
I.J. Modern Education and Computer Science, 2015, 2, 24-31
Published Online February 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2015.02.04

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 2, 24-31

Security Improvement of Object Oriented Design

using Refactoring Rules

Suhel Ahmad Khan
1
, Raees Ahmad Khan

2

Department of Information Technology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow,

India-226025

Email: ahmadsuhel28@gmail.com
1
, khanraees@yahoo.com

2

Abstract—The main component of study is to confirm

that how developed security model are helpful for

security improvement of object oriented designs.

Software refactoring is an essential activity during

development and maintenance. It promotes the

reengineering measures for improving quality and

security of software. The researcher made an effort in this

regard to develop security improvement guideline using

refactoring activities for object oriented deign. The

developed guidelines are helpful to control design

complexity for improved security. A case study is

adopted from refactoring example by fowler to

implement the Security Improvement Guidelines (SIG).

The developed Security Quantification Model (SQM
OODC

)

is being used to calculate the quantified value of security

at each step. The proposed model SQM
OODC

calculates the

effective security index by ensuring that revised version

of object oriented design is being influenced through

security improvement guidelines. There is some

possibility that original code segment may have some

security flaws, anomalies and exploitable entities or

vulnerable information that may influence security at

design stage. SIG is helpful to cease the security flaws,

anomalies, exploitable entities into refactored code

segment. Each refactored steps of case study match the

prediction of the impact for refactoring rules on security

and the impact study for security through SQM
OODC

model legalize the effectiveness of developed model and

security improvement guidelines. The validated results of

statistical analysis with different case studies of object

oriented designs reflect the usefulness and acceptability

of developed models and guidelines.

Index Terms—Security, Object Oriented Design,

Security Quantification, Security Improvement,

Refactoring

I. INTRODUCTION

An inherent dimension of software in present scenario

is its need to develop. As the software is improved,

modified and personalized with innovative ideas, the

code becomes more complex. This unsolicited

complexity will lower the quality and security of the

software because huge amount of development cost is

born out in the maintenance phase
3-4

. To avoid this

undesirable complexity of software applications, there is

an urgent need to develop a technique that cuts

complexity by incrementally improving the internal

software quality. A recent technique called ‗Restructuring‘

is providing a better solution for such questions. The

research domain that addresses restructuring more

specifically in case of object oriented software

development is called refactoring.

Security is a multidimensional attribute
.

The

indispensable purpose of security is to control digital

access of valuable property. Software security is about

understanding software-induced security risks and how to

manage them. As functionality of application travels to its

average intensity, security issues becomes more

highlighted agenda for researchers and industry people

and to those who are dealing with digital technology.

Using the concept of software security estimation during

development of software, security can be measured by

analyzing the design activities, measurement of security

attributes and its impact on software. A quantitative

approach can be much better than conceptual method to

develop and deliver a truthful technique which can assess

the actual level of security measure in newly developed

software as well as in existing. Without quantification

nothing can be predicted. Therefore, quantification of

security has become an urgent to help predict the

immunity and resilience of the software.

Security enhancement strategies are extremely enviable

for improving internal structure, design simplicity,

flexibility or other features of application software‘s.

Improving applications potentialities are the key issues in

the context of reengineering object-oriented software
5
. In

this endeavor, refactoring provides a novel vision of

object-oriented software development process. Programs

are designed to satisfy immediate need and future

changes can be done later if they are really needed. That

is, encompass adjusting of design to hold the changes of

requirements and features by applying refactoring.

The assessment of program security at design time is

more efficient in the relation of improvement under the

aegis of restructuring and refactoring. Refactoring and

restructuring are also used in the environment of

reengineering, which is the assessment and amendment of

existing system to restructure it in a new appearance and

the successive realization of the new form
6-7

. This

refactoring made changes to the internal structure of a

program to make it easy to understand and economical

 Security Improvement of Object Oriented Design using Refactoring Rules 25

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 2, 24-31

for change without changing its observable behavior. It is

widely used to improve the reusability, flexibility,

extendibility effectiveness of the software but the

quantitative assessment is more helpful to know the

effects of refactoring for security design improvements
13

.

II. DESIGN OF EXPERIMENTS

Software refactoring is a vital activity in the course of

development and maintenance. It engineers the

reengineering measures for improving quality and

security of software
8
. Refactoring can reduce the effects

of design corrosion, but this process requires significant

effort on the part of the maintenance programmer.

Design-level refactoring is also possible, but this

approach operates on design models and does little to

help in the subsequent refactoring of the source code
9
. A

novel refactoring approach is being used to improve

security of object oriented class diagrams both on its

desired design and on its source code. The researcher first

generates a desired design for the software grounded on

the current software design and their understanding of

how it may be required to evolve. Then, the source code

is refactored using the desired design as a target. This

resulting source code has the same behavior as the

original, but its design more closely correlates to the

desired design.

Refactoring works on code segments that improves

quality and security without changing the behavior of

software‘s at code level at which the software design is

associated
10

. Software refactoring is commonly used in

agile software processes to improve software quality
9
; it

is used for continuous improvement of the software

design structure. The principle of these modifications is

to renovate a program structure into improved security

after fitting defects such as bad smells, anti-patterns,

flaws, pitfalls, anomalies, and ill-nesses
10-11

. This sort of

reconstruction decreases the cost and endeavor of

software maintainability for the extended run by keeping

software complexity within adequate levels
12

.

Refactoring has been used in practice to improve

software security for commercial and open-source

software systems.

III. FORMULATION OF RULES

Different works are identified which are helpful to

improve quality of object oriented design using a novel

refactoring rules. In this regard Raed Shatnawi presented

work to estimate the quality of software using refactoring

activities for object oriented designs
13

. Raed‘s work is

inspired by Jagdish Bansia hierarchical model for quality

estimation
1
. Raed adopted the core quality factors and

metrics of Jagdish Bansia and study the impact of

refactoring activities by establishing refactoring heuristics.

Raed uses only 43 refactoring activities out of 72

activities to fix 22 code bad smells of fowler catalogs
14

.

As per security concern, restructuring or refactoring have

received relatively little care at code level. The impact

analysis of code level refactoring may influence the

design structure of software.

The assessment of refactoring rules at code level

through security metrics is capable to produce a

quantitative analysis of information security. From this

point of view a work carried out by Bandar Alshsmmari,

that establishes a theoretical background of refactoring

rules for security at first sight and develop security

metrics accordingly. Bandar calculated the metric values

for given java program using static tool analyzer. Bandar

uses the code refactoring rules in context of security

assessment and recalculated the metric values on the

basis of security assessment guidelines inspired from

refactoring rules to validate the results for security.

Bandar picks only 16 refactoring activities and reframe

his observation for security restructuring
15

. Another work

developed by Maruyama that aims to improve the

security of a given program‘s code by identifying

vulnerabilities by using design set of secure refactoring

rules
16

. Hafiz‘s work also uses secure transformation

rules for secure refactoring
17

. The detection of highly

secured classes in real time large applications due to

sharing libraries and code between them is one of the

challenging issues discussed by smith
18

.

On the basis of above discussion, it is proved that very

little work has been done to examine the impact of

refactoring activities for security improvement. It is

evident form literature that there is an urgent need to

develop security improvement strategies on the basis of

refactoring activities. The researcher made an effort in

this regard to develop security improvement guidelines

using refactoring activities for object oriented deign.

Researcher adopted and extracted the set of refactoring

activities and case study from Fowler catalogs
14

. The

identified set of activities are analyzed to expose the

impact of design security rules in context of security

improvement
14, 19-24

.The details of identified refactoring

activities and its effect have been discussed in Table 1.

26 Security Improvement of Object Oriented Design using Refactoring Rules

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 2, 24-31

Table 1. Impact analysis of refactoring rules for design security
*Rules having positive or negative impact based on condition

S. No. Refactoring activity Impact analysis Impact on Security

1 Extract Method Increases accountability of classes by fragmenting the long methods into small
methods.

2 *Extract Class Create a new class and move the relevant fields and methods from the old class

into the new class. This activity used to break a large class.

3 Inline Class Inline class moves all features into another class and removes it.

4 *Move Method Create a new method with a similar body in the class it uses most. Either turn
the old method into a simple delegation, or remove it altogether.

5 Move Field A class is being used by another class more than the class on which it is
defined. Create a new field in the target class, and change all its users

6 Replace Temp with

Query

Extract the variable's initializer expression into a method, and replace all

references to the variable with the calls to the extracted method.

7 Encapsulate Fields If there is a public field. Make it private and provide accessors methods.

8 Replace type code

with state/strategy

If you have a type code that affects the behavior of a class, but you cannot use

sub classing. Replace the type code with a state object.

9 Replace conditional

with polymorphism

Move each leg of the conditional to an overriding method in a subclass. Make

the original method abstract.

10 Replace inheritance

with delegation

Create a field for the superclass, adjust methods to delegate to the superclass,

and remove the subclassing. It allows removing a class from inheritance

hierarchy, while preserving the functionality of the parent.

11 Replace data value

with object

A data item that needs additional data or behavior. Turn the data item into an

object.

Refactoring activities are set according to their

composition of methods and objects, movement between

objects, conditional expression and coverage with

generalization and organization of methods & class

behavior. This limited refactoring activity is engaged to

quantifying and improving class diagrams using object

oriented design complexity attributes. Refactoring is an

art to know the potential impact of risk for application

and provides preventive measures for secure designing.

This will assist developers when to refactor, how to

refactor and where to refactor in small steps to avoid bugs

into code for improved software design. The research

identifies the limited set of refactoring activities and

evaluates the technicalities of these refactoring activities

that are applicable to measure the impact of security for

object oriented design perspective. We documented the

quantitative effect of each refactoring activity on design

properties for security.

Extract Method, a common refactoring activity

increases the accountability of classes by fragmenting the

long methods into small methods. These small methods

increase the reusability and minimize the design

complexity for easier visibility and understandability.

Preferences to use short methods increase the

acceptability of chances that other methods can use a

method when the method is finely grained. Overriding is

also easier when the methods are carefully grained. If

extracting improves clarity, do it, even if the name is

longer than the code you have extracted. Make a new

method, copy the extracted code from the source method

into the new target method. Scan the extracted code for

references to any variables that are local in scope to the

source method. Pass into the target method as parameters

local-scope variables that are read from the extracted

code. Replace the extracted code in the source method

with a call to the target method. This activity may

increase coupling between objects. The overall discussion

concludes that it extract method have positive impact on

design security.

Extract Class is used to break a large class, i.e., the

class is doing a work of two or more classes and should

be divided into more classes. Create a new class and

move the relevant fields and methods from the old class

into the new class. The steps fallowed in Extract Class are:

First, decide how to split the class. Second, make the new

class. Third, make a link between the two classes. Fourth,

move fields to the new class. And last, move methods to

the new class. This activity increases the number of

classes. Coupling between objects is increased due to

linkage of two classes. Moving methods and fields to the

new class increases the cohesion of both classes. This

refactoring activity has no effect on the inheritance

measures. It increases number of classes in the system as

well as coupling and cohesion among methods. Due to

unwanted anomalies or security flaws, the behavior of

methods or attributes can be vulnerable. As per the

possibility of security flaws increases, the unwanted

design complexity leads to less secure design. This

 Security Improvement of Object Oriented Design using Refactoring Rules 27

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 2, 24-31

refactoring activity may have negative impact on security.

Conversely, inline class moves all features into another

class and removes it, reduces the number of classes in

design. Therefore from this point of view, it reduces the

flaws by minimizing exploitable classes of design for

improved security.

Move Method is used by more features of another class

than the class on which it is defined. Create a new

method with a similar body in the class it uses most.

Either turn the old method into a simple delegation, or

remove it altogether. Move method is applied when

classes have too much behavior or when classes are

collaborating too much and are too highly coupled. By

moving methods around, the classes become simpler and

they end up being a crisper implementation of a set of

responsibilities. Such kind of effort reduces coupling,

responsibilities of class and complexity of the refactored

classes. This refactoring activity may increase the

security of design.

Move Field, organized in such a way that a class is

being used by another class more than the class on which

it is defined. Create a new field in the target class, and

change all its users. The fundamental nature of design

exhibits state and behavior using field‘s movements in

class structure. This will help to distribute the

responsibilities of classes in design structure. Allocation

of fields or attributes to other classes increases the

coupling and cohesion among methods. The exploitable

attributes may be avoided through refactoring the design

with move field for security enrichment. This can be used

to minimize design complexity of object oriented class

diagram.

Replace Temp of Query activity substitute‘s temporary

variable with a method (query). Temporary variable is

being used to clutch the result of an expression. Extract

the expression into a method. Replace all references to

the temp with the expression. The new method can then

be used in other methods. Adding new methods increases

the responsibilities of classes. Replace Temp with Query

often is a vital step before Extract Method. This

refactoring activity simplifies methods but having

possibility to increase the number of classified method

that sometimes not good for secure design.

Encapsulate fields says that there is a public field.

Make it private and provide accessors methods. One of

the principal tenets of object orientation is encapsulation,

or data hiding. This says that you should never make your

data public. When the data is made public, other objects

can change and access data values without the owning

object's knowing about it. This separates data from

behavior. This is seen as a bad thing because it reduces

the modularity of the program. When the data and

behavior that uses it are bundled together, it is easier to

change the code, because the changed code is in one

place rather than scattered all over the program.

Encapsulate Field begins the process by hiding the data

and adding accessors. But this is only the first step. A

class with only accessors is a dumb class that doesn't

really take advantage of the opportunities of objects, and

an object is terrible thing to waste. Once programmer has

done Encapsulate field, it looks for methods that use the

new methods to see whether they fancy packing their

bags and moving to the new object with a quick Move

Method. It surges data encapsulation and responsibilities

of a class. This may helps to increase the security of

design.

Replace type code with state/strategy speaks that if a

type code which affects the behavior of a class, but

difficult to use sub classing. Get the type code replaced

with a state object. The mechanism is first Self-

encapsulate the type code, then Create a new class, and

name it after the purpose of the type code. Add subclasses

of the state object. Create an abstract query in the state

object to return the type code. Create a field in the old

class for the new state object. Adjust the type code query

on the original class to delegate to the state object. Adjust

the type code setting methods on the original class to

assign an instance of the appropriate state object subclass.

This will increase the number of classes, data

encapsulation, coupling, cohesion, polymorphism,

responsibilities of a class, while it reduces the complexity

of the class. This could be helpful to increase the security

of design.

Replacing Inheritance with Delegation puts that a

subclass uses only part of a subclasses interface or does

not want to inherit data. Create a field for the super class,

adjust methods to delegate to the super class and remove

the sub classing. This activity increases coupling and

accountabilities of a class, while decreases number of

hierarchies, utilization of inheritance and polymorphism.

Replace Data Value with Object rule states that a data

item needs additional dada or behavior. Encapsulate the

data item in its own object. The numbers of classes gets

fueled due to this activity and it also increases data

encapsulation, coupling, among objects, cohesion among

methods, use of composition and responsibility of class.

Replace conditional with polymorphism states that a

conditional that chooses different behavior depending on

the type of an object. Move each conditional to an

overriding method in a subclass. Make the original

method abstract. This action increases the number of

classes, utilization of inheritance, polymorphism while it

reduces the complexity of the class. In the context of

above discussion a security improvement guideline has

been proposed on the basis of using refactoring rule for

object oriented design complexity. The proposed security

improvement guideline using refactoring rules (SIG) are

mentioned below:

Security Improvement Guidelines Using

Refactoring Rules (SIG):

Extract Method Rule: Fragmenting long methods into

small methods increases reusability and minimize the

design complexity for improved security.

Extract Class Rule: Extraction may lead number of

classes in system as well as coupling and cohesion among

methods while decreases accountability of classes. This

may lead unwanted complexity so keep it low as much as

possible.

28 Security Improvement of Object Oriented Design using Refactoring Rules

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 2, 24-31

Inline Class Rule: This action decreases number of

classes, coupling between classes and cohesion among

methods while increases responsibilities of classes for

improved security.

Move Method Rule: Simplicity can be achieved by

moving methods around the classes. This action shortens

coupling, responsibility and complexity of refcatored

version. This will help to increase security of design.

Move Field Rule: Allocation of fields or attributes to

other classes increases the coupling and cohesion among

methods. The exploitable attributes may be avoided

through refactoring the design with move field for

security enrichment. This can be used to minimize design

complexity of object oriented class diagram.

Replace Temp with Query Rule: Adding new

methods increases responsibilities of a class. Try to

minimize the possibility to increase the number of

classified method for secure design.

Encapsulate Fields Rule: This activity increases data

encapsulation and responsibilities of a class. Higher

values put refactored design much secure.

Replace type code with state/strategy Rule: It

increases number of classes, data encapsulation, coupling,

cohesion, polymorphism, responsibilities of a class, while

it reduces the design complexity of the class for improved

security.

Replace conditional with polymorphism Rule: This

movement increases number of classes, utilization of

inheritance, and polymorphism, while reduces the design

complexity of the class.

Replace inheritance with delegation Rule: It

increases number of hierarchies, utilization of inheritance

and polymorphism, while decreases coupling and

responsibilities of a class for improved security.

Replace data value with object Rule: This is

responsible for security improvement by increasing data

encapsulation, cohesion, and use of composition and

responsibility of classes.

This may helpful to increase the security of design.

Thus researcher has find that the selected refactoring

rules can potentially affect the security of programs, if

applied to a security critical code segment. This will

helps to improve software design after providing changes

in code segment without changing its functionality and

behavior.

IV. IMPLEMENTATION OF RULES

A case study movie rental system in fig 1 is taken to

implement the refactoring rules for security improvement.

This case study is extracted and adopted from refactoring

example by Fowler to implement the security

improvement guidelines (SIG) using refactoring rules and

Security quantification model (SQM
OODC

)
25

 for object

oriented design. The developed security quantification

model (SQM
OODC

) is being used to calculate the

quantified value of security at each step. The proposed

model SQM
OODC

calculates the effective security index by

ensuring that revised version of object oriented design is

being influenced through security improvement

guidelines. There is some possibility that original code

segment may have some security flaws, anomalies and

exploitable entities or vulnerable information that may

influence security at design stage. SIG is helpful to cease

the security flaws, anomalies, exploitable entities into

refactored code segment.

SQM
OODC

model is being used to calculate the effective

security index at each step to check whether refactored

version of design is being improved or not. The original

and refactored code segment of case study is adopted

from Fowler
14

. A. Each refactored steps of case study

match the prediction of the impact for refactoring rules on

security and the impact study for security through

SQM
OODC

model legalize the effectiveness of developed

model and security improvement guidelines. The above

mentioned refactoring rules are implemented for design

security improvements using different case studies. The

impact of refactoring rules on security has been studied in

previous section and implementation of those rules for

secure design improvements is applied on the case study

of Movie Rent System.

Decomposing the statement () method: The

statement () method in the class Customer is too long and

we use Extract Method to create a new method called

amount For ().

It comprises the whole switch statement. The variables

this Amount and each in the new method amount For ()

are not very meaningful. We change their names to result

respectively rental to reflect their uses.

Moving the amount calculation: The method amount

For () in the class Customer uses information from the

rental, but does not use information from the customer.

Because of this, moves this method to the class Rental,

where it will surely feel better, and rename it to get

Charge (). To keep the functionality of the customer,

delegate calls to amount For () in Customer to the new

method get Charge () in Rental. Unnecessary delegations

like this should be avoided, and search all calls to the

method in Customer and replace the calls with the

delegation code itself. After that, delete the now useless

delegation method in Customer. In the method statement

replace every use of the variable this Amount with the

query each. get Charge() (Replace Temp with Query).

Fig. 1. Class diagram Movie rental System before refcatoring

The while loop in the Customer's statement () method

mixes presentation and business logic. Copy the loop

along with some needed accompanying lines and paste it

to a new method called total Amount (). This method

does the business calculation. Remove all this stuff from

the original loop, so that it only covers presentation. To

get the total amount owed, Call the new method. It is

 Security Improvement of Object Oriented Design using Refactoring Rules 29

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 2, 24-31

almost identical to the statement () method, only that it

has HTML tags in it to do the layout on the screen.

Replacing the conditional logic on price code with

polymorphism: To avoid switch statement, replace the

explicit logic with implicit logic by using polymorphism.

Because the decision bases on data from a movie, move

the method get Charge () onto movie. A delegation in the

old method ensures compatibility with our tests and other

callers. This effort produces refactoring successfully for

given application. While these refactoring cleaned the

design considerably, it was not enough to support easy

change of classification of movies. So some more

refactoring, coupled with a design pattern, led us to a

really elegant program, in contrast with the starting code.

The refactored version of class diagrams and security

improvement analysis is depicted in Fig. 2, 3 and 4

respectively.

Fig. 2. Class diagram of Movie rental system after refactoring

Fig. 3. Graphical representation of case study for security improvement

V. IMPROVEMENTS

To assess whether the proposed rules of refactoring is

able to improve the security of design, different case

studies have been conducted. The results of collected data

for security are tabulated in Table 2.

Table 2. Security Improvement Analysis

 Security

Quantification

Design

Before

Refactori

ng (Old

Design)

After

Refactorin

g (New

Design)

Security

Improvement

(In

Percentage)

Design 1 0.465 0.658 41.5%

Design 2 0.464 0.630 35.7%

Design 3 0.342 0.461 34.7%

Design 4 0.519 0.674 29.8%

Design 5 0.372 0.470 26.3%

Design 6 0.518 0.602 16.2%

Design 7 0.595 0.672 12.9%

Design 8 0.595 0.620 04.2%

VI. STATISTICAL ANLYSIS

Statistics is a mathematical tool used for gathering,

organizing, analyzing and interpreting numerical data.

For the purpose of showing statistical significance or

validation of the proposed refactoring rules is applied for

security design improvements. As the sample size is

small, the student t test is applied for finding out the level

of significance and rejection of the null hypothesis
2
. The

old values and new values gone under statistical analysis

to draw the conclusion that whether there is a significant

differences between the pre treatment data and the post

treatment data. The obtained t value will determine

whether to reject the null hypothesis and accept the

alternative hypothesis.

Hypothesis Testing: A null hypothesis reflects that

there is no significant relationship between two or more

parameters whereas alternate hypothesis affirms the

relationship. Rejection of a null hypothesis provides a

stronger base to accept the relationship or to accept the

alternate hypothesis.

Null Hypothesis (H01): Security based refactoring

guideline using Model SQM
OODC

 cannot helpful to

quantify & improving security of object oriented designs.

Alternative Hypothesis (H11): Security based

refactoring guideline using Model SQM
OODC

 can helpful

to quantify & improving security of object oriented

designs.

Statistical Interpretation: If the security values in

table are observed, it can be inferred very easily that the

SIG (Security Improvement guideline) treatment for all

the design has worked well. The new security values are

relatively less than those old values. By reflection, it

seems that the treatment worked. The security values in

all the eight designs were increased and hence the

security is improved. Fig. 2 represents the graphical

representation of security data before and after

refactoring. The initial claim that SIG is able to improve

security proved true. All in all, the level of significance of

the proposed approach must be computed. While

studying inferential data analysis, it was found that the t-

test for the situation given below is appropriate for the

purpose: ‗When the same group of individuals takes a

pretest then the group is exposed to a treatment. The

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Security

Design 1-

Before

Refactoring

Design 2-

After

Refactoring

30 Security Improvement of Object Oriented Design using Refactoring Rules

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 2, 24-31

group is again tested after treatment to determine whether

the influence of the treatment has been statistically

significant as determined by mean gain scores.‘ The t-test

was carried out for drawing level of significance of the

approach.

Fig. 4. Graphical Representation of Security Data Before and After
Refactoring

Level of Significance of Security: To find out the

worth of the difference between the means of old Security

values and new security values, the means of both old and

new security is calculated as shown in Table 3. Pearson

coefficient of correlation comes out to be 0.814. The

coefficient shows that the old Security values before

treatment and new values of Security after SIG treatment

are highly correlated. The degree of freedom for both

security values is 7. This test provides the ground for

applicability of t-test. The t value comes out to be 2.56.

As the value exceeds the t critical value of 2.36 for a two

tailed test at the 0.05 level for 7 degree of freedom, and

the calculated p value is 0.02 which is < 0.05, thus the

null hypothesis H01 is strongly rejected and the alternate

hypothesis H11 is accepted.

Table 3. t-Test for Security Improvement Data Analysis

t- Test for Security

M
ea

n

S
td

.
D

ev
ia

ti
o
n

S
td

.
E

rr
o

r

N
o

.
o

f
S

a
m

p
le

s

P
ea

rs
o

n
 C

o
ef

.

D
eg

re
e

o
f

F
re

ed
o

m

t-
 V

a
lu

es

Security

_(Old

Values)

0.483 0.093 0.0328

8

0.814

7

2.56

Security

_ (New

Values)

0.598 0.085 0.0303

VII. CONCLUSION

Validation of any new approach is directly linked to its

acceptance by society or industry. It is the validation

which demonstrates the usefulness of the approach in

society or in industry. For testing the usefulness of the

framework security quantification of an object oriented

design and SIG, a systematic validation was carried out.

As a primary step, empirical validation was carried out.

Empirical validation involves pre tryout and tryout. Pre

tryout encompasses a small set of data whereas tryout

involves a larger set. The pre tryout was carried out on an

object oriented design; the tryout was carried out on eight

different designs. The designs were initially analyzed and

the models being used to compute the values for security

attributes. Again the designs treated by SIG and again the

model used to compute security. The security values for

pre treatment and post treatment were undergone

statistical analysis to establish the fact that SIG treatment

has successfully improved security. The t-test was carried

out and it was found that the t-values obtained by

computation performed on old and new security values

were exceeding the t-critical values. Hence, the null

hypothesis formulated at the beginning of statistical

analysis rejected one by one and alternative hypothesis

were accepted. Our claim that SIG are able to improve

security of object oriented design proved true.

REFERENCES

[1] J. Bansia, G.C. Davis, ―A Hierarchical Model for Object-

Oriented Design Quality Assessment‖, IEEE Transactions

on Software Engineering, Vol. 28, No. 1, pp. 4-17, 2002.

[2] C R Kothari, Research Methodology: Methods and

Techniques, Published by New Age International (P) Ltd,

ISBN (13) : 978-81-224-2488-1, 1990.

[3] L. Tokuda, D. Batory, ―Evolving Object-Oriented Designs

with Refactoring‖, Department of Computer Sciences,

University of Texas at Austin, Automated Software

Engineering, Kluwer Academic Publishers, pp:89-120,

2001

[4] D. M. Coleman, D. Ash, B. Lowther, P. W. Oman, ―Using

Metrics to Evaluate Software System Maintainability‖,

IEEE Computer, Vol. 27, No. 8, pp. 44–49, August 1994.

[5] S. Demeyer, S. Ducasse, O. Nierstrasz, ―Object-Oriented

Reengineering Patterns‖, Morgan Kaufmann and DPunkt,

2002.

[6] W. G. Griswold, D. Notkin, ―Automated Assistance for

Program Restructuring‖, Trans. Software Engineering and

Methodology, ACM., Vol. 2, No. 3, pp. 228–269, July

1993.

[7] E. J. Chikofsky, J. H. Cross, ―Reverse Engineering and

Design Recovery: A Taxonomy‖, IEEE Software, Vol. 7,

No. 1, pp. 13–17, 1990.

[8] B. Alshammari, C. Fidge, D. Corney, ―Security

Assessment of Code Refactoring Rules‖, In Proceedings

of WIAR-2012, Saudi Arabia, web address:

http://eprints.qut.au/56382/, 2012.

[9] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, G.

Succi, ―A Case Study on the Impact of Refactoring on

Quality and Productivity in an Agile Team‖, In Balancing

Agility and Formalism in Software Engineering, Lecture

Notes In Computer Science, (5082), Springer-Verlag,

Berlin, Heidelberg, pp. 252-266, 2008.

[10] T. Mens, T. Tourwe, ―A Survey of Software Refactoring‖,

IEEE Transactions on Software Engineering, 30(2), pp.

126–139, 2004.

[11] B.D. Bois, T. Mens, ―Describing the Impact of

Refactoring on Internal Program Qualit‖, Proceedings of

the International Workshop on Evolution of Large-scale

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8

Security
(Old design)

Security
(New
design)

 Security Improvement of Object Oriented Design using Refactoring Rules 31

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 2, 24-31

Industrial Software Applications (ELISA), Amsterdam,

The Netherlands, pp. 37–48, 2003.

[12] Y. Kataoka, T. Imai, H. Andou, T. Fukaya, ―A

Quantitative Evaluation of Maintainability Enhancement

by Refactoring‖, Proceedings of the International

Conference on Software Maintenance (ICSM.02), pp.

576–585, 2002.

[13] R. Shatnawi, W. Li, ―An Empirical Assessment of

Refactoring Impact on Software Quality Using a

Hierarchical Quality Model‖, International Journal of

Software Engineering and its Applications, Vol. 5, No. 4,

October, 2011, pp:127-149.

[14] M. Fowler, Refactoring: Improving the Design of Existing

Programs, Addison-Wesley, 1999.

[15] B. Alshammari, C. J. Fidge, D. Corney, ―Assessing the

Impact of Refactoring on Security-Critical Object-

Oriented Design‖, Proceedings of the Seventeenth Asia

Pacific Software Engineering Conference, Sydney, 30

November-3 December (J. Han and T. D. Thu, eds.), (Los

Alamitos, CA, USA), IEEE Computer Society, pp. 186–

195, 2010.

[16] K. Maruyama, ―Secure Refactoring Improving the

Security Level of Existing Code‖, Proceedings of the

Second International Conference on Software and Data

Technologies (ICSOFT 2007), (Barcelona, Spain), pp.

222–229, 2007.

[17] M. Hafiz, ―Security on Demand‖, PhD thesis, Graduate

College of the University of Illinois at Urbana-Champaign,

2010.

[18] S. F. Smith, M. Thober, ―Refactoring Programs to Secure

Information Flows‖, Proceedings of the 2006 Workshop

on Programming Languages and Analysis for Security,

(Ontario, Canada), ACM, pp:75-84, 2006.

[19] B.D. Bois, S. Demeyer, J. Verelst, ―Refactoring–

Improving Coupling and Cohesion of Existing Code‖,

Belgian Symposium on Software Restructuring, Gent,

Belgium, pp. 144–151, 2005.

[20] J. Ratzinger, M. Fischer, H. Gall, ―Improving Evolvability

through Refactoring‖, Proceedings of the 2nd

International Workshop on Mining Software Repositories

(MSR‘05), pp: 1–5, 2005.

[21] R. Moser, A. Sillitti, P. Abrahamsson, G. Succi, ―Does

Refactoring Improve Reusability?‖, Lecture Notes in

Computer Science, 9th International Conference on

Software Reuse, pp. 287–297, 2006.

[22] M. Alshayeb, ―Empirical Investigation of Refactoring

Effect on Software Quality‖, Information and Software

Technology, 51 (9), pp. 1319–1326, 2009.

[23] F. Dandashi, D.C. Rine, ―A Method for Assessing the

Reusability of Object-Oriented Code Using A Validated

Set of Automated Measurements‖, Proceedings of 17th

ACM Symposium on Applied Computing, pp. 997–1003,

2002.

[24] K. Maruyama, K. Tokoda, ―Security-aware refactoring

alerting its impact on code vulnerabilities‖ , Proceedings

of the 15th Asia-Pacific Software Engineering Conference

(APSEC 2008), IEEE Computer Society-1488052 445-

452, 2008.

[25] S A Khan, R A Khan, ―Security Quantification Model‖,

International Journal of Software Engineering, ISSN:

2090-1801, Volume 6, No. 2, pp: 75-89, 2013.

Authors’ Profiles

Suhel Ahmad Khan is pursing PhD in

Information Technology from Babasaheb

Bhimrao Ambedkar University (A Central

University), Vidya Vihar, Raebareli Road,

Lucknow. He has been completed his

MCA degree from Uttar Pradesh

Technical University, Lucknow. Mr.

Khan is young, energetic research fellow

and has completed a Full Time Major

Research Project funded by University Grants Commission,

New Delhi. He has more than 5 year of teaching & research

experience. He is currently working in the area of Software

Security and Security Testing. He has also published &

presented papers in refereed journals and conferences. He is a

member of IACSIT, UACEE, and Internet Society.

Dr. Raees A. Khan has earned his doctoral degrees from JMI,

New Delhi, India and he is currently working as an Associate

Professor and Head in the Department of Information

Technology, Babasaheb Bhimrao Ambedkar University (A

Central University), Lucknow, India. His area of interest is

Software Security, Software Quality and Software Testing. He

has published a number of National and International books,

research papers, reviews and chapters on software quality and

software testing.

How to cite this paper: Suhel Ahmad Khan, Raees Ahmad Khan,"Security Improvement of Object Oriented Design

using Refactoring Rules", IJMECS, vol.7, no.2, pp.24-31 2015.DOI: 10.5815/ijmecs.2015.02.04

