
I.J. Modern Education and Computer Science, 2015, 12, 51-56
Published Online December 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2015.12.07

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 12, 51-56

Performance Analysis of Schedulers to Handle

Multi Jobs in Hadoop Cluster

Guru Prasad M S
SDMIT/CSE, Ujire, 574240, India

Email: guru0927@gmail.com

Nagesh H R and Swathi Prabhu
MITE/CSE, Moodabidri, 574227, India

SMVITM/CSE.Udupi, 576115, India

Email: nageshhrcs@rediffmail.com, prabhuswathi2@gmail.com

Abstract—MapReduce is programming model to process

the large set of data. Apache Hadoop an implementation

of MapReduce has been developed to process the Big

Data. Hadoop Cluster sharing introduces few challenges

such as scheduling the jobs, processing data locality,

efficient resource usage, fair usage of resources, fault

tolerance. Accordingly, we focused on a job scheduling

system in Hadoop in order to achieve efficiency.

Schedulers are responsible for doing task assignment.

When a user submits a job, it will move to a job queue.

From the job queue, the job will be divided into tasks and

distributed to different nodes. By the proper assignment

of tasks, job completion time will reduce. This can ensure

better performance of the jobs. By default, Hadoop uses

the FIFO scheduler. In our experiment, we are discussing

and comparing FIFO scheduler with Fair scheduler and

Capacity scheduler job execution time.

Index Terms—BigData, Apache Hadoop, MapReduce

Framework, Hadoop Schedulers, Job Execution Time,

Ganglia tool.

I. INTRODUCTION

As the Internet usage keeps increasing, Data generated

during the day to day life is more than terabytes. This

needs to be processed in many Internet Service Providers.

MapReduce [1] framework now has the solution for this,

which is used for large-scale data processing, i.e.

thousands of nodes by using commodity hardware.

Hadoop, an popular open source framework

implementation of MapReduce model and maintained by

Apache Software Foundation. Hadoop [2], is already

used for processing hundred terabytes of data on at least

10,000 cores. In this environment, people may share the

same cluster for many purposes, so that the cluster needs

to run for different kinds of workloads (heterogeneous

workload) on the same data center. Here we can see the

problem of job scheduling in the cluster.

The default scheduler in Apache Hadoop is single

queue, schedules the jobs in FIFO order which called as

FIFO scheduler. According to this scheduler tasks

executes based on the arrival time. Some of the

schedulers like capacity scheduler [4] which is multi user

scheduler as well as a fair scheduler [3] which uses

multiple queues and utilizes different resources in the

cluster. Using these schedulers, we could assign jobs to

queues which manually guarantee their specific resource

share among the homogeneous and heterogeneous

workload.

The performance of Hadoop framework mainly

depends on the cluster size, the hardware configuration in

each node and the scheduling methods for the jobs. The

scheduling algorithms in distributed systems usually have

the goals of spreading the load on processors and

maximizing their utilization of resources which

minimizes the total task execution time internally it

effects on job execution time.

In our work, we concentrated on the problem that, how

can we improve the hardware utilization rate when

different kinds of workloads (i.e. homogeneous and

heterogeneous data) run on the clusters in MapReduce

framework. In practical, different type of jobs often

simultaneously run in the Cluster, the scheduler is having

the main role in assigning the jobs and is closely tied to

the performance of the MapReduce framework. Mainly

two kinds of scheduling policy one is Job level i.e.

scheduling jobs submitted into Hadoop cluster and

another one is task level i.e. scheduling the tasks from a

specific job. In this paper, we focus on different Hadoop

schedulers such as FIFO, Fair, Capacity scheduler and

their job execution time analysis. Our main aim is to

compare the job execution time of above mentioned

schedulers with default Hadoop scheduler’s job execution

time (FIFO). We considered a job execution time as

performance analysis parameter for our entire journey we

used Ganglia software [17] which provides execution

environment and complete real-time monitoring, which

gives the clear idea about the resource usage. Ganglia

were developed at the California University in Berkeley

Computer Science Division to link clusters across logical

way in the Berkeley campus. It is completely open-

source because it was developed at a university and no

proprietary components are needed..

The rest of the paper is organized as follows. We

mailto:guru0927@gmail.com

52 Performance Analysis of Schedulers to Handle Multi Jobs in Hadoop Cluster

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 12, 51-56

describe the background of Hadoop and related work of

this paper in Section 2. Section 3 gives experiment

results and an analysis of job execution time with

different schedulers and in Section 4 final conclusion,

Future work.

II. BACKGROUND & RELATED WORK

Over the last few years, data stored in the world has

increased exponentially. Data sources are everywhere,

from user-generated content to large scientific

experiments and Web 2.0, from social networks to

wireless sensor networks. This large amount of data is a

valuable asset in our information society this called the

BigData. The problem here is to process the data in order

to extract the useful information. As we mentioned it is

petabyte of data, by using traditional methods for data

analysis is not possible. Because the data analysis tools

are unable to keep up with the increase in size, diversity

and rate of change of data size. For this a new tools and

approaches are required, currently the most used tool is

definitely Hadoop.

In this section, we briefly discuss about Hadoop

architecture and related scheduling mechanisms. Hadoop

framework running on main two components, Hadoop

Distributed File System (HDFS) and MapReduce

framework, both are Master-Slave architecture. One

master node and number of slave nodes. Hadoop

Distributed File System (HDFS) stores and manages the

file which is of fixed size data blocks (64MB by default).

The master node called Namenode will assigns the data

blocks to slave nodes called Datanodes for processing.

Namenode contains metadata i.e. information about the

each data blocks which is in datanodes and meta data of

meta is saved in Secondary Namenode for every regular

interval of time.

Each jobs assigned to Hadoop framework divides it

into number of subtasks i.e. map tasks and reduce tasks,

which will be handled with a Map function and a Reduce

function in the MapReduce framework. Each Map task

deals with a small part of the input data. After Map task

processing, it will generates the results those are

intermediate state key-value pairs, this output will be the

input for Reduce function. Reduce function will merge

based on a specific key, then generate and output as

value-keys. Every few seconds master node receives

heartbeats from slave nodes.

MapReduce framework, running on HDFS, is used for

data processing in parallel and in distributed pattern. It

consists of a JobTracker which runs on the master node

and several TaskTracker runs on slave nodes. Namenode

and JobTracker, the core of Hadoop, are running on the

master node, and a TaskTracker is running on a slave

node together with one Datanode. Thus one master node

and multiple nodes constitute a distributed storing and

processing clusters for large-scale data. JobTracker is in

charge of scheduling and monitoring all the tasks,

including map tasks and reduce tasks, of a MapReduce

job. Tasks are distributed to TaskTrackers who execute

the map function and reduce function defined by user’s

MapReduce application which uses the data saved in

Datanodes. Fig.1 shows overall architecture of Hadoop.

According to cluster resource utilization, current

Hadoop schedulers classified into two types: (a) full

utilization of resources to maximize the use of it. (b)

Partial utilization of resources to do concurrent

processing. Hadoop’s default scheduler works based on

first type. In below section we are going discuss about

Hadoop schedulers

Fig.1. Hadoop Architecture.

A. Default Scheduler (FIFO)

The default Hadoop scheduler works using a FIFO

queue. Jobs are submitted to cluster, divide them into

tasks, and then tasks are moved into the queue and

processed by available slots in the nodes. Although there

is a support for jobs priorities, but it is not turned on by

default. In FIFO scheduler each job would use the entire

cluster, so jobs which are submitted need to wait for their

turn. Here the main problem is sharing resources fairly

among users and all so among jobs, to solve this problem

we need a better scheduler. Once a task slots become free,

then first waiting job in the queue will be assigned for

execution. From this scheduler we can say that one job

will take all task slots within the cluster. Also, jobs those

arrived at a later stage or with a less priority will be

blocked behind the higher priority jobs. Recently few

alternative schedulers have been developed such as

Yahoo!’s Capacity scheduler and Facebook’s Fair

scheduler.

B. Fair Scheduler

The fair scheduler [3] in Hadoop was developed by

Facebook. The main intention of this scheduler is to

assign the resource on and average to all jobs and all

users so that each job gets equal share of available

resources. Therefore the jobs waiting time will reduce

and CPU will be used totally among all jobs. In Fair

Scheduler actually organizes jobs by resource pool with

each pool holds minimum number of map and reduce

slots. By default, each user there is a separate pool. Free

slots in idle pools can be taken to other pools and

resources are fairly shared among all jobs but by default

slots are fixed. The Fair Scheduler can pre-empt the jobs

 Performance Analysis of Schedulers to Handle Multi Jobs in Hadoop Cluster 53

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 12, 51-56

if pool has not received its fair share. Fair scheduler will

kill tasks in pools running to lower the resource

consumption. Also we can set the job priority as like

FIFO schedule. From this scheduler we can give

guarantee that longer jobs are not be starved of resources.

C. Capacity Scheduler

The Capacity Scheduler [4] was originally developed

by Yahoo which is defined for large clusters or different

organization. In capacity scheduling queues are created

which are used for multiple users. For each queue we can

allocate number of map and reduce slots. During

execution queues are monitored, if entire capacity of one

queue is not used its excess capacity used for another

queue temporarily. As like FIFO and Fair scheduler

Capacity scheduling has the ability to prioritize the jobs

within a queue. There is strict access control on queues

(queues are tied to a organization or person).Both

capacity scheduler & fair scheduler have similarities:

 Good for multi users because support multiple

queues or pools.

 Each queue or pool supports for FIFO or different

job priorities.

 In both schedulers, they can share idle slots to other

queues or pools.

And following are its differences:

 Different strategies

 Different memory constraints

Since Hadoop cluster is connected by networks, data

transportation and then execution of jobs is major issues.

Some researches focused on optimizing MapReduce

processes automatically and managing resources

allocation with different job. Our focus is on job

schedulers which will helps to schedule different kind of

workloads. We considered few authors survey results that

has mentioned about schedulers, then we implemented it

and analyzed the results by using Weblog data and

Amazon data. Weblog data is semi structured data and

Amazon data is record format data

III. RESULTS AND DISCUSSION

A. Experimental Environment

For the performance evaluation, we considered

Hadoop three nodes cluster with homogeneous hardware

property, i.e. Each node in the cluster has a 3.8 GB RAM,

Intel® Core i5 3470 CPU @3.20GHz * 4 processor. We

setup cluster on Ubuntu 14.04 with Hadoop 1.2.1 stable

release used oracle jdk 1.7 and ssh configuration to

manage Hadoop daemons. Our cluster setup is having 1

NameNode and 3 DataNodes for the purpose of an

experiment. Configuration files such as mapred-site.xml,

core-site.xml, hdfs-site.xml are setup by default values

with replication factor 2 and default block size 64MB.

We used Web Log data of 2.1 GB [5] and Amazon data

[6] of 990 MB for our analysis, collected this data from

different sites. We performed a set of experiments to

evaluate the performance .by using different schedulers

on heterogeneous workload and homogeneous

environment.

In this paper, we are comparing default FIFO

scheduler’s execution time with Fair and Capacity

scheduler’s execution time. Execution time includes

submission to completion of the particular job. For the

analysis, we are using Amazon data which is of a record

format, our application invokes mapper for each record

which is passed as input for our application. The mapper

extracts the customer ID and generates values for each

customer ID this output will be given to reducer, where

reducer will take the customer ID and value, then sum up

and gives the output as the number of items the customer

has ordered and Web Log data which is semi-structured

data. We had written application which shows the output

of hits by hour of the day. In application Column 1 is the

hours (24 hour format), column2 is the number of page

access for each hour. From using these two applications

with the homogeneous and heterogeneous workload, we

started our experiment. Initially we analyzed this data in

our application; we can check this result in Fig.2 and Fig.

3 respectively.

After this analysis of Bigdata we started work on

different Hadoop schedulers. Initially we executed these

application in default scheduler, then started to compare

the results with different schedulers for same applications.

Below section we are discussing the results from our

analysis.

Fig.2. Amazon Data Analysis

Fig.3. Weblog Data Analysis

54 Performance Analysis of Schedulers to Handle Multi Jobs in Hadoop Cluster

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 12, 51-56

In the FIFO scheduler (default scheduler), while

executing the first job, second and third jobs need to wait.

From our experiment we can tell that total execution time

increases as the number of jobs increases, it effects on

overall performance of jobs in system Fig.4 shows the

execution time of three jobs using different inputs of

Web Log data and Amazon data. With homogeneous

workload (Data size same) and heterogeneous workload

(different data size) From this we can say that as the

number of jobs increases job waiting time also increases

and small jobs will be struck behind the large jobs in case

of heterogeneous workload so the performance of overall

job execution time decreases.

Fig.4. FIFO Job Execution Analysis

We considered Fair scheduler, as we already discussed

above, main intention of this scheduler is to fair resource

usage, i.e. all jobs should have Fair share of resources

either it may be large or small and if we assign the pools

to different users then each pool should share the

resource fairly among the jobs. The results from our

analysis are that Fair scheduler takes less job execution

time than the FIFO which showed in Fig.5.In Fig.6, we

are giving homogeneous and heterogeneous workload to

different pools in Fair scheduler. In this figures we can

see the job execution time comparison. Here we

considered two pools for our experiment

Fig.5. Fair Scheduler Job Execution Time Comparison in Homogeneous

Workload with Different Pools

Fig.6. Fair Scheduler Job Execution Time Comparison in

Heterogeneous Workload

After the fair scheduler, we considered one more

Hadoop supported scheduler is Capacity scheduler. Here

we created queues to assign the jobs. Depends on the

hardware resources we can increase the number of

queues. As the number of queue increase job execution

time also increases. We considered 2 queues assigned the

jobs to them parallel and the 3 queues and assigned the

jobs. We can see the results in Fig.7.

Fig.7. Capacity Scheduler Job Execution Time by Increasing Number

of Queues

Fig.8. Capacity Scheduler Job Execution Time for Homogeneous and

Heterogeneous Workloads

 Performance Analysis of Schedulers to Handle Multi Jobs in Hadoop Cluster 55

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 12, 51-56

Then we compared capacity scheduler job execution

time in homogeneous and heterogeneous environment.

Fig. 8 shows the comparison of it.

In this scheduler there will be many parameters those

can be tuned and get better job execution time such as

QueueCapacity or MaximumCapacity etc. Compare to

Fair scheduler capacity scheduler will take more job

execution time. From our experiment we can tell that Fair

is better among other schedulers

We used Ganglia tool to analyze the resource usage. of

entire cluster. It will clearly show the resource usage by

the cluster We can observe it in Fig.9. Graphs in the

figure shows last one hour load of Hadoop cluster,

memory usage, CPU usage and network usage

respectively From this tool we can analyze the resource

usage of entire cluster very easily.

Fig.9. Resource usage by the Cluster

IV. CONCLUSION AND FUTURE WORK

We considered homogeneous and heterogeneous

workloads for our experiment and total job execution

time as the main parameter for analysis which includes

job execution time and waiting time of jobs. From our

analysis, we can tell that FIFO scheduler is takes more

execution time as the number of jobs increases but for

small jobs it is good scheduler. The job execution time is

less for Fair scheduler in multi jobs with heterogeneous

workload because resources are fairly shared among all

jobs. And Capacity schedulers also take more execution

time compare to Fair scheduler. In future work, we

planned to consider the capacity scheduler parameter to

analyze the job execution time in the heterogeneous

environment and to implement our own scheduler to

solve data locality problem.

ACKNOWLEDGMENT

We would like to thank every member of the faculty at

SDMIT, MITE and SMVITM for their guidance and

support, which has helped us, complete this research

project successfully.

REFERENCES

[1] V. Kalavri, V. Vlassov, “MapReduce: Limitations,

Optimizations and Open Issues”, 12th IEEE International

Conference on Trust, Security and Privacy in Computing

and Communications, 2013,

DOI10.1109/TrustCom.2013.126, pp.1031-1038.

[2] Apache Hadoop. http://hadoop.apache.org.(2012, Aug).

[3] Fair scheduler [online]

http://hadoop.apache.org/common/docs/r0.20.2/fair_sche

duler.html.

[4] Capacity scheduler

http://hadoop.apache.org/core/docs/current/capacity_sche

duler.html.

[5] NASA weblog dataset

http://ita.ee.lbl.gov/html/contrib/NASAHTTP.html.

[6] Amazon data http://snap.stanford.edu/data/#amazon.

[7] Tom White. 2010. “Hadoop: The Definitive Guide”

(Second edition).O'Reilly Media/Yahoo Press.

[8] V. Kalavri, V. Vlassov, “MapReduce: Limitations,

Optimizations and Open Issues”, 12th IEEE International

Conference on Trust, Security and Privacy in Computing

and Communications, 2013,

DOI10.1109/TrustCom.2013.126, pp.1031-1038.

[9] Aditya B. Patel, Manashvi Birla and Ushma Nair

“Addressing Big Data Problem Using Hadoop and Map

Reduce”, 2012 nirma university international conference

on engineering, nuicone-2012, 06-08december, 2012.

[10] D. Wu, A. Gokhale,” A Self-Tuning System based on

Application Profiling and Performance Analysis for

Optimizing Hadoop MapReduce Cluster Configuration”

IEEE conference,2013, pp. 89-98.

[11] Yao et al., 2013, “Scheduling Heterogeneous MapReduce

Jobs for Efficiency Improvement in Enterprise Clusters”.

[12] Deshmukh et al., 2013, “Job Classification for

MapReduce Scheduler in Heterogeneous Environment”,

2013 International Conference on Cloud & Ubiquitous

Computing & Emerging Technologies.

[13] Chauhan et.al, 2012, “The Impact of Capacity Scheduler

Configuration Setting on MapReduce Jobs”, 2012 Second

International Conference on Cloud and Green Computing,

978-0-7695-4864-7/12 $26.00 © 2012 IEEE, pp 667-674.

[14] Zhao et al., 2012, “TDWS: a Job Scheduling Algorithm

based on MapReduce”, 2012 IEEE Seventh International

Conference on Networking, Architecture and Storage.

[15] Shi et al., 2011, “S3: An Efficient Shared Scan Scheduler

on MapReduce Framework”, 2011 International

Conference on Parallel Processing.

[16] Liu et al., 2013, “Evaluating Task Scheduling in Hadoop-

based Cloud Systems” 2013 IEEE International

Conference on Big Data.

[17] For Ganglia toolhttp://ganglia.sourceforge.net/.

[18] “Big data: the next frontier for innovation, competition,

and productivity,” McKinsey Global Insititute,

http://www.mckinsey.com/insights/mgi/research/technolo

gy and innovation/big data the next frontier for innovation,

June 2011.

[19] Intel peer research: Big data analysis, intel’s it manager

survey on how organizations are using the big data,”

http://www.intel.com/ content/www/us/en/big-data/data-

insights-peer-research-report.html, Auguest 2012.

[20] K. Shim, “Mapreduce algorithms for big data analysis,” in

Proceedings of the VLDB Endowment. VLDB, pp. 2016–

2017, Auguest 2012.

[21] J. Dittrich and J.-A. Quian é-Ruiz, “Efficient big data

processing in hadoop mapreduce,” Proceedings of the

VLDB Endowment, vol. 5, no. 12, pp. 2014–2015,

http://hadoop.apache.org.(2012,aug)/
http://hadoop.apache.org/common/docs/r0.20.2/fair_scheduler.html
http://hadoop.apache.org/common/docs/r0.20.2/fair_scheduler.html
http://hadoop.apache.org/core/docs/current/capacity_scheduler.html
http://hadoop.apache.org/core/docs/current/capacity_scheduler.html
http://ita.ee.lbl.gov/html/contrib/NASAHTTP.html
http://snap.stanford.edu/data/#amazon

56 Performance Analysis of Schedulers to Handle Multi Jobs in Hadoop Cluster

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 12, 51-56

Auguest 2012.

[22] J. Dean and S. Ghemawat, “Mapreduce: A flexible data

processing tool,” Comunications of the ACM, vol. 53, no.

1, pp. 72–77, January 2010.

[23] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M.

McCauley, M. J. Franklin, S. Shenker, and I. Stoica,

“Resilient distributed datasets: A fault-tolerant abstraction

for, in-memory cluster computing,” in Proc. 9th USENIX

Conf. Netw. Syst. Des. Implementation, 2012, p. 2.

[24] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae,

J. Qiu, and G. Fox, “Twister: A runtime for iterative

mapreduce,” in Proc. 19th ACM Symp. High

Performance Distributed Comput., 2010, pp. 810–818.

Authors’ Profiles

Dr. Nagesh H.R, Dean (Academic),

Professor & Head, Department of

Computer Science & Engineering,

Mangalore Institute of Technology &

Engineering, Moodbidri, has got his

M.Tech and Ph.D (Computer Engineering)

from NITK Surathkal. He has published

more than 50 research papers in National

and International Conferences and journals. He has delivered

more than 20 invited talks in topics like 'Component Based

Software Development', 'Internet Security', 'Web Security',

'Web Engineering', 'Information Security' ,'Network

Management', 'Promoting Global Cyber Security' ,'Security

issues in Distributed Systems', 'Digital library and Information

Search', 'Information Security Management' ,'Recent Trends in

Information Technology' and 'Security issues in Cloud

Computing'. He has also chaired many sessions in International

and National level technical paper presentations. He has also

published one chapter titled 'Proactive models for Mitigating

Internet DoS/DDoS Attacks', in 'Selected Topics in

Communication Networks and Distributed Systems', World

Scientific, London, April 2010. He had also worked as Visiting

faculty to NITK Surathkal and NITK-Science and Technology

Entrepreneurs Park, Karnataka, Surathkal. Published two books

titled 'Fundamentals of CMOS VLSI Design' for V semester

Electronics & Communication Engineering students of VTU:

Pearson Education & 'VLSI Design' for V semester Electronics

& Communication Engineering students of JNTU: Pearson

Education. Member of BOS for PG studies in Computer

Science at Mangalore University and Manipal Institute of

Technology for PG studies in Computer Science & Engineering.

Worked as member of BOE and Exam coordinator in VTU

Belgaum. Member of BOS in Computer Science & Engineering

of VTU Belgaum for year 2013 to 2016.

Mr. Guru Prasad M S, Asst .professor,

Dept of Computer Science & Engineering.

Shri Dharmasthala Manjunatheshwara

Institute of Technology, Ujire, Dakshinna

Kannada. He got his M.Tech (Computer

Engineering) from NMAMIT Nitte. He has

published 5 research papers in International

Conferences and Journals. He has delivered

7 invited talks on “Big Data Analytics”.

Ms. Swathi Prabhu, Asst. Professor , Dept.

of Computer Science & Engineering, Shri

Madhwa Vadiraja Institute of Technology &

Management, Bantakal, Udupi. She got her

M.Tech (Computer Engineering) from

NMAMIT Nitte. She has published few

research papers in National and International

Conferences and journals. Her interested

area is BigData Analysis using Hadoop.

