
I.J. Modern Education and Computer Science, 2015, 5, 37-42 
Published Online May 2015 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijmecs.2015.05.05 

Copyright © 2015 MECS                                                    I.J. Modern Education and Computer Science, 2015, 5, 37-42 

GPU Optimized Stereo Image Matching 

Technique for Computer Vision Applications 
 

Kajal Sharma 
Chosun University, Korea 

Email: kajal175@gmail.com 

 
 

Abstract—In this paper, we propose a graphics 

processing unit (GPU) based matching technique to 

perform fast feature matching between different images. 

Lowe proposed a scale invariant feature transform 

algorithm that has been successfully used in various 

feature matching applications such as stereo vision, 

object recognition, and many others, but this algorithm is 

computationally intensive. In order to solve this problem, 

we propose a matching technique optimized for graphics 

processing units to perform computation with less time. 

We have applied GPU optimization for the fast 

computation of keypoints to make our system fast and 

efficient. The proposed method used self-organizing map 

feature matching technique to perform efficient matching 

between different images. The experiments are performed 

on various images to examine the performance of the 

system in diverse conditions such as image rotation, 

scaling, and blurring conditions. The experimental results 

reveal that the proposed algorithm outperforms the 

existing feature matching methods resulting into fast 

feature matching with the optimization of graphics 

processing unit. 

 

Index Terms—Feature matching, stereo vision, self-

organizing map, graphics processing unit 

 

I.  INTRODUCTION 

Feature selection and matching is a key component in 

many computer vision tasks such as path finding, obstacle 

detection, navigation, stereo vision, and many others 

applications [1-6]. Several strategies of keypoint 

detectors have been proposed in the literature [7-8]. 

Schmid and Mohr [9] used Harris corners as interest 

points in image recognition problems to match the 

features against a large database of images. This method 

allows features to be matched under arbitrary orientation 

changes, but it is sensitive to image scale changes. Lowe 

[10] proposed the scale invariant feature transform (SIFT) 

descriptor for the extraction of interest points in an image 

that is invariant to both scale and rotation. The SIFT 

technique used a 128-dimensional vector to describe the 

SIFT feature, which is computationally intensive. In a 

recent research [11], we have implemented an efficient 

feature matching technique faster than Lowe’s SIFT with 

self-organizing map (SOM) that can be used for real-time 

stereo matching applications. In the present research, we 

extended our research and implement our proposed 

method on graphics processing unit (GPU) to further 

optimize the time. 

Due to the advancements of parallel processing 

techniques, multi-core GPU techniques have been widely 

applied to accelerate the computationally intensive tasks 

[12]. Modern programmable graphics hardware contains 

powerful coprocessors GPUs with a peak performance of 

hundreds of Giga FLOPS which is an order of magnitude 

higher than that of CPUs [13]. For accelerating the 

applications of computer vision many researchers are 

now exploiting parallelism provided by modern 

programmable graphics hardware that provides a great 

scope for acceleration to run computations in parallel [14-

15]. Some researchers also utilized specialized hardware 

and reconfigurable hardware to speed up these algorithms 

[16-18]. One example of a broad area of application is in 

discovering concurrency in parallel computing, where 

coloring is used to identify subtasks that can be carried 

out or data elements that can be updated simultaneously 

[19]. Another example of a broad application area of 

coloring is the efficient computation of sparse derivative 

matrices [20]. With the increasing programmability and 

computational power of the GPU, the recent work by 

Sinha et al. [12] accelerates some parts of the SIFT 

algorithm using the hardware capacities of GPUs. A 10x 

speedup is obtained, allowing for applications on video-

sized images [12]. A variety of computer vision 

algorithms has been parallelized, providing significant 

acceleration to the computation [12, 14, 15]. 

In this paper, a novel technique is presented that is 

designed to achieve fast feature matching in the images 

with the use of neural networks and GPUs. Our 

contribution is the proposal of a GPU-optimized 

matching technique based on Kohonen’s self-organizing 

map (SOM) [21]. The proposed method provides 

significant reduction in the computation time compared to 

Lowe’s SIFT. In our approach, the scale space for 

keypoints extraction is configured in parallel for detecting 

the candidate points among which the number of 

keypoints is reduced with the SOM neural network. The 

descriptor vector generation is accelerated on the GPU 

and the matching is accomplished with competitive 

learning. The key idea is to optimize the keypoint 

extraction with GPU and to reduce the descriptor size 

with the winning calculation method. The similar 

winning pixels in the images are found and associated to 

accomplish the feature matching. The proposed method 

of the GPU is faster due to the usage of multi-processing. 



38 GPU Optimized Stereo Image Matching Technique for Computer Vision Applications  

Copyright © 2015 MECS                                                    I.J. Modern Education and Computer Science, 2015, 5, 37-42 

The remainder of this paper is organized as follows: 

Section II describes the overview on stereo vision. The 

procedure of feature matching with GPU-optimized 

method is presented in section III. The experimental 

results are shown in section IV and conclusions are drawn 

in section V.  

 

II.  STEREO VISION 

Stereo vision is based on acquiring three-dimensional 

(3D) information from different views obtained by a 

single moving camera or a fixed structure composed of at 

least two cameras. The goal of stereo vision is to obtain a 

3D structure of a scene with the use of two or more 

images of a 3D scene, each acquired from a difference 

viewpoint in space. The 3D location of any object is 

limited to the straight line that passes through the center 

of project and the projection of the object point. The 

position of a point in space is determined by obtaining the 

intersection point of the two lines that passes through the 

center of projection and the projection of a point in each 

space. The triangulation principle is based on computing 

the 3D position of an object point from the intersection of 

a set of optical rays determined by at least two views of 

the same 3D object point. The optical axes of the two 

camera-lens units are configured in parallel, and the 

straight line joining the two optical centers is parallel to 

each image horizontal line in order to respect an epiploar 

constraint (Fig. 1). The 3D image information is obtained 

on the basis of position of the points in the left and the 

right images [22]. 

 

RL YY 

LO

RO

X


),( LLL YXP

),( RRR YXP

),,( ZYXP

Z


Y


e

f

f

LI

RI

 

Fig. 1. Stereo vision system configuration to obtain 3D object point. 

The coordinates of a 3D point P of an object is given 

by coordinates (XP, YP, ZP) 

 

    

    






x

l
P

p

ex
X

,
    

    






x

l
P

p

ey
Y

,
    

    






x

P
p

ef
Z

 

                                                                                         (1) 

 

where e denotes the distance between the two optical 

centers, px denotes the CCD pixel width, f denotes the 

focal length of the two lens, and  denotes the disparity 

of P.  

The disparity is defined as the difference in the 

location of an object point between the left image and 

right image. (XL,YL) and (XR,YR) are the coordinates of the 

projection of point P in the two images, left and right 

image respectively (Fig. 1). The disparity is given by 

RL XX   i.e. the difference in the position in the left 

and right image.  

The approaches to find stereo correspondences are 

divided into two categories: one based on sparse local 

features that are obtained between two matched images, 

and the other based on matched regions after pixel by 

pixel matching in the different images. These technique 

can be used to obtain the 3D object recognition and 

categorization, in addition can be used for 3D scene 

reconstruction. The depth at various scene points can be 

obtained by determining the disparities of corresponding 

image points. Due to the discrete nature of the images, 

the disparity is obtained in terms of integer values unless 

some special algorithm is designed to compute the 

disparity values. The accuracy of depth computation for 

any given set of camera parameters can be enhanced by 

increasing the length of the baseline and large disparity 

can be obtained for any 3D scene. 

 

III.  PROPOSED GPU-OPTIMIZED MATCHING TECHNIQUE 

In this section, we explain our proposed GPU-based 

method to optimize the features in image matching along 

with the SOM methodology. The GPU is a special-

purpose processing unit that has been used as a general-

purpose processing unit due to its single instruction 

multiple data (SIMD) parallel hardware structure. With 

the advent of multi-core CPUs and many-core GPUs, the 

mainstream processor chips are now parallel systems. 

Also their parallelization continues to scale with Moore’s 

law. Compute unified device architecture (CUDA) 

considered GPU hardware as an independent platform 

that can provide a programming environment and 

minimize the need for understanding the graphics 

pipeline. The GPU hardware chip has N × 

multiprocessors (MP), and each MP has M × scalar 

processors (SP) (Fig. 2). The memory of the GPU is 

organized into global, shared and constant. In addition, 

there are registers, which are the local memory of threads 

[23]. When the kernel function to be executed with 

CUDA is ready, a grid composed of one block must be 

configured. The block generates a large number of 

threads to share data with other threads and then parallel 

processing can be performed. The thread is composed of 

hierarchical SIMD architecture and the mass of a thread 

is called the thread block that is used to assign CPU job 

to GPU. A GPU executes multiple threads in parallel and 

independently processes streams of vectors in parallel. 

For computing, the load/store instructions access three 

read/write memory spaces: local memory for per-thread, 

private, temporary data; N shared memory for low-

latency access to data shared by cooperating threads in 

the same streaming multiprocessor (SM); and N global 

memory for data shared by all threads of a computing 

application.



 GPU Optimized Stereo Image Matching Technique for Computer Vision Applications 39 

Copyright © 2015 MECS                                                    I.J. Modern Education and Computer Science, 2015, 5, 37-42 

Shared Memory

Registers

Threads

Registers

Threads

Shared Memory

Registers

Threads

Registers

Threads

Global Memory

Constant Memory

Host

(CPU)

Device (GRID)

Block (0) Block (1)

a) Memory, thread and block Organization 

 

Processor-1:

Vertex 

Texture Memory

(Video)

Processor-2:

Fragment

Rasterization

Geometric Operational 

unit

Graphics 

Position

and 

Coordinates 

input

Output From 

the GPU

Host (CPU)

Device (GPU)

Uploading Texture

Downloading 

Texture

R/W

 
(b) GPU Graphics Framework. 

Fig. 2. GPU Architecture a) Memory, thread and block Organization, (b) 

GPU Graphics Framework. 

The GPU host interface unit communicates with the 

host CPU, responds to commands from the CPU, fetches 

data from system memory, checks command consistency, 

and performs context switching. The load distribution 

units pass the input assembler’s output stream to the array 

of processors in order to execute vertex, geometry, and 

pixel shader programs, as well as computing programs. 

The streaming processor executes graphics shader thread 

programs and GPU computing programs to provide 

thread control and management. The SM is a unified 

graphics and computing multiprocessor that executes 

vertex, geometry, and pixel-fragment shader programs 

and parallel computing programs. The shared memory 

holds graphics input buffers or shared data for parallel 

computing. To pipeline graphics workloads through the 

SM, vertex, geometry, and pixel threads have 

independent input and output buffers. Workloads can 

arrive and depart independently of thread execution. The 

SM maps the warp threads to the SP cores, and each 

thread executes independently with its own instruction 

address and register state. A SIMT processor realizes full 

efficiency and performance when all 32 threads of a warp 

take the same execution path.  

A.  Parallel Scale Space Configuration And Construction 

Of Descriptor 

In our approach, the construction of Gaussian scale 

space is accelerated on the GPU using fragment programs. 

In order to extract the candidate keypoint, the scale space 

),,( yxL  is computed in parallel by the convolution of 

a variable-scale Gaussian ),,( yxG  over the input 

image ),( yxI . 

 

),(*),,(),,( yxIyxGyxL                    (2) 

 

where * is the convolution operation in x and y, and 

 

222 2/)(

22

1
),,( 


 yxeyxG 




 
 

Stable keypoint locations in scale space can be 

computed from the difference of gaussians (DOG) 

separated by a constant multiplicative factor k given by 

(3):  

 

),,(),,(

),(*)),,(),,((),,(





yxLkyxL

yxIyxGkyxGyxD





   (3) 

 

The intensity image, gradients and the DOG values are 

stored in a GPU texture format and computed in parallel 

in the same pass using vector operations in fragment 

programs. The Hessian matrix ),,( yxH  is computed 

by the second-order derivative of the Gaussian blurred 

image by (4): 

 
















),,(),,(

),,(),,(

),,(





yxLyxL

yxLyxL

yxH

yyxy

xyxx

           (4) 

 

where xyL  denotes the second-order derivative of the 

Gaussian image in both horizontal and vertical directions. 

The equal number of threads has been assigned   

n ,....,1
according to the number of given variables 

scaled for Gaussian operations to construct individual 

pyramids of m octaves simultaneously. Let mI be the 

number of features detected in I and D be the dimension 

of descriptors (D = 128). A texture of size mI × D is 

created and filled with the mI descriptor values, each one 

occupying a column. 



40 GPU Optimized Stereo Image Matching Technique for Computer Vision Applications  

Copyright © 2015 MECS                                                    I.J. Modern Education and Computer Science, 2015, 5, 37-42 

B.  Winner-Based Image Matching And Acceleration 

Using Graphics Processing Unit  

We used the SOM algorithm to map the high-

dimensional keypoints to a lower dimensional space with 

competitive learning [21]. The Self-Organizing Map was 

developed by professor Kohonen. The SOM algorithm is 

based on unsupervised, competitive learning. It provides 

a topology preserving mapping from the high 

dimensional space to map units. Map units, or neurons, 

usually form a two-dimensional lattice and thus the 

mapping is a mapping from high dimensional space onto 

a plane. The Self-Organizing Map (SOM) is a powerful 

neural network method for the analysis and visualization 

of high-dimensional data. SOMs are a data visualization 

technique which reduces the dimensions of data through 

the use of self-organizing neural networks. It maps 

nonlinear statistical relationships between high-

dimensional measurement data into simple geometric 

relationships, usually on a two-dimensional grid. The 

mapping roughly preserves the most important 

topological and metric relationships of the original data 

elements and, thus, clusters the data according to the 

input to the network. The need for visualization and 

clustering occurs, for instance, in the data analysis of 

complex processes or systems. Fig. 3 summarizes the 

complete algorithm of our approach. 

To optimize the algorithms, the descriptor and locator 

section is implemented on the GPU to solve the 

complexity of feature matching that consumes a lot of 

time to obtain the descriptor vector. To implement this, 

the keypoints are scanned to obtain the descriptor and 

locator vector which are organized in a parallel fashion 

on the GPU. These vectors are processed separately and 

the scanning and organization is carried out in a parallel 

fashion on the GPU. These processors consist of a front 

end that reads/decodes and launches instructions and a 

backend made up of a group of eight calculating units and 

two super function units (SFUs) where the instructions 

are executed in SIMD fashion, the same instruction is 

applied to all the threads in the warp. NVIDIA calls this 

mode of execution for single instruction multiple threads 

(SIMT). The streaming multiprocessors’ operating mode 

is as follows:  

 

(a) At each cycle, a warp ready for execution is selected 

by the front end, which launches execution of an 

instruction.  

(b) To apply the instruction to all 32 threads in the warp, 

the backend will take four cycles, but since it 

operates at double the frequency of the front end, 

from its point of view only two cycles will be 

executed.  

 

Our proposed approach used scale invariant feature 

vectors instead of an image database for the input to the 

SOM network. The topological map is obtained with the 

use of SOM network and we obtain a 2D neuron grid 

where each neuron is associated with a weight vector 

with 128 element descriptors. The 128 dimension 

descriptor generation is accelerated using GPU to 

increase the execution speed of the algorithm. The 

descriptor vector is read and its value is recorded 

individually in an array and also total value is recorded 

using the built-in libraries. The value is later used as a 

limit for declaring the threads and blocks for the GPU. As 

per the limit of each block only 512 threads can be 

accommodated in each block and there can be total 65536 

blocks in a grid. Each value is dedicated to each thread in 

a block, the number of blocks depends on total values 

divided by 512 (number of threads). The inspection of the 

keypoints indicates that first four values are for locator 

and remaining 128 values are for descriptor so these 

threads will organize accordingly; the locators and the 

descriptors will be fetched in a parallel manner and 

organized accordingly. 

 

Kernel Initialization

Threads and Blocks 

Initilization

Parallel arrangement of Locators 

and Descriptors on GPU

Locators 

Array
Descriptors 

Array

GPU Implementation

Capture Images with Kinect 

Sensor

Feature Vector generation 

with SIFT

Optimization of Features 

using GPU

Winner calculation with self-

organizing map (SOM)

Feature association of matched 

pixels between different images

 

Fig. 3. Complete algorithm of our approach. 

In order to perform the matching between the images, 

the learning algorithm is based on the concept of nearest 

neighbor learning. One image is considered as the 

reference image and the next image is considered as the 

matching image, and they are represented in terms of the 

winning neurons in the SOM network. After the network 

is trained, input data are distributed throughout the grid of 

neurons. The feature vectors are arranged according to 

their internal similarity with the SOM, thus forming a 

topological map of the input vectors. The winning neuron 

is found for each pixel of the next image and the pixel 

value is associated to it once the winner is found. The 

feature matching is performed by associating the similar 

winning pixels between the pixels of the reference and 

the next image. By iteratively repeating these process 

steps, the winning pixels are obtained with the self-

organizing map and the matching between the pixels of 

the different image pairs is accomplished.  

 

IV.  EXPERIMENT AND ANALYSIS  

In this section we give some experimental results to 

show the performance of the proposed method. We show 

experiments on images captured with the kinect camera 

designed by Microsoft, present results for 15 images and 



 GPU Optimized Stereo Image Matching Technique for Computer Vision Applications 41 

Copyright © 2015 MECS                                                    I.J. Modern Education and Computer Science, 2015, 5, 37-42 

compared the performance of our method with Lowe’s 

feature matching method. The CPU algorithm is 

implemented on Intel (R) Core (TM) i3 CPU whereas its 

counter part of GPU is implemented on NVIDIA’s Ge-

Force 310. The GPU-SIFT is implemented using CUDA. 

CUDA is a trademark of NVIDIA which is launched by 

the end of 2006. CUDA comes with a software 

environment that allows developers to use C as a high 

level programming language. The image size used for the 

analysis is 480 X 380. The experiments were conducted 

under diverse environment conditions such as rotation, 

scaling and blurring. Fig. 4 shows the matching results 

for the two images with Lowe’s method and with our 

proposed method. It is found that the average matching 

time is 0.13953 seconds for Lowe’s SIFT and the average 

time of proposed feature matching is 0.01447 seconds 

which is reduced to 0.00165 seconds using GPU 

optimization. 

Using our proposed method, Lowe’s algorithm is 

speeded-up approximately 9x, further with the help of 

GPU, the proposed method is speeded-up more 

approximately 9x so a total of approximately 80x 

improvement in the execution speed is achieved. Table 1 

shows the comparison results of the computation time for 

the two image sets with CPU and GPU. Fig. 5 shows a 

comparison of the results with GPU optimization, and the 

experimental results showed that the proposed algorithm 

performed more efficient matching than Lowe’s SIFT 

algorithm. Significant reduction in the computation time 

is obtained with the use of a GPU. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Matching results for the two images with Lowe’s method and 

with our proposed method. 

Table 1. Comparison of computation time on different images with CPU 

and GPU 

 

 
 

 

Fig. 5. Graphical comparison of computation time on different images 

with GPU optimization with Lowe’s method and the proposed method.

S. No Set of 

Images 

Lowe’s Method Proposed 

 

CPU 

 

GPU 

 

CPU 

 

GPU 

1 Image 

1&2 

0.1285 0.0156 0.0141 0.0017 

2 Image 

2&3 

0.1345 0.0162 0.0156 0.0016 

3 Image 

3&4 

0.1058 0.0177 0.0141 0.0017 

4 Image 

4&5 

0.1456 0.0199  0.0167 0.0015 

5 Image 

5&6 

0.1206 0.0182 0.0134 0.0014 

6 Image 

6&7 

0.1612 0.0166 0.0141 0.0016 

7 Image 

7&8 

0.1598 0.0199 0.0161 0.0018 

8 Image 

8&9 

0.1701 0.0194 0.0145 0.0017 

9 Image 

9&10 

0.1234 0.0182  0.0121 0.0014 

10 Image 

10&11 

0.1314 0.0192 0.013 0.0015 

11 Image 

11&12 

0.1456 0.0181 0.0145 0.0017 

12 Image 

12&13 

0.1267 0.0133 0.0141 0.0017 

13 Image 

13&14 

0.1312 0.0131 0.0154 0.0016 

14 Image 

14&15 
0.1687 0.0155 0.0146 0.0016 

Lowe’s 
SIFT 

Proposed 

Method  

 

 

a 

 

 

 

 

 

 

b 

 

 

 

 

 

 

c 

 
 

 

 

 
d 

 
 

 

 

 



42 GPU Optimized Stereo Image Matching Technique for Computer Vision Applications  

Copyright © 2015 MECS                                                    I.J. Modern Education and Computer Science, 2015, 5, 37-42 

V.  CONCLUSION 

This paper proposed a novel matching method to 

obtain the features under diverse conditions with reduced 

processing time. The computation time of the proposed 

method is reduced compared to Lowe’s method and 

optimized using a GPU. The experiments on various test 

images have been carried out to evaluate how well the 

proposed method performs on the matching problem 

compared to Lowe's method. Results in experiments 

show that the proposed method produces better matching 

results with significant reduction in computation times. 

REFERENCES 

[1] M. Z. Brown, D. Burschka, and G. D. Hager, “Advances 

in computational stereo,” IEEE Transactions on Pattern 

Analysis and Machine Intelligence, vol. 25 issue. 8, pp. 

993–1008, 2003. 

[2] T. Pribanic, N. Obradovic and J. Salvi, “Stereo 

computation combining structured light and passive stereo 

matching,” Optics Communications, vol. 285 issue 6, pp. 

1017-1022, 2012. 

[3] C. H. Lee, Y. C. Lim, S. Kwon and J. H. Lee, “Stereo 

vision–based vehicle detection using a road feature and 

disparity histogram”, Opt. Eng.  vol. 50 issue 2, 027004, 

2011.  

[4] S. Belongie, J. Malik, and J. Puzicha., “Shape matching 

and object recognition using shape contexts,” IEEE 

Transactions on Pattern Analysis and Machine 

Intelligence, pp. 509-522, vol. 24  issue 4, 2002. 

[5] H. A. Alnabriss, I. S. I. Abuhaiba, “Improved Image 

Retrieval with Color and Angle Representation,” I. J. 

Information Technology and Computer Science, pp. 68-81, 

vol. 6  issue 6, 2014. 

[6] M. Z. Uddin, “A Two-Level Hidden Markov Model-based 

Approach for Human Activity Recognition,” I. J. 

Information Technology and Computer Science, pp. 21-29, 

vol. 17 issue 1, 2014. 

[7] J. Shi and C. Tomasi, “Good Features to Track,” Proc. of 

the 9th IEEE Conference on Computer Vision and Pattern 

Recognition, pp. 593-600, 1994. 

[8] K. Mikolajczyk and C. Schmid, “Scale & affine invariant 

interest point detectors,” Int. J. of Computer Vision, pp. 

63-86, vol. 60  issue 1 , 2004. 

[9] C. Schmid and R. Mohr, “Local gray value invariants for 

image retrieval,” IEEE Trans. on Pattern Analysis and 

Machine Intelligence, vol. 19  no. 5, pp. 530-534, 1997. 

[10] D. G. Lowe, “Distinctive image features from scale-

invariant keypoints,” Int. J. of Computer Vision, vol. 60, 

no. 2  pp. 91-110, 2004. 

[11] K. Sharma, S. G. Kim, and M. P. Singh, “An improved 

feature matching technique for stereo vision applications 

with the use of self-organizing map,” International Journal 

of Precision Engineering and Manufacturing, vol.13 issue 

8, pp. 1359-1368, 2012. 

[12] S. N Sinha, J. M. Frahm, M. Pollefeys and Y. Genc, 

“Feature Tracking and Matching in Video Using 

Programmable Graphics Hardware,” Machine Vision and 

Applications vol. 22 issue 1, pp. 207-217, 2011. 

[13] K. Bjorke, “Image processing on parallel GPU pixel 

units”, Proceedings of SPIE, vol. 6065 (2006). 

[14] J. Fung, S. Mann, and C. Aimone, “OpenVIDIA: parallel 

GPU computer vision,” Proc. of the 13th annual ACM 

international conference on Multimedia pp. 849-852, 2005. 

[15] R. Yang and M. Pollefeys, “Multi-resolution real-time 

stereo on commodity graphics hardware,” Proc. of IEEE 

computer society conference on Computer vision and 

pattern recognition, pp. 211-217, 2003. 

[16] C. Zach, H. Bischof, and K. Karner, “Hierarchical 

Disparity Estimation with Programmable 3D Hardware,” 

International Conference in Central Europe on Computer 

Graphics, Visualization and Computer Vision, pp. 275-

288, 2004. 

[17] M. Bramberger, B. Rinner, and H. Schwabach, “An 

embedded smart camera on a scalable heterogeneous 

multi-dsp system,” Proc. of the European DSP Education 

and Research Symposium, 2004. 

[18] S. Klupsch et al., “Real Time Image Processing based on 

Reconfigurable Hardware Acceleration,” Proc. of IEEE 

Workshop on Heterogeneous Reconfigurable Systems on 

Chip, 2002. 

[19] M. T. Jones and P. E. Plassmann, “Scalable iterative 

solution of sparse linear systems,” Parallel Computing vol. 

20 issue 5, pp. 753-773, 1994. 

[20] Y. Saad, “ILUM: A Multi-Elimination ILU 

Preconditioner for General Sparse Matrices,” SIAM 

Journal on Scientific Computing  vol. 17 issue 4, pp. 830-

847, 1996. 

[21] T. Kohonen, “The self-organizing map,” Proc. IEEE vol. 

78 issue 19, pp. 1464-1480, 1990. 

[22] G. Toulminet et al., “Vehicle Detection by Means of 

Stereo Vision-Based Obstacles Features Extraction and 

Monocular Pattern Analysis,” IEEE Transactions on 

Image Processing, vol .15 issue 8, pp. 2364-2375, 2006. 

[23] D. B. Kirk and W. W. Hwu, “Programming Massively 

Parallel Processors,” 1st edition, Morgan Kaufmann, 

Burlington, MA, USA, 2010.  

 

 

 

Author’s Profile 

 
Kajal Sharma received the B.E. degree 

in Computer Engineering from University 

of Rajasthan, India, in 2005, M.Tech. and 

Ph.D. degrees in Computer Science from 

Banasthali University, Rajasthan, India, in 

2007 and 2010, respectively. From 

October 2010 to September 2011, she 

worked as a postdoctoral researcher at 

Kongju National University, Korea. From October 2011, she 

worked as a postdoctoral researcher at the School of Computer 

Engineering, Chosun University, Gwangju, Korea. Her research 

interest areas are image and video processing, neural networks, 

computer vision, robotics, etc. 


