
I.J. Modern Education and Computer Science, 2016, 10, 9-16
Published Online October 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2016.10.02

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 10, 9-16

A Comparative Study of Software Inspection

Techniques for Quality Perspective

Asad Masood Qazi
University Institute of Information Technology – PMAS – Arid Agriculture University Rawalpindi, Pakistan

Email: asadmasood1@hotmail.com

Sidra Shahzadi and Dr. Mamoona Humayun
University Institute of Information Technology – PMAS – Arid Agriculture University Rawalpindi, Pakistan

Email: {sidra.shahzadi363@gmail.com, mamoona@uaar.edu.pk}

Abstract—Software inspection is useful to detect the

defects in any stage software development methodology

especially in early stages. Inspection of software defects

can improve the software product quality by decreasing

rework cost and time from documents, code, and other

deliverables. The objective of this study is to identify

existing software inspection techniques which help

practitioners and software engineers to improve the

software quality and to compare them according to some

quality attributes. Rather than proposing new techniques

we focus on synthesize the existing approaches. A

comparison of some approaches is conducted and

analyzed which approach is more feasible for the

detection of defects. The results of this study show that

there are many formal and informal techniques available

in literature related software inspection, it is difficult to

say well to one of them, but our analysis focused on

finding such techniques which cover maximum quality

factors in an inspection. Software inspection is an

umbrella activity of whole software development life

cycle and we found different approaches and frameworks

in software inspection which can full fill our desired

parameters to improve software quality.

Index Terms—Software Inspection, Software Quality

Assurance, Software Testing, Software Defects.

I. INTRODUCTION

Inspection refers to examine the software

systematically intend to detect the defects. The inspection

also refers to ensure that; a product which is developed is

same as described in documents. Software inspection is a

good approach to detection of defects in all stages of

software development [1]. The concept of software

inspection arose approximately 35 to 40 years ago. In the

start, it was considered that; Software inspection doesn't

involve coding to detects the defects, inspection of

software can be performed through use cases models,

checklists etc. But later on some authors also uses some

inspection techniques in object oriented programming

and software coding as well. [2] Software inspection

is also important because it bridges a gap between

software testing and software formal verification. As,

software testing has major concerns with the software

industry, whereas formal verification is related to the

academic side, so software inspection lies between testing

and formal verification. There is no standard neither

given in literature nor adopted by any software

organization of software inspection. However, in many

existing software engineering process models, software

industries case studies and in academia different

terminologies are used which are ultimately affected by

software inspection. For example pair programming in

Extreme Programming (XP). [3]

Software inspection is somehow part of some of the

software processes indirectly. For example, we can see in

the XP (Extreme Programming) of Agile based software

development methodologies, pair programming concept

is defined, in which one group member writes code,

design or another document and one is dedicated to the

review on runtime which supports the knowledge sharing

as well as inspection.

Software inspection is not widely used in organization

these days. Inspection refers to peer reviews,

walkthroughs, and structured reviews. There are many

reasons for not using inspection techniques widely in

software organizations which are actually myths and

these are highlighted by Radice [4]:

(1) Inspection is one way technique

(2) Inspections are not easy to do

(3) Inspections add an extra cost in software quality

phase

The reasons of such myths are evolved, because the

inspection was considered as a process, having low

technology involvement so it was not an enjoyable or

interesting task for software engineers or inspectors.

A. Traditional Software Inspection Technique Process

The traditional process of Inspection is shown in 0

below. [4] Adaptation of formal software inspection plays

an important role in ensuring software quality. Traditional

approaches mainly involve informal techniques using

walkthroughs, checklists etc. and the meetings are

arranged at author's or programmer's desks and review

process is held usually in an informal way. Walkthroughs

10 A Comparative Study of Software Inspection Techniques for Quality Perspective

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 10, 9-16

can be structured as well as semi-structured. Traditional

Inspection approach can be applied to any software

artifact like document or code.

Software inspections may involve software testing, but

not necessary because inspection is a review based

activity. Inspection process helps in knowledge sharing

with in organization because of review meetings, where

two or more partners come together to review the work of

an individual or team.

Fig.1. Flow of Software Inspection Process Traditional Approach

The remainder of this paper is structured as follows:

Section 2 summarizes some of the related work. Section 3

describes the existing defect detection techniques and the

comparative analysis methodology, used in this paper.

Section 4 provides comparison of existing software tools

which supports automatic software inspection. Section 5

provides a result analysis of Section 3 and 4. Section 5

presents the future work and also concludes the work.

II. RELATED WORK

Software inspection is being used for more than 35

years in research area as well as in software organizations.

The main purpose of software inspection is to identify the

software defects in early stages to overcome the

complexity, budget and to improve software quality.

Taba et.al, (2012) [4] proposes a Scenario based

software inspection method and compare it with the

traditional approaches. The proposed model is a formal

technique and full fills many quality attributes in software

inspection process. It also involves pre and post activities.

The study lacks in comparative analysis when it only

targets on large scale software organizations. Because

inspection itself is an approach, which usually can only

be taken in large scale organizations.

Taba et.al, (2012) [5] proposes another software

inspection model named as DAMEO (Defect

Management Oriented Inspection), which is again a

complete formal approach and can only be successfully

applied in large scale software organizations. It increases

the efficiency by improving execution time and

effectiveness in software inspection process while

comparing with traditional approaches. Three parameters

are been taken in this comparative study which are FD

(Founded Defects), RD (Remaining Defects) and FT

(False Positive). Under these parameters DAMEO gives

effective results over traditional approaches.

Nancy. S et.al, (2002) [6] tailored the Fagan

methodology of software inspection and compare the

results with an experiment approach. The Fagan

methodology is reduced in four steps rather than six to

seven steps. The proposed steps are Planning, Study, and

Meetings and follow up. The proposed approach reduces

the number of hours spends on preparation phase of

individuals which increases the effectiveness and

productivity as well as overall time and cost. The results

of comparative analysis lack because of involving a small

number of parameters.

According to Guilherme (2014) [7], there are many

pieces of evidence about the feasibility and efficiency of

applying software inspection techniques. Software

inspection is a pre-test activity and it is also an important

activity of verification validation and testing (VV&T)

activities of software development. Software inspection

can be applied to any artifact. HP uses inspection

techniques, code, testing and documentation. IBM uses

inspection for Design and Code section. ICL (an

operating system) uses inspection at design level. Shell

Research use inspection in Requirements phase.

Porter et.al, (1996) [8] in their review study of software

inspection techniques, compare existing methodologies.

A comparative analysis presents on the basis of local as

well as global analysis. The local analysis doesn't affects

software development process during an inspection

process. The parameters of comparison are the num

number of team size, number of sessions, collection

technique, defect detection method and feedback as post

development or post inspection activity. The study is

presented many years ago, so approaches which are

presented later later should also need to synthesize.

A. Aurum et.al, (2002) [9] covers a review of 25 years

work of software inspection. Software inspection

formally introduced by Fagan (1976) [10] and the later

methodologies actually improve the work of Fagan. A

comparative analysis of 25 years of work has been

presented in this study. Upto 2002 (the year of this

publication) there were following advancements in

software inspection area: Fagan’s Inspection (1976) [10],

Active Design Review (1985) [11], Two-person

Inspection (1989) [12], N Fold Inspection (1990) [13],

Phase Inspection (1993) [14], Inspection without

Meetings (1993) [15], Gilb Inspection (1993) [16]. So,

there is need to synthesize the data of software inspection

methodologies up to current work.

F Macdona et.al, (1995) [17] presents a review of

existing tools which supports the software inspection

process. Tools can supports software inspection process

Choose

Artifacts

Inspect

Inspect

Package

Printing

Tool

Distribute

Artifacts Paper

for Meeting

 A Comparative Study of Software Inspection Techniques for Quality Perspective 11

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 10, 9-16

in different ways like Documentation support, Annotation

support, Automatic defect detection, Checklists,

Enforcement, Meetings support, Decision support,

Metrics collection, Code inspection (either statement by

statement or complete code review). Some of the tools

are ICICLE [18], Scrutiny [19], CSI [20], InspeQ [21],

and CSRS [22]. The study covers the review of

inspection tools up to 1995, so there is need to

incorporate the tools which developed later to this review

study.

Souza et.al, (2013) [23] in their research includes six

software engineers and uses Fagan's and Gilb's inspection

methodology with the roles of moderator, reviewer,

author, and reader. The aim of this study is to inspect the

product line process in the software organization. A result

shows that incompleteness, ambiguity, incorrectness,

unnecessary information, inconsistency, and non-

traceability were found in industrial product line projects

using these software inspection techniques. The reason to

add this study to related work is a merger of Fagan's and

Gilb's methodology to improve the results of software

inspection process.

Elberzhager et.al, (2014) [24] compares the software

inspection process with software testing. Software

inspection is primarily a review process to detect the

defects data just like in quality monitoring and testing is

done on the output of software inspection which has

defected data / defected product. Comparison of

inspection and testing is important to include because

there are some inspection techniques which includes the

testing itself, and some of the techniques are used just to

identify the defected data or defected part of a system and

shifted forward for the testing process. Authors of [25]

also support this argument that inspection process is not a

replacement for testing. And to inspect the software

deliverables, an inspector should also belong to same

environment or organization.

In [26] and [27] the role of software inspection in

software industries of Pakistan and Srilanka respectively.

In Pakistan’s perspective, software inspection phase is

analyzed using ETVX (Entry, Tasks, Validation, and Exit)

model and shows that 75 to 100 projects becomes

successful using software inspection, whereas without

using software inspection, the success ratio of software

projects are limited to 50 to 75. In the Sri Lankan

software, industry inspection is also formally

implemented and industries have proper roles of software

inspection process and getting following benefits from

software inspections: reduce overall effort, increase

productivity and reduces cost. In both of these references,

formal inspection is used rather than informal or

traditional approach of software inspection techniques.

Kollanus et.al, (2006) [28] argues that software

inspection is important in software engineering

disciplines but these are not actually implemented

properly in some of the organizations. Data in this study

is gathered from six software organizations and find the

problems or hurdles in the way of inspection. Authors

found that there is the lack of inspection training, limited

formality with inspection process and immaturity of

inspection measurement techniques in most of the

software organizations. We include this case study, to

identify the new or modified approaches to software

inspection from existing literature, which may reduce

these obstacles from the inspection process.

III. COMPARATIVE ANALYSIS OF SOFTWARE INSPECTION

TECHNIQUES

A. Parameters of Comparison

(1) Pre Inspection criteria
(2) Defects Detection

(3) Defects Removal

(4) Efficiency & Effectiveness

(5) Complexity

(6) Post Inspection procedure

There are some reasons for taking these parameters for

comparison. All the existing software inspection

methodologies are focuses on before or pre-inspection

steps which include the preparation etc., then actual

inspection is being done and finally, the post-inspection

steps which may include the implementation of reviews

and measurements of effectiveness or efficiency etc.

B. Formal and Model Based Approaches

Traditional approaches mainly focused on informal or

semi-formal of software inspection approaches.

Inspectors use checklists before informal inspection

meetings, and there were informal reviews and some

structured walkthroughs to inspect the elements of

software. However, these approaches may contribute the

results in some way as studies shows that if the error in

requirements does not correct in early stages, the cost

may exceed up to 40 percent of actual cost [29] [30] [31].

And another study argues that inspection should be done

during design and analysis phase, to detect the defects

and then it will decrease the cost from 10 to 100 times

less than the testing phase. [32]

Some of the models and formal techniques can be

found from different sources of literature.

(1) Fagan Methodology

(2) Glib Methodology

(3) Phased Inspection

(4) Scenario Based Inspection Method

(5) DEMAO (Defect Management Oriented

Inspection)

C. Fagan Methodology

FAGAN methodology [10] is a complete software

inspection methodology and proposes proper sequence of

steps and roles. Steps are: Pre and Post inspection

activities, inspection meetings and the roles are software

inspector, software tester, and moderator. Fagan’s

methodology consists of six phases planning, overview,

preparation, examination, rework and follow-up. Firstly

moderator at planning phase identifies inspector's role,

12 A Comparative Study of Software Inspection Techniques for Quality Perspective

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 10, 9-16

distribution and verification of inspection material etc.

Secondly, an overview is done by the author. Thirdly

inspector prepares for meeting and role and it will also

improve the process if this preparation inadequate then

moderator cancels it. Finally, an Author will correct all

defects which will be verified by the moderator.

D. Glib Methodology

Glib inspection methodology [16] was developed by

the Tom Glib in 1993, like Fagan methodology there are

six phases planning, overview, preparation, examination,

rework, follow-up etc. according to Glib inspection

methodology which is used by an organization is depend

on its type of business , it’s up to the customer’s choice

whether he choose formal or semi-formal inspection

process. An extra step was added by Gilb to inspection

process for the improvement of software development

process that will produce the document which will be

inspected by the inspector.

E. Phased Inspection

Phase inspection [14] was proposed by Knight & Myer

(1993) where software products are inspected in series of

steps called phases where each phase has the specific

objective. At each phase product is examine, validate for

specific properties of a product. We cannot move forward

until corrections are completed. There are two types of

phase single-inspector, multiple-inspector. A single

inspector uses a checklist that must satisfy the by each

product. Multiple-inspector phases are designed for such

properties that cannot be described through binary

questions. In phase inspection, individual checking is also

done via meeting called reconciliation that provides

various opportunities for fault detection.

F. Scenario Based Inspection Model

Literature shows that for the removal of defects various

testing models, automated and manual tools had been

proposed, but still they are failed. Most of the software

inspection model, techniques focuses only on artifacts but,

the proposed model provides an inspection technique that

removes some possible defects in all phases of software

development. It does focus not only each phase of SDLC

but it also concentrate on documents, deliverable working

products and conduct inspection process implicitly and

gradually. Defect removal, determination, and defect

learning are three golden steps, where defect learning is

an interesting point basic factor of a scenario-based

model. This must be intelligent, its learning plan creates,

executes according to founded results. A case study was

conducted for the evaluation of this model; it is more

efficient as compared to other traditional inspection

processes. [4]

G. DEMAO (Defect Management Oriented Inspection)

DEMAO [5] was proposed for the improvement of

software quality, generally, it focuses on inspection

process inconsistencies. There were four core

components of proposed models. Core components of

proposed models were (1) defect management, (2) cause

and effects, (3) supervision function (4) inspection

function. Defect management is an important in any

inspection process in DEMAO it was done through

relational database together with the knowledge base for

maintenance of common defect classification. Finding

more defects in less time is a major objective of an

inspection process. Cause and effect dependencies can be

finding through the Knowledge base. In DEMAO Like

traditional software inspection Supervision function is not

limited to coordination, it also defines inspection session,

develop team charter, approve inspectors' profiles, and

arrange meetings for inconsistencies removal .internal

and external inspection id done by inspection function.

These techniques increase efficiency by decreasing

execution time and increase effectiveness by discovering

more error and defects. . The most effective features of

this model are a reduction in time by providing facilities

and formatted documents and disadvantage of was

limited on flexibility.

IV. COMPARISON TABLE FOR COMMONLY KNOWN

IMPROVEMENTS IN SOFTWARE INSPECTION PROCESS

Fagan’s Methodology is considered as first and base of

formal software inspection methodologies. New

methodologies are actually an update of this methodology.

A list of some commonly known software inspection

methodologies are given below in comparison table,

Table 1. And another analysis is also presented in 0. in

which a frequency to measure the software quality is

given to analyze the result of each software inspection

technique.

V. COMPARISON OF SOFTWARE INSPECTION TOOLS

There are number of software tools and IDEs

(Integrated Development Environments) [37] available

which automatically inspect or review the software code,

and indicates the errors, warnings, exceptions etc. some

tools inspect statement by statement or line by line of

coding, and some tools inspect complete source code.

Some tools are also available which measures the

complexity of software as well. Some of the common

known tools, which support any phase of software

inspection, are given in comparison table below in Table

2. And a more depth analysis of findings of software

inspection tools are given below in form Graphical

representation in 0.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have conducted a survey to found

existing approaches of software inspection process. We

start with the history of traditional software inspection

process and moves gradually towards formal software

inspection process. We have found that Fagan's

methodology is considered as a base of formally based

inspection approaches. Later on, we have done a

comparative analysis of commonly known software

 A Comparative Study of Software Inspection Techniques for Quality Perspective 13

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 10, 9-16

inspection methodologies and models to improve overall

software quality. Besides these models, we also include

the tools which are used to automate the inspection

process. Software tools can support the documents

handling, code inspection, meetings, checklists and other

related activities of software inspection.

This comparative analysis is the base of our future

work to gather the literature data to finding the

methodologies which can improve the software quality

attributes in all the phases of software development

lifecycle.

ACKNOWLEDGEMENT

The authors wish to thank all the faculty members of

University Institute of Information Technology – PMAS -

Arid Agriculture University Rawalpindi especially Dr.

Mamoona Hunayun for their supervision in this work.

Table 1. Comparative Analysis of Software Inspection Models and Techniques

Sr.

No

Year of

Publication

Name of

Technique
Approached Steps Roles

Evaluation

Criteria

Impact on

Quality Factor
Reference(s)

1. 1976
Fagan’s

Inspection

Planning, Overview,

Preparation, Inspection
Meeting, Rework, Follow-up

Moderator,
Author,

Reader,

Tester

Experiment
Detects the

Defects
[33]

2. 1985
Active Design
Review

Preparation, Inspection
Meetings

Reviewers Experiment
Reduces
Complexity

[33] [11]

3. 1988

Code

Inspection

Model

Efforts Estimation
Not
Defined

Experiment /
Case Study

Estimated

Density and
Effectiveness of

Code

[46]

4. 1989
Two - Person

Inspection

Planning, Overview,

Preparation, Inspection
Meeting, Rework, Follow-up

Author,

Reviewer
Experiment

Reduce no. of

Roles
[12]

5. 1989
Structured

Walkthroughs
Checklists, Meetings Reviewer Experiment Completeness [38] [9] [39]

6. 1990
N - Fold
Inspection

Planning, Overview,

Preparation, Inspection

Meeting, Rework, Follow-up

Author,

Reviewers,

Moderator

Experiment
Reduce Time of
Meetings

[13]

7. 1993
Phased

Inspection

Planning, Overview,
Preparation, Inspection

Meeting, Rework, Follow-up

Inspector,

Reviewer
Experiment

Portability,
Maintainability,

Reusability

[14]

8. 1993

Inspection

Without

Meetings

Correspondence, Nominal

and Depositions

Author,

Reviewers
Experiment

Reduce time to

face to face

meetings

[15]

9. 1993
Gilb’s

Inspection

Planning, Overview,

Preparation, Inspection
Meeting, Rework, Follow-up

Author,

Reviewers,
Moderator

Experiment
Detects the

Defects
[16]

10. 2000

Biffl’s Re-

Inspection
Model

Individual Detection, Team

Meeting, Defect Correction

Not

Defined
Experiment

Improve

Product Quality
[47]

11. 2001
Bayesian

Belief Model

Semantic Network Model for

measuring effectiveness
Moderator

Experiment,

Case Study

Increase

Effectiveness of

Existing Process
by reducing no.

of roles

[34] [35]

12. 2007
Robust &

Flexible
Re-Engineering Process

Not

Defined

Academic

Projects

Reliable in Re-
Engineering

Phase

[44]

13. 2012

Scenario
Based

Inspection
Model

Defect Determination, Defect

Removal, Defect Learning

Roles

required
for

Analysis
and Design

Phase

Experiment,

Case Study

Improves
efficiency and

effectiveness

[4]

14. 2012

DEMAO

Inspection
Model

Develop and Maintain

Checklists, Defect
Management, Cause and

Effect Dependence,

Competitive Advantage,
Supervision Functions

Trainers,

Reviewers,
Moderators

Experiment,

Case Study

Improves

efficiency and
effectiveness

[5]

15. 2012
Intelligent
Model

Preparation, Defect Plan

Design, Generate Inspection
Routines, Inspection Process

Evaluation

Not
Defined

Experiment /
Case Study

Effectiveness /
Efficiency

[45]

14 A Comparative Study of Software Inspection Techniques for Quality Perspective

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 10, 9-16

Table 2. Comparative Analysis of Software Inspection Tools

Sr.

No

Year of

Publication
Name of Tool

Open

Source

Documents

Handling

Individual

Preparation

Meeting

Support

Data

Collection

Code

Review /

Manage

ment

Reference(s)

1. 1995 ICICLE NO YES YES YES YES YES [17] [18]

2. 1995 Scrutiny NO YES YES YES YES YES [17] [19]

3. 1995 CSI NO NO NO NO YES NO [17] [20]

4. 1995 InspeQ NO YES YES YES YES YES [17] [21]

5. 1995 CSRS NO YES YES YES YES NO [17] [22]

6. 2003
Adobe

Acrobat
NO YES NO NO NO NO [40] [41]

7. 2003 IBIS NO YES NO NO NO NO [40] [42]

8. 2004 FlexeLint NO NO YES NO NO YES [36]

9. 2004
Reasoning’s

Illuma
NO NO YES NO NO YES [36]

10. 2004 Klocwork NO NO YES NO NO YES [36]

11. 2004 MINDER NO NO NO NO NO YES [42]

12. 2005 MS Word NO YES NO NO NO NO [40]

13. 2005 XATI NO YES NO NO NO NO [40]

Fig.2. Analysis on Software Inspection Tools with respect to supported features

Fig.3. Software Inspection Techniques along frequency of Software Quality Performed

 A Comparative Study of Software Inspection Techniques for Quality Perspective 15

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 10, 9-16

REFERENCES

[1] Parnas, D.L., Lawford, M.: ―The role of Inspection in

Software Quality Assurance‖. IEEE Transactions on

Software Engineering 29(8) (2003)

[2] Abrahamsson, Pekka, Michele Marchesi, and Frank

Maurer. Agile processes in software engineering and

extreme programming. Springer, 2009.

[3] Radice, Ronald A. ―High Quality Low Cost Software

Inspections‖. Andover, Mass.: Paradox icon Publishing,

Jan.2002.

[4] Taba, Navid Hashemi, and Siew Hock Ow. "A Scenario-

Based Model to Improve the Quality of Software

Inspection Process." Computational Intelligence, Modeling

and Simulation (CIMSiM), 2012 Fourth International

Conference on. IEEE, 2012.

[5] Taba, Navid Hashemi, and Siew Hock Ow. "Improving

Software Quality Using a Defect Management-Oriented

(DEMAO) Software Inspection Model." 2012 Sixth Asia

Modelling Symposium. IEEE, 2012.

[6] Eickelmann, Nancy S., et al. "An empirical study of

modifying the Fagan inspection process and the resulting

main effects and interaction effects among defects found,

effort required, rate of preparation and inspection, number

of team members and product 1st pass quality." Software

Engineering Workshop, 2002. Proceedings. 27th Annual

NASA Goddard/IEEE. IEEE, 2002.

[7] Horta Travassos, Guilherme. "Software Defects: Stay

Away from Them. Do Inspections!." Quality of

Information and Communications Technology (QUATIC),

2014 9th International Conference on the. IEEE, 2014.

[8] Porter, Adam, Harvey Siy, and Lawrence Votta. "A review

of software inspections." Advances in Computers 42

(1996): 39-76.

[9] Aurum, Aybuke, Håkan Petersson, and Claes Wohlin.

"State‐of‐the‐art: software inspections after 25 years."

Software Testing, Verification and Reliability 12.3 (2002):

133-154.

[10] Fagan, M. E. "Design and code inspections to reduce

errors in program development." IBM Journal of Research

and Development 15.3 (1976): 182.

[11] Parnas, David L., and David M. Weiss. "Active design

reviews: principles and practices." Proceedings of the 8th

international conference on Software engineering. IEEE

Computer Society Press, 1985.

[12] Bisant, David B., and James R. Lyle. "A two-person

inspection method to improve programming productivity."

IEEE Transactions on Software Engineering 10 (1989):

1294-1304.

[13] Martin, Johnny, and Wei Tek Tsai. "N-fold inspection: A

requirements analysis technique." Communications of the

ACM 33.2 (1990): 225-232.

[14] Knight, John C., and E. Myers. "An improved inspection

technique." Communications of the ACM 36.11 (1993):

51-61.

[15] Votta Jr, Lawrence G. "Does every inspection need a

meeting?" ACM SIGSOFT Software Engineering Notes

18.5 (1993): 107-114.

[16] Gilb, Tom, Dorothy Graham, and Susannah Finzi.

Software inspection. Addison-Wesley Longman

Publishing Co., Inc., 1993.

[17] Macdona, F., et al. "A review of tool support for software

inspection." Computer-Aided Software Engineering, 1995.

Proceedings, Seventh International conference.

[18] Sembugamoorthy, V., and L. Brothers. "ICICLE:

Intelligent code inspection in a C language environment."

Computer Software and Applications Conference, 1990.

COMPSAC 90. Proceedings, Fourteenth Annual

International. IEEE, 1990.

[19] Gintell, John, et al. "Scrutiny: A collaborative inspection

and review system." Software Engineering—ESEC'93.

Springer Berlin Heidelberg, 1993. 344-360.

[20] Mashayekhi, Vahid, et al. "Distributed, collaborative

software inspection." Software, IEEE 10.5 (1993): 66-75.

[21] Knight, John C., and E. Myers. "An improved inspection

technique." Communications of the ACM 36.11 (1993):

51-61.

[22] Johnson, Philip M., and Danu Tjahjono. "CSRS User

Guide." (1993).

[23] Souza, Iuri Santos, et al. "Evidence of software inspection

on feature specification for software product lines."

Journal of Systems and Software 86.5 (2013): 1172-1190

[24] Elberzhager, Frank, Jürgen Münch, and Danilo Assmann.

"Analyzing the relationships between inspections and

testing to provide a software testing focus." Information

and Software Technology 56.7 (2014): 793-806.

[25] Ackerman, A. Frank, Lynne S. Buchwald, and Frank H.

Lewski. "Software inspections: an effective verification

process." IEEE software 3 (1989): 31-36.

[26] Waqas Ali, Zia-Ur-Rehman, Akhter Badshah, Ali

Javed,"Software Inspection in Software Industry: A

Pakistan's Perspective", IJMECS, vol.7, no.3, pp.47-53,

2015.

[27] Jayatilake, S. M. D. J. T., et al. "Role of software

inspections in the Sri Lankan software development

industry." Computer Science & Education (ICCSE), 2013

8th International Conference on. IEEE, 2013.

[28] Kollanus, Sami, and Jussi Koskinen. "Software inspections

in practice: Six case studies." Product-Focused Software

Process Improvement. Springer Berlin Heidelberg, 2006.

377-382.

[29] O’Regan, Gerard. "Software Inspections Capability

Maturity Model Integration." Introduction to Software

Quality. Springer International Publishing, 2014. 101-118

[30] O’Regan, Gerard. Introduction to Software Quality.

Springer New York, 2002.

[31] Boehm, Barry W. Software engineering economics. Vol.

197. Englewood Cliffs (NJ): Prentice-hall, 1981.

[32] Tyran, Craig K. "A software inspection exercise for the

systems analysis and design course." Journal of

Information Systems Education 17.3 (2006): 341.

[33] Porter, Adam, Lawrence G. Votta Jr, and Victor R. Basili.

"Comparing detection methods for software requirements

inspections: A replicated experiment." Software

Engineering, IEEE Transactions on 21.6 (1995): 563-575.

[34] Cockram, Trevor. "Gaining confidence in software

inspection using a Bayesian belief model." Software

Quality Journal 9.1 (2001): 31-42.

[35] Adams, Edward N. "Optimizing preventive service of

software products." IBM Journal of Research and

Development 28.1 (1984): 2-14.

[36] Nagappan, Nachiappan, et al. "Preliminary results on using

static analysis tools for software inspection." Software

Reliability Engineering, 2004. ISSRE 2004. 15th

International Symposium on. IEEE, 2004.

[37] Parab, Jivan S. Exploring C for microcontrollers: A hands

on approach. Springer Science & Business Media, 2007.

[38] Van Emden, Maarten H. "Structured inspections of code."

Software Testing, Verification and Reliability 2.3 (1992):

133-153.

[39] Lewis, Clayton, et al. "Testing a walkthrough

methodology for theory-based design of walk-up-and-use

interfaces." Proceedings of the SIGCHI conference on

16 A Comparative Study of Software Inspection Techniques for Quality Perspective

Copyright © 2016 MECS I.J. Modern Education and Computer Science, 2016, 10, 9-16

Human factors in computing systems. ACM, 1990.

[40] Hedberg, Henrik, and Jouni Lappalainen. "A preliminary

evaluation of software inspection tools, with the DESMET

method." Quality Software, 2005. (QSIC 2005). Fifth

International Conference on. IEEE, 2005.

[41] Harjumaa, Lasse. "Distributed software inspections-an

experiment with Adobe Acrobat." Proceedings of the

IASTED International Conferenceon Computer Science

and Technology (2003): 26-31.

[42] Lanubile, Filippo, Teresa Mallardo, and Fabio Calefato.

"Tool support for geographically dispersed inspection

teams." Software Process: Improvement and Practice 8.4

(2003): 217-231.

[43] Powell, Daniel. "Tool support for verification-based

software inspection." Software Engineering Conference,

2004. Proceedings. 2004 Australian. IEEE, 2004.

[44] Hussain, Fida, and Muhammad Saeed Shehzad. "" Robust

and Flexible Software Inspection model" for Software Re-

Engineering Process: Abstraction phase." 14th Asia-

Pacific Software Engineering Conference (APSEC'07).

2007.

[45] Hashemitaba, Navid, and Siew Hock Ow. "Generative

inspection: an intelligent model to detect and remove

software defects." Intelligent Systems, Modeling and

Simulation (ISMS), 2012 Third International Conference

on. IEEE, 2012.

[46] Christenson, Dennis A., and Steel T. Huang. "A code

inspection model for software quality management and

prediction." Global Telecommunications Conference, 1988,

and Exhibition.'Communications for the Information

Age.'Conference Record, GLOBECOM’88, IEEE. IEEE,

1988.

[47] Biffl, Stefan, Michael Halling, and Monika Kohle.

"Investigating the effect of a second software inspection

cycle. Cost-benefit data from a large-scale experiment on

re-inspection of a software requirements document."

Quality Software, 2000. Proceedings. First Asia-Pacific

Conference on. IEEE, 2000.

Authors’ Profiles

Asad Masood Qazi is the Research Student

of University Institute of Information

Technology – PMAS – Arid Agriculture

University Rawalpindi. He is doing his MS

degree in Software Engineering. He is also

an Author of 02 research articles as well,

related to Software Architecture and

Software Process Improvement.

Author also has an experience to work in Software

Development & Consultancy organization as Business

Intelligence Consultant to develop the business intelligence /

Data warehouse related software projects of different clients

(National as well as International).

The major area of interest in Research is Software

Engineering Principles, Processes, Software Quality Assurance,

Knowledge Management, Formal methods of software

engineering and Software Architecture.

Ms. Sidra Shahzadi is a full time

Research Student at University Institute of

Information Technology – PMAS – Arid

Agriculture University Rawalpindi. She

has completed her course work and

involves in different research oriented

activities conducted by Institute.

Author has interest in different research

domains of Software Engineering related to Requirements

Engineering, Formal Methods in software engineering, Role of

Ontologies and Modelling techniques in Software engineering

domain.

Dr. Mamoona Humayun is Assistant

Professor at University Institute of

Information Technology – PMAS – Arid

Agriculture University Rawalpindi. She

has more than 05 years of experience in

Teaching, Research and other academic

activities. She has completed her PHD

Degree from Harbin Institute of

Technology Harbin, China in the field of Software Engineering.

Dr. Mamoona Humayun is an author of more than 10

research articles and her major areas of interest are related to

Global Software Development, Software Requirements

Engineering, Knowledge Management, Software Testing and

Web Applications Security.

