends on the connection

features. GMII interface is defined by IEEE802.3

specification and it is utilized in this stack. When using

GMII, the FPGA designer should consider a logic circuit

built in FPGA IO blocks to meet timing requirement. Fig.

3 shows the circuit which is used to here both in receiver

and transmission interfaces in IOBs. At the GMII

transmitter interface, while operating at 1 Gbs, it is

necessary that user provides 125 MHz clock (placed on

global clock routing) and feed it to the core, client logic

and gmii_tx_clk output ports. Of course, this latter signal

is first inverted using an ODDR primitive to maximize

setup and hold times. Other output signals are registered

in IOBs using Double-Data-Rate registers so that the

clock, data and other control signals arrive at the same

time. In Fig. 4, the timing diagram of the main signals (for

an ARP packet including FPGA IP Address) related to the

Ethernet transmitter interface is depicted. GMII receiver

logical implementation for Spartan-6 includes several

IODELAY2 blocks and a BUFIO2 to produce lowest form

of clock routing delay. The first output of the BUFIO2

clock (IOCLK) is routed to the IO clock network

(IODDR2, IODELAY2, IOSERDES2) and the second one

(DIVCLK) drives BUFGs or Clock manager blocks.

IODELAY2 blocks should be practically adjusted to fine-

tune the setup time and hold time of IOB flip-flops.

Delays depend on the routings of the design. Another

practical constraint is related to the clock regions in which

RX signals are placed; they should be all placed on the

same clock region as the RX clock signal. In addition, the

output of the DIVCLK of the BUFIO2 drives a BUFG;

hence, this clock will be utilized in entire of the receiver

part of the UDP stack.

Fig.1. Overall Architecture of Proposed System

Fig.2. Overall Architecture of the UDP Stack

 A Low Cost High Speed FPGA-Based Image Processing Framework 15

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 3, 11-21

This layer is designed using TEMAC (Tri-mode

Ethernet MAC) core, two FIFOs and other peripheral

circuits. TEMAC is offered by Xilinx in order to take

care of tasks such as framing, error detection, overflow

control, padding, etc with high capabilities and in variety

of operation modes. This core is configured to operate at

full-duplex (which is faster than half-duplex and it

consumes less FPGA slices) with minimum possible

resource consumption and thoroughly suitable for data

streaming applications.

Fig.3. GMII Standard Interface Circuit in Spartan-6 IOBs

Fig.4. Timing Diagram of GMII-TX signals in FPGA IOBs

After receiving a full Ethernet frame, the related

information is reported to upper layers regarding the

condition of the incoming packet; in consequence, the

decision will be taken more efficiently. The gigabit

transmitter/receiver device is managed by an 8 bit

Picoblaze microcontroller. Instead of using MDIO

interface modules, the core is configured using 64-bit

configuration vector in the UDP layer making the design

more efficient.

Local link client interface is mainly consists of two

parameterizable FIFOs; One handles receiving tasks and

the other one handles sending packets. Each of the FIFOs

is 4096 bytes long which means they can hold a complete

standard Ethernet frame with maximum allowable length.

The specific feature of these FIFOs is the simple protocol

which is considered at both sides of them (client and

TEMAC). Using several controlling signals, these FIFOs

are capable of transferring the packets with arbitrary

length and controlling the overflow (of consecutive

packets). The transmit data is first buffered in the FIFO.

When the TEMAC is ready to transmit that, the FIFO will

be emptied; consequently, header, trailer and padding

bytes if it was necessary are included. Also, the minimum

interframe gap is considered when sending consecutive

packets.

The UDP core comprises of two independent units, the

transmitter and receiver units. The receiver unit, upon

receiving an ARP request packet, informs the transmitter

which sends a reply frame as soon as possible. The

schematic view of the UDP layer is depicted in Fig. 5.The

transmission is performed by TX controller. It controls the

priority of the data and the type of ARP (request or reply,

broadcast) which should be sent. RX controller deals with

TX controller, application IF (interface), and Local Link

FIFO. These controllers are mainly used to control the

overall operation of the core. The ARP transmitter

consists of an FSM, two simple 45 bytes distributed

RAMs to store data, and some other basic logic blocks.

This module is designed pipelined. ARP transmitter

begins sending data when the output line is free to offload

data, a request is asserted by TX controller, and local link

TX FIFO is ready to accept data.

Fig.5. The Structure of the UDP Core

IP transmitter consists of a control unit to manage the

whole data sending operation, i.e. to control a checksum

calculator to calculate the UDP checksum, a BRAM FIFO

to store the data while the checksum is calculated, a ROM

to store headers, and finally a multiplexer to choose the

data which should be transmitted, i.e. the payload, the

header or the checksum bytes. User can simply modify the

ROM and change the IP addresses, the length of the

payload, etc. RAM is a simple dual port RAM

implemented using a dedicated FPGA BRAM. It is large

enough to hold 2048 bytes of data, considering that the

length of an Ethernet frame is limited to 1538, with

maximum payload size of 1500 bytes (1472 bytes of data,

20 bytes of IP header and 8 bytes of UDP header). BRAM

is connected directly to the control unit which provides

enable signals and the addressing during both “read” and

“write” operations. The multiplexer works with the select

signals that come from the control unit and the input

signals from the BRAM, ROM and checksum register. In

this scheme, the stream of data is downloaded to the local

link FIFO accurately in accordance with the protocol.

Each byte of the data is offloaded at the rising edge of the

clock.

The controller block in the transmitter unit includes

some sub-blocks, mainly an FSM in its heart that controls

timings, input and output signals, addressing of BRAM

and ROM, selecting proper signals for multiplexers and

handshaking with upper and lower layers. It is a 7-state

finite state machine with 16 transitions, 5 inputs, 9 outputs,

and a synchronous reset. It is implemented by using

FPGA LUTs based on one hot encoding. The transmitter

unit is in idle state when there is no information to send.

5

16 A Low Cost High Speed FPGA-Based Image Processing Framework

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 3, 11-21

When an application requests to send information, a state

transition happens and the core starts buffering the

incoming bytes. Meanwhile, the checksum unit calculates

the incoming packet’s checksum. When the whole data

buffered, the controller inquires the local link interface to

check if data transmission is possible, and by receiving

acknowledgement, transmission will start in the next state.

To do that, first header bytes and then payload will be

placed into the TX FIFO of the local link interface. In this

state, there is a possibility that another packet is on the

line to be transmitted by a similar (or different)

application. In this case, transmitter while sending data to

the local link can accept the incoming payload since the

BRAM is dual port. Since the length of the payload is

fixed, transmission will be finished sooner than data

receiving. Hence, controller waits till rest of the data from

application arrives (to complete checksum calculation)

and then it will start sending headers. Checksum is

calculated whenever a segment should be transmitted. The

design has high performance and speed, and this has been

achieved by using FPGA dedicated blocks, employing

high level of pipelining, breaking and reordering long

critical paths to meet timing constraints, and also by using

advance HDL coding techniques specific to Spartan-6

structure.

The receive unit similarly consists of several sub-

modules and one is the controller. The controller manages

all the incoming and outgoing signals of the unit. The data

is sent out directly, but an indicator signal triggered by

controller determines its validity. The controller contains

an FSM, a couple of counters and buffers and some low

level peripheral blocks. The FSM has six states. In its idle

state, the circuit is waiting for trigger from lower layer to

start transmission. In the next state, the MAC-add-

buffering state, 14 bytes of sender and receiver MAC

address and the type/length of protocol are checked.

Appropriate reactions are done after that. The IP buffer is

next state in which bytes of data in IP header or ARP

header are received. The UDP buffer state is based on 8

bytes of UDP header. In statistic state, the results of the

UDP checksum calculation and header comparisons are

sent to the application. The application decides to ignore

or use incoming bytes based on these validation signals.

The IPv4 checksum calculator operates only on the

IPv4 header by start and finish signals from the controller.

The UDP checksum calculator operates on pseudo IP

header, UDP header and data. A simple small RAM (32

bytes) is considered in the design to store those bytes of

the IP header that included in pseudo IP header. In

controller, the output of the counter that count the number

of incoming bytes of IP header is decoded to the addresses

of the simple RAM to write the incoming bytes correctly

into its cells. Soon after finishing data transmission, the

checksum operation is performed with the bytes coming

from the controller. The final checksum value will be

calculated and based on this value, a warning signal will

be sent to application by the controller.

B. MCB Interfaces

Memory controller block (MCB) is a dedicated

embedded block; a multi-port memory controller that

simplifies the task of interfacing FPGA devices to the

most popular memory standards. The FPGA’s hard

memory controller is used for data transfer across the

DDR3 memory interface’s 16-bit data path using SSTL15

signaling. In the proposed architecture, the MCB is fed

with a 400 MHz differential clock. In addition, 3

unidirectional and 2 bidirectional 32-bit ports

configuration is established accompanying with an

arbitration scheme which maximizes the performance. A

PLL is employed to supply this block with the memory

system clock and the calibration clock. The schematic of

the MCB interface with other blocks is depicted in Fig. 6.

Each module that aims to access the external RAM is

required to burst a command. In each of the system

memory clock cycle (i.e. 3000 Ps), MCB checks the

availability of any command in each port’s command

FIFO based on the arbitration priority. Depend on the

burst length of that command and FIFO statues, data will

be transferred.

Considering an image processing application, Ethernet

data bytes are merged to form 3-byte data words. The data

received from UDP/IP unit is checked in terms of

accuracy in IP addresses, MAC addresses, checksum, etc.

If the data is correct, the 3-byte data word will be shifted

into the other block accompanying with a valid signal.

This valid signal is asserted 1 time in every 3 cycles. Of

course, this scheme is not critical for all applications. In

present design, each pixel consists of Red, Green and Blue

bytes and each of these bytes arrive in order (i.e. pixel rate

is 1 third of 125 MHz). In addition, the end of receiving a

full frame of an image (considered 640*480) is also

indicated in this part and used in controller to provide

address updating.

MCB Interface blocks are units through which the

memory controller is accessed. Two MCB Ethernet

interface blocks are considered in the design scheme; one

is to buffer the incoming Ethernet data packets into the

external SDRAM and the other is to fetch data from

external RAM and send it over Ethernet to the PC. The

architecture is simple and efficient. Writing the incoming

data directly into the DDR3 via MCB is quite inefficient

since this may waste a significant portion of MCB’s

bandwidth; hence, when using the system in full operation,

achieving real-time operation will be not practical. In

order to avoid this, data which is fetched from Ethernet

stack is first buffered in an interface FIFO which is

specialized by its independent read and write clocks. The

data is written in FIFO as soon as it received with exactly

the frequency of incoming bytes (pixel rate); however, in

order to read data, a relatively higher frequency should be

chosen depend on the device characteristics, the design

constraints mostly related to the PAR result and also the

effective bandwidth which is needed. Whenever the

number of pixels in the FIFO reaches a threshold, the

process of vacating FIFO embarks on. Using this scheme,

the maximum efficiency is obtained. Peripheral circuits

are required for controlling the whole operation.

6

 A Low Cost High Speed FPGA-Based Image Processing Framework 17

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 3, 11-21

Fig.6. MCB and Connected Blocks in Proposed System

The Output-MCB interface block heavily depends on

the application. If the DSP algorithm is an image

processor, then this block should be an interface to

monitor. Here, the output interface is based on two main

units. One module is directly connected to the MCB and is

responsible for reading processed pixels from the SDRAM

while the other one consists of sub-circuits designed

mainly for controlling monitor synchronization signals,

communicating with the DVI encoder and handshaking

with former module. The unit which is directly connected

to the MCB is comprised of two FIFOs for storing image

lines according to the protocol which is described in the

following. An FSM sub-block controls the entire

operation which is performed on 5 states. The idle state in

which the system is waiting for the first image frame to be

ready; the first line state in which the FSM waits so that

the first line of image is stored in the odd FIFO; the 3
rd

and 4
th
 states that will be consecutively repeated and

switched whenever there is a change in lines; and the 5
th

state which is dedicated to the retrace time between two

consecutive frames. The idea is that when one of FIFOs is

receiving data from MCB, the other is sending the former

line of image to the output. The write and read frequency

for both FIFOs are independent and different. The read

depends on the refresh rate of the output video (here is 25

MHz), and the write clock is much higher to compensate

the MCB delay and to utilize its limited bandwidth

efficiently.

C. Addressing and Memory Partitioning

Dedicated MCBs also simplify the task of addressing as

the processing module could perform byte-byte addressing

(similar to the SRAM based systems). In other words,

MCB converts the input addresses into either Row-Bank-

column or Bank-Row-Column which is mainly utilized in

DDR memories. In order to manage the memory space, it

is divided into non-overlapping regions; each of which is

large enough to encompass a full frame of an image.

Considering this, a controller is considered at the top level

of the design which manages the addressing of each

module. Regardless of the unit which is accessing the

RAM, an address is divided into two parts; a dynamic part

which is specified by the unit itself, and a static part which

is determined by the controller. In fact, the static part

specifies an image region (a division of RAM and it is

constant for all of pixels of an image) and the dynamic

part locates the exact location of the pixel in that image.

There are three major modules with direct access to the

external RAM; the Ethernet unit, image processing unit,

and finally, output unit (monitor interface). Thus, in

steady state of operation, one unit writes an image into the

RAM while the other is processing the former frame and

the last one is reading the last processed image.

When the FPGA is receiving the first frame of video,

only the Ethernet interface writes the image into the RAM

and the other two units are inactive. When the last pixel of

the first frame was written, the image is ready in the

SDRAM to be processed though receiving all of the pixels

of a frame is not always necessary. Nevertheless, when the

processing trigger is activated by the controller, the main

image processing task begins. Similarly, when processing

of one frame is over, the output interface reads the

processed data and sends them to the monitor (shown in

Fig. 7). The whole operation will continue until either the

camera is disconnected or the device is turned off. In the

first case, the system is designed in such a way that the

last successfully processed frame will be shown in

monitor (fixed). One important fact which should be

considered is that the throughput of processing data must

be equal or more than the throughput of storing the data

into the DDR3 and the throughput of reading the

processed data must be more than both of them so that

loss of data will be zero.

Fig.7. Memory Partitioning And Simultanous Storing, Processing and
Reading Data

7

18 A Low Cost High Speed FPGA-Based Image Processing Framework

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 3, 11-21

D. Clock Network Infrastructure

In the design of this system, various clock signals with

frequencies in the range of 25 MHz up to 250 MHz are

considered. The structure of the clocking infrastructure is

depicted in Fig. 8. The IBUFGDS block is a clock buffer

for differential input signals which is used here to generate

a single 200 MHz signal in order to derive a DCM and a

PLL. The DCM generates clock signals which are

required in Ethernet unit (three 125 MHz signals; one not

buffered and two buffered with opposite phases, a 200

MHz signal for MCB interface and a 25 MHz to supply

the microcontroller which is connected to the Gigabit

transceiver), the video logic (a 125 MHz signal for general

logic circuitry, a 25 MHz signal to derive the monitor and

its synchronization signals and a 200 MHz clock for the

MCB interface), and finally the processing unit with a 200

MHz and a 125 MHz signals. In case, the main image

processing requires higher or lower frequencies depending

on its design specifications, additional DCM blocks are

available for usage. A PLL is to generate required clock

signals for the MCB; hence, the one with the nearest

physical distance to the MCB is employed. Due to the fact

that DCMs do not have access to the I/O clock network, it

is not possible to use them. The due signal clocks are

buffered in the physical layer of the interface and also,

two additionally strobe signals (which are required by the

MCB) are generated using BUFPLL primitive. For MCB

calibration, a clock signal must be routed from the so-

called PLL and in phase with clk400. A typical value for

the frequency of this signal is 100 MHz.

Fig.8. Clock Network Infrastructure

III. EXPERIMENTAL SETUP AND RESULTS

In Section II, the overall architecture of this general

system has been described. Considering this, practical

implementation of variety of image processing

applications is possible. In order to corroborate the

validity of the system, two image processing algorithms

namely a skin detection and a motion detection is

designed. For the former, the aim is to group all the pixels

into two classes of skin and non-skin pixels for any image

[26, 27]. This has numerous applications in surveillance,

content based coding, and face detection [28, 29, 30], etc.

One specific method of skin segmentation called explicitly

defined method [28] is implemented to observe the

accuracy of the setup. In addition, a motion detection

algorithm is also implemented based on frame

differencing technique which can be used either as a

standalone application or preprocessing for many image

processing algorithms. MATLAB as a high level

application provides raw data for the FPGA as well as

receiving and processing the output data. In MATLAB,

DSP system toolbox is used to send and receive UDP

packets. Here, a network node is developed to

communicate with FPGA. The software core also utilizes

the connected camera in order to capture the video (24-bit

color images) with the rate of 30 fps. Each frame of the

video constitutes a number of Ethernet packets and then it

is transmitted to the FPGA via the network node. In

addition to the MATLAB, a network protocol analyzer,

The Wireshark, is exploited in order to observe the

network traffic in debug and verification phases. The

operation starts when MCB calibration is finished. After

executing initial necessary connection commands, PC

sends an ARP request to the FPGA. Other data packets

based on other protocols may be transmitted to the FPGA

via other applications in PC; however, they will be filtered

out in FPGA. Through image transmission process each

frame of image (a single image or still video) will be sent

to the FPGA for further processing.

Table 2. UDP/IP Utilization Ratio

------- [38] [23]** [23]* [22] Proposed

Device Sp3 Sp3 Sp3 Sp3 Sp6

Slices 111 1022 517 184 123

BRAM 0 3 3 0 0

DSP 0 0 0 0 1

Length 1472 256 256 1472 1472

ARP No Yes no no Yes

F-max 132 60.3 90.7 128.8 239.3

Table 3. System’s Resource Utilization Ratio

Block
Utilization

without skin module
Utilization

with skin module

Utilization

with skin and motion

module

Available on

XCSL6LX45T

Slice Reg 2,460 2,530 3325 54,576

Slice LUT 2,531 2,606 2876 27,288

Bonded IOBs 101 103 105 296

RAMB16BWERs 8 9 14 116

RAMB8BWERs 2 3 2 232

DCM/DCM_CLKGENs 1 1 2 8

MCB 1 1 1 2

PLL_ADV 1 1 1 4

DSP48A1 1 4 4 58

 A Low Cost High Speed FPGA-Based Image Processing Framework 19

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 3, 11-21

Xilinx Integrated Software Environment, ISim and

ChipScope analyzer were used for implementation,

simulation and debugging purposes respectively. The

resource utilization for UDP/IP stack is provided in Table.

II and it is compared to that of previous works. Also, in

[31-36], the design of a network stack is provided;

however, they are incomparable with the present work as

the design objectives are not the same. The resource

utilization for the proposed method is based on the output

of PAR. The resource utilization ratio of the whole system

is provided in Table. III that shows the system consumes a

low percentage of resources and that there is still

sufficient amount of resources for implementation of

variety of DSP algorithms. In addition, denser devices can

be used for implementation of more resource demanding

algorithms. Since data is dynamically transmitted through

FPGA and high dense SDRAM, by efficiently designing

DSP modules in FPGA, a small number of BRAMs will

be required in implementation of many algorithms while

preserving the speed needed in many applications. In Fig.

6, the result of the performing skin detection using both

FPGA and MATLAB are compared for a single image.

The result of skin segmentation for video is depicted in

Fig. 7 while Fig. 8 represents the implementation of

motion detector. In both of Fig. 10 and Fig. 11, the live

video which comes from the camera is shown in the left

monitor and the result of applying the algorithms is

depicted on the other one. Finally, in Fig. 9, the routed

design including both the skin detection and the motion

detection modules are depicted.

Fig.9. Experimental Setup(Left: Original, Middle: MATLAB
Simulation, Right: FPGA Implementation)

Fig.10. Implementation of a Skin Detection Algorithm

Fig.11. Implementation of a Motion Detection Algorithm

Fig.12. Routed Design

IV. CONCLUSION

DSP applications have been numerously developed in

recent years, and MATALB is a strong tool in prototyping

different algorithms with simple, cheap and fast design

flow. However, in many practical systems, using general

purpose computers will lead to poor performance. In this

case, FPGAs are one of the best choices as the

implementation platforms. In this paper, a new high speed

and low cost FPGA-MATLAB interface is proposed that

can be used in developing and prototyping many FPGA

based DSP algorithms and it provides a remarkable

solution to FPGA-MATLAB communication for variety

of applications particularly image processing systems. The

proposed system operates on a 1Gbs Ethernet link

between PC and FPGA and it is based on UDP protocol.

The incoming packets are stored in an off-the-shelf

SDRAM and dynamic data transmission between FPGA

and memory will be the rest of FPGA design. This

proposed system consumes negligible amount of FPGA

resources which can be very important in many

applications. The entire system can be implemented using

a low cost FPGA. The validity of the system was

successfully confirmed by implementing a skin detection

algorithm and a motion detection system.

REFERENCES

[1] U. Meyer-Baese, “Digital signal processing with field

programmable gate arrays,” Vol. 65. Heidelberg: Springer,

2007.

[2] R. Woods, J. McAllister, Y. Yi, and G. Lightbody,

“FPGA-based Implementation of Signal Processing

Systems”, John Wiley & Sons, 2008.

9

8

20 A Low Cost High Speed FPGA-Based Image Processing Framework

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 3, 11-21

[3] J. Cooley, and T. Tukey, "An algorithm for the machine

calculation of complex Fourier series," Mathematics of

computation 19, no. 90 (1965): 297-301.

[4] C. D. Cunţan, I. Baciu, and M. Osaci. "Studies on the

Necessity to Integrate the FPGA (Field Programmable

Gate Array) Circuits in the Digital Electronics Lab

Didactic Activity." International Journal of Modern

Education & Computer Science 7.6 (2015).

[5] T. Daghooghi, "Design and Development MIPS Processor

Based on a High Performance and Low Power

Architecture on FPGA." International Journal of Modern

Education and Computer Science (IJMECS) 5.5 (2013):

49.

[6] B. Rashidi, and M. Sabahi, "High Performance FPGA

Based Digital Space Vector PWM Three Phase Voltage

Source Inverter," International Journal of Modern

Education and Computer Science (IJMECS) 5.1 (2013):

62.

[7] S. Kim, J. Park, S. Park, B. Koo, K. Shin, K. Suh, I. Kim,

N. Eum, and K. Kim, "Hardware-software implementation

of MPEG-4 video codec," ETRI journal 25, no. 6 (2003):

489-502.

[8] S. Ramachandran, “Digital VLSI systems design,”

springer, 2007.

[9] I. Kuon, and J. Rose, "Measuring the gap between FPGAs

and ASICs," Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on 26, no. 2

(2007): 203-215.

[10] H. Parvez, and H. Mehrez, “Application-specific Mesh-

based Heterogeneous FPGA Architectures,” Springer,

2010.

[11] R. Francis, J. Rose, and Z. G. Vranesic, “Field-

programmable gate arrays,” Vol. 180. Springer, 1992.

[12] S. Haruyama, "FPGA in the Software Radio," IEEE

communications Magazine (1999): 109.

[13] National Instruments, “Reconfigurable Grid? FPGAs

Versus DSPs for Power Electronics,” 2011.

[14] J. Rodriguez-Andina María, J. Moure, and M. Dolores

Valdes, "Features, design tools, and application domains

of FPGAs," Industrial Electronics, IEEE Transactions on

54, no. 4, pp.1810-1823, 2007.

[15] R. Tessier, and W. Burleson, "Reconfigurable computing

for digital signal processing: A survey." Journal of VLSI

signal processing systems for signal, image and video

technology 28, no. 1-2, pp. 7-27, 2001.

[16] A. Banerjee, A. Sundar Dhar, and S. Banerjee, "FPGA

realization of a CORDIC based FFT processor for

biomedical signal processing," Microprocessors and

Microsystems 25, no. 3, pp. 131-142, 2001.

[17] M. R. Mahmoodi, H. Nikaein, Z. Fahimi, “A Parallel

Architecture for High Speed BLAST Using FPGA,” In

Electrical Engineering (ICEE), 2014 International

Conference on, IEEE, 2014. In press.

[18] Fahimi, Z.; Dehghani, R., "IM3 injection technique for

improving the linearity of an RF power amplifier," in

Electrical Engineering (ICEE), 2015 23rd Iranian

Conference on, vol., no., pp.1112-1117, 10-14 May 2015

doi: 10.1109/IranianCEE.2015.7146379L.

[19] Guan, and A. Zhu, "Low-cost FPGA implementation of

Volterra series-based digital predistorter for RF power

amplifiers," IEEE Transactions on Microwave Theory and

Techniques 58, no. 4, 2010.

[20] X. Tan, S. Chen, Z. Zhou, and F. Zhang, "Face

recognition from a single image per person: A survey,"

Pattern Recognition 39, no. 9 (2006): 1725-1745.

[21] S. Kasap, K. Benkrid, and Y. Liu, "Design and

Implementation of an FPGA-based Core for Gapped

BLAST Sequence Alignment with the Two-Hit Method,"

Engineering Letters 16, no. 3 (2008): 443-452.

[22] N. Alachiotis, S. Berger, A. Stamatakis, "A versatile

UDP/IP based PC ↔ FPGA communication platform,"

Reconfigurable Computing and FPGAs (ReConFig), 2012

International Conference on , vol., no., pp.1,6, 5-7 Dec.

2012

[23] A. Lofgren, L. Lodesten, S. Sjoholm, and H. Hansson,

"An analysis of FPGA-based UDP/IP stack parallelism for

embedded Ethernet connectivity," In NORCHIP

Conference, 2005. 23rd, pp. 94-97. IEEE, 2005.

[24] M. R. Mahmoodi, S. M. Sayedi, and B. Mahmoodi,

"Reconfigurable hardware implementation of gigabit

UDP/IP stack based on spartan-6 FPGA," Information

Technology and Electrical Engineering (ICITEE), 2014

6th International Conference on. IEEE, 2014.

[25] K. Ross, and J. Kurose, "Computer Networking: A Top-

Down Approach Featuring the Internet: Preliminary

Edition," Addison-Wesley Longman Publishing Co., Inc.,

1999.

[26] M. R. Mahmoodi, S. M. Sayedi, "Boosting performance

of face detection using an efficient skin detection

algorithm," In Information Technology and Electrical

Engineering (ICITEE), 2014 International Conference on,

IEEE, 2014.

[27] M. R. Mahmoodi, S. M. Sayedi, "A Face detection

method based on kernel probability map", Computers and

Electrical Engineering, Elsevier, 2015.

[28] M. R. Mahmoodi, S. M. Sayedi, and F. Karimi,

"Propagation from conservatively selected skin pixels

using a multi-step multi-feature method," Electrical

Engineering (ICEE), 2015 23rd Iranian Conference on.

IEEE, 2015.

[29] M. R. Mahmoodi, S. M. Sayedi, "A face detector based on

color and texture." In Information Technology and

Electrical Engineering (ICITEE), 2014 6th International

Conference on 2014 Oct 7 (pp. 1-6). IEEE.

[30] M. R. Mahmoodi, and S. M. Sayedi, “Leveraging Spatial

Analysis on Homogeneous regions of Color Images for

Skin Classification,” Computer and Knowledge

Engineering (ICCKE), 7th International Conference on,

pp.1-6, IEEE, 29-30 Oct, 2014.

[31] F. Herrmann, et al, "A gigabit udp/ip network stack in

fpga," Electronics, Circuits, and Systems, 2009. ICECS

2009. 16th IEEE International Conference on. IEEE, 2009.

[32] A. Dollas, et al. "An Open TCP/IP Core for

Reconfigurable Logic," FCCM. Vol. 5. 2005.

[33] W. Kühn, et al. "FPGA based compute nodes for high

level triggering in PANDA," Journal of Physics:

Conference Series. Vol. 119. No. 2. IOP Publishing, 2008.

[34] P. Bomel, G. Gogniat, and J. Diguet, "A networked,

lightweight and partially reconfigurable platform,"

Reconfigurable Computing: Architectures, Tools and

Applications. Springer Berlin Heidelberg, 2008. 318-323.

[35] Xilinx, "XAPP433: Embedded System Example: Web

Server Design Using MicroBlaze Soft Processor," 2006.

[36] N. Alachiotis, S. A. Berger, and A. Stamatakis, "Efficient

PC-FPGA Communication over Gigabit Ethernet,"

Computer and Information Technology (CIT), 2010 IEEE

10th International Conference on. IEEE, 2010.

10

10

 A Low Cost High Speed FPGA-Based Image Processing Framework 21

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 3, 11-21

Authors’ Profiles

Mohammad Reza Mahmoodi was born in

Isfahan, Iran, in 1989. He received his B.Sc.

and M.Sc. degree in Electronics from Isfahan

University of Technology (IUT) in 2011. Since

then, he is pursuing his Ph.D. in Electronics at

UCSB. His areas of interest include

analog/digital circuit design, computer vision,

pattern recognition and image processing.

Sayed Masoud Sayedi was born in Maragheh,

Iran, in 1960. He received the B.Sc. and M.Sc.

degrees in electrical engineering from Isfahan

University of Technology (IUT), and the Ph.D.

degree in electronics from Concordia

University in1986, 1988, and 1996,

respectively. From 1988 to 1992, and then

since1997, he has been with IUT, where he is currently an

associate professor in the Department of Electrical and

Computer Engineering. His areas of interest include VLSI

fabrication processes, low power VLSI circuits, and data

converters.

