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Abstract—The large amounts of available protein 

structures emerges the need for computational methods 

for protein function prediction. Predicting protein 

function is mainly based on finding similarities between 

proteins with unknown function with already annotated 

proteins. This may be achieved using different protein 

characteristics: sequences, interactions, localization, 

structure and or psychochemical. A lot of review papers 

mainly focus on sequence and psychochemical features-

based methods. This is because sequence and 

psychochemical data are easy to deal with and to interpret 

the results, and much available compared to protein 

structures. However, structure-based computational 

methods provide additional accuracy and reliability of 

protein function prediction. Therefore, unlike many 

review papers, this paper presents an up-to-date review 

on the structure-based protein function prediction. The 

aim was to provide a recent and comprehensive review of 

protein structure related topics: function aspects, 

structural classification, databases, tools and methods.  

 
Index Terms—Protein function prediction, protein 

structure, structure alignment and comparison, distance 

matrix, binding sites, classification. 

 

I.  INTRODUCTION 

Applying computer science techniques to biology –

bioinformatics - caused a pounce in automated prediction 

of protein function. Proteins are the basis of cellular life. 

Their importance emerged from that they significantly 

affect the structural and functional characteristics of 

living cells. Proteins may have different representations 

varied from its sequence to structure. Protein structures 

are highly complex and have a high range of variability. 

Identification of the protein structures and functions are 

most important for the treatment of diseases and drug 

industry. There are millions of available protein 

structures from many of high-throughput genome projects 

[1, 2]. A few numbers of these proteins have been 

experimentally annotated [3]. This experimental function 

annotation of newly discovered proteins is achieved with 

very small throughput and high cost [3] but using 

computational methods can infer the protein function 

with very high throughput and lower cost. Therefore, 

efficient and accurate computational methods for protein 

function prediction are highly required. Using computer 

science methods in order to predict protein functions is 

known as computational function prediction, 

computational function annotation or computational 

proteomics [4]. Most of current review papers give a little 

insight on the effectiveness of using protein structures in 

function prediction. Therefore, the aim of this review is to 

focus on structure-based protein function prediction. First, 

historical background about how the protein structures 

characterized, are mentioned with the latest statistics 

related to the depositions and the growth of the structures. 

Then, both leading and recent structural classifications of 

protein structures are reviewed. Structure comparisons 

and finding similarities [5] for function prediction is 

classified according to the level of comparison into global 

structure comparison-based approach and local structure 

comparison-based approach. Global structure 

comparison-based approach considers the whole protein 

and uses protein geometry and/or secondary structure 

elements (SSEs) features. Local structure comparison-

based approach considers substructures and used for 

finding conserved regions or predicting sites that are 

significant in deriving protein function. Finally for both 

approaches, popular besides recent databases, online 

servers, tools and methodologies are reviewed in terms of 

accuracy and limitations.  

Most of computational protein function prediction 

research methodology begins with one of two directions: 

studying how to find an effective protein representation 

method or proposing an accurate algorithmic prediction 

method. Regarding proposing a protein representation, it 

mostly starts with testing it on a benchmark and rarely on 

newly-built dataset related to a certain function prediction 

aspect. Testing may be accomplished using certain 

classifier such as the frequently used classifier SVM as it 

is easier to implement and proved to be powerful 

classifiers for protein function prediction. However, its 

disadvantages are that they give little information about 

the patterns learned and couldn’t be generalized to other 

datasets than used in their training, or different classifiers. 

Besides, representation proposal may be extended to 

include combinations of the proposed representation and 

other published representations that proved their 

efficiency in prediction. If the proposed representation 

achieved an improvement, tests may be extended to other 

datasets or even other aspects of protein function 

prediction. Regarding the direction of proposing a 



50 Structural Protein Function Prediction - A Comprehensive Review  

Copyright © 2015 MECS                                                  I.J. Modern Education and Computer Science, 2015, 10, 49-57 

prediction algorithmic method, it may be a combination 

of known classifiers as the performance of ensemble 

machine learning approaches is much better than the 

performance of the individual learning algorithm, or 

proposing new one. The method usually utilizes available 

protein representations. If the proposed method proved its 

efficiency, tests may be extended to different datasets or 

other aspects of protein function prediction to investigate 

the method significance. Fig. 1 summarizes protein 

function prediction framework.  

 

 

Fig.1. The Protein Function Prediction Framework. 

The huge amount of biological data has to be stored, 

analyzed, and retrieved. Protein databases are categorized 

as primary or structural [6]. Primary protein databases 

contain protein sequences. Example of these databases is 

SWISS-PROT [7]. SWISS-PROT annotates the 

sequences as well as describing the protein functions. 

Structural databases contain molecular structures. The 

protein data bank PDB [8] is the main database for three 

dimensional structures of molecules specified by X-ray 

crystallography and NMR (nuclear magnetic resonance). 

The PDB entries contain the atomic coordinates, and 

other structural atomic and secondary structure elements 

related attributes. The first bio-macromolecular NMR 

structure was archived on 1989. Fig. 2 shows the yearly 

growth in PDB structures. The world wide PDB 

(http://wwpdb.org/) published statistics showing the PDB 

structures that are deposited by year (Fig. 2) and current 

PDB holdings by year (Fig. 4). 

 

 

Fig.2. Yearly Growth of NMR-Derived Structures in the PDB 

[http://www.wwpdb.org/news/news_2013.html#19-June-2013] 

 

II.  PROTEIN STRUCTURAL CLASSIFICATIONS 

There are two major leading structural classifications 

of proteins: SCOP [9] and CATH [10]. The concept of 

protein structural classes was reported by Levitt and 

Chothia [11], which grouped proteins based on their 

predominant secondary structural element. Structural 

Classification of Proteins (SCOP) database 

(http://scop.berkeley.edu/) structurally classifies proteins 

into four levels of hierarchical classification: structural 

class, fold, super family and family based on the 

structural and evolutionary relationships. It is based on 

the manual classification therefore, its classification is 

considered accurate. However, an extended version of 

SCOP is now available [12] to automatically classify 

structures with maintaining the same accuracy level. 

 

 

Fig.3. Statistics for PDB Structures Depositions Yearly (Last updated at 

30 Dec 2014). 

 

Fig.4. Current PDB Holdings by Release Year (Last updated at 30 Dec 

2014). 

The CATH domain structure database: The four main 

levels of CATH (http://www.cathdb.info/) classification 

are C for protein class, A for architecture, T for topology 

and H for homologous superfamily. The classification is 

based on the secondary structure, composition, 

orientation and/or connectivity.  However, a recent 

improvement to family classification is applied in CATH 

[13]. 

Recently, a structural classification of loops in proteins 

(ArchDB) [14] and an evolutionary classification of 

protein domains (ECOD) [15] are presented. Unlike 

structural classification that assumes proteins to be 

evolutionarily related according to homology, ECOD 

(http://prodata.swmed.edu/ecod/) uniquely focuses on 

remote homology that is difficult to detect. ECOD 

classified more than 107,000 PDB structures and is 

weekly updated to include new released PDB structures. 
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ArchDB (http://sbi.imim.es/archdb/) is a structural 

classification of loops extracted from known protein 

structures. It includes 10 different loop types based on the 

geometry and the conformation of the loop. 

 

III.  STRUCTURE-BASED FUNCTION PREDICTION METHODS 

Proteins functions are related to their structural role or 

enzymatic role [16]. The structural role is related to 

forming the cell shape. The enzymatic role is related to 

help in accomplishing chemical reactions, signal 

movement in and out of the cell and transportation of 

different kind of molecules like antibodies, structural 

binding elements, and movement-related motor elements. 

The computational approaches predict the function of a 

given protein by searching for similarities between its 

structure and other functionally annotated proteins using 

different techniques. Hence, the functional annotation of 

the most similar protein is transferred to the query protein. 

Aiming at predicting functions of proteins, analyzing 

protein structures that belong to a certain functional class, 

help in deriving specific structural features that are highly 

conserved within this functional class. These structural 

features can then be studied to identify classes of a new 

protein structure as well as its function. Annotating 

proteins is the primary goal of function prediction 

computational methods. Therefore, the available 

biological knowledge should be in a form that is 

applicable with computational processing. Different 

annotations are used to describe proteins function: 

enzyme commission (EC) numbers [17] and Gene 

ontology consortium (GO) [18]. EC numbers [17] use 

four digits for enzyme classification based on the 

reactions they catalyze. GO [18] describes protein 

functions with respect to its molecular function, 

biological process, and cellular component. In some cases, 

prediction of other protein properties may help in 

inferring and understanding its function like subcellular 

localization; which means where a protein resides in a 

cell [19] and fold recognition; as proteins having similar 

structural folds may share the same functions. 

With the availability of protein structures having 

experimented annotations, predicting protein function by 

finding structural similarity between them and the protein 

structures that functionally un-annotated becomes 

possible even if their sequences are not similar [20]. 

Structure-based protein function prediction methods are 

based on identifying similarity between a protein with no 

knowledge about its function and one or set of proteins 

with known function using structural features. These 

computational methods are based on statistical, data-

mining and/or machine learning techniques [21-23]. In 

the following subsections, we will review recent tools and 

computational methods for structure comparison and 

function prediction. The essential step related to any of 

proteins function prediction methods is how the protein 

should be effectively represented. Effective 

representations improve the prediction accuracy and 

minimize the information loss. Structure-based function 

prediction approaches can be categorized according to the 

level of protein structure comparison into global structure 

comparison-based approach or local structure 

comparison-based approach. Global structure comparison 

based approaches are mainly based on proteins atoms 

coordinate or secondary structure elements. While, local 

structure comparison based approaches are mainly based 

on the surface shape. For more reviews of function 

prediction approaches see [24-29].  

There are online servers available for predicting 

protein function from structure. ProFunc [30] is a protein 

biochemical function prediction server 

(http://www.ebi.ac.uk/thornton-srv/databases/ProFunc/). 

It applies various methods, including fold matching, 

residue conservation, and 3D functional templates. Then, 

a list of the probable functions in terms of GO 

annotations is provided. Recently, I-TASSER [31] 

(Iterative Threading ASSEmbly Refinement) was ranked 

the best for function prediction in CASP9 (critical 

assessment of protein structure prediction) [32] 

experiment. The server, which is available at 

(http://zhanglab.ccmb.med.umich.edu/I-TASSER/) is 

aiming to implement the state-of-the-art structure and 

function prediction algorithms in order to provide the 

most accurate results. 

A.  Global-Structure Comparison-based Approach 

This approach is based on analyzing the whole protein 

structure and find relations to other protein structures 

with known function [33]. Then, this relation is used to 

predict the functions of functionally un-annotated 

proteins. Finding similarities between pairwise or 

multiple protein structures requires structural comparison 

which may require alignment technique [34, 35]. This is 

will not be achieved without developing an efficient 

proteins structure representation. Therefore, global-

structure comparison-based approaches are divided into 

two categories based on the protein structural 

representation. They may be based on proteins geometric 

[36-44] or secondary structure elements (SSEs) [45-51].  

Regarding methods that based on protein geometry, the 

much known structural alignment methods are DALI [44] 

and CE [43]. In DALI or Distance-matrix ALIgnment 

each protein is represented as a 2D matrix storing intra 

molecular distance. CE or Combinatorial Extension 

method represents a protein as a set of Cα distances 

between eight consecutive residues. Different methods 

[40-41] were proposed which perform faster with high 

accuracy levels than DALI and CE. They apply dynamic 

programming like ALYDYN [41] and TM-align [42]. 

CLICK [40] is a tool which capable of using other 

structural features besides protein coordinates to align 

structures by matching cliques of residues.  

Regarding methods based on SSEs, the much known 

structural alignment methods are SSAP [50] (or 

Sequential Structure Alignment Program) and VAST [51] 

(Vector Alignment Search Tool). Recently, TS-AMIR 

[46] or Topology String Alignment Method for Intensive 

Rapid comparison of protein structures which is proposed 

in order to reduce the complexity of the structure 
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comparison process. They represent the protein based on 

the secondary structure elements (SSEs) of its backbone 

structure. DecosnSTRUCT [47] is a database search, and 

pairwise alignment method that uses a reduced protein 

representation based on the direction, type and sequential 

ordering of SSEs as features for comparisons [48]. Table 

1 presents both popular and recent tools and their URLs.  

Recently, advanced tools were proposed for 

macromolecular complexes. Examples of geometry-based 

tools are TopMatch [39] and TopSearch [36] and contact 

area difference score web server (CAD-score) [37]. 

Example of SSEs-based tools is VAST+ [45]. Several 

tools are reviewed in [52]. 

Table 1. List of Recent and Popular Structural Comparison and 

Alignment Tools. 

Tool URL 

CAD-score [37] http://www.ibt.lt/bioinformatics/cad-score 

MICAN [38] 

http://landscape.tbp.cse.nagoya-

u.ac.jp/MICAN/index.html 

TopMatch [39] https://topmatch.services.came.sbg.ac.at/ 

CLICK [40] http://mspc.bii.a-star.edu.sg/minhn/click.html 

DALI server [53] http://ekhidna.biocenter.helsinki.fi/dali_server 

ALADYN [41] http://aladyn.escience-lab.org/ 

CE (RCSB PDB) 

[54]  http://source.rcsb.org/jfatcatserver/ 

TM-ALIGN  [42] 

http://zhanglab.ccmb.med.umich.edu/TM-

align/ 

SSAP [50] http://v3-4.cathdb.info/cgi-bin/SsapServer.pl 

VAST+ [45] 

http://www.ncbi.nlm.nih.gov/Structure/VAST/

vast.shtml 

deconSTRUCT 

[47] 

http://epsf.bmad.bii.a-

star.edu.sg/struct_server.html 

 

The widely used protein representation is based on 

atom-coordinates. Such representation mainly uses Cα 

atoms which known as protein backbone, to represent the 

whole protein structure rather than using all atoms to 

lower the computational complexity. Each protein can be 

transformed into a matrix of distances between all its Cα 

atoms which is known as distance matrix. Since it has 

been used with DALI, different variations of distance 

matrix are still being proposed. Examples of these 

variations are: Contact maps [55, 56] and Cutoff 

Scanning Matrix (CSM) [57]. Contact map is a matrix 

contains Boolean values representing pairwise inter 

residue contact for a protein structure. The matrix values 

are determined according to a threshold distance. Bhavani 

et al. [58] used contact maps to predict protein folds. 

Based on triangle subdivision method and using decision 

tree for binary classification, they correctly predicted EF-

hand-like and cytochrome fold with accuracy of 96% and 

79%, respectively. CSM [57] is a distance based protein 

structure representation which generates feature vector 

that represents distance patterns between protein residues 

using different threshold values. Adding other features to 

CSM resulted in new protein representation, PSM-C [59]. 

PSM-C builds the protein feature vector by including 

inter-residue angle and distance patterns. PSM-C 

representation achieved accuracy levels higher than CSM 

(10% in average) in predicting superfamily and family 

and in discriminating enzyme proteins using Random 

Forest. Table 2 summarizes the results obtained.  

Some limitations of distance matrix are its sensitivity 

to the parameters and its high dimensionality. Wavelets 

were proposed to reduce the distance matrix 

dimensionality [60] and extract features [61]. Marsolo 

and Ramamohanarao [60] reduce the dimensionality of 

protein structure by generating a feature vector of 

approximation coefficients by applying 2- dimensional 

wavelet decomposition of the distance matrix which 

allows fast retrieval of similar structures. An average 

accuracy of 87% was achieved at SCOP superfamily 

level using a k-d tree and a 10-nearest-neighbor on a 

dataset consists of 33,000 proteins. Recently, Mirceva et 

al. [61] performed different wavelet transforms on the 

protein distance matrix and found that Daubechies2 

wavelet gives the highest retrieval accuracy of 91.3%. 

Table 2. Summary of Computational Prediction Methods That are Based 

on Distance Matrix. 

Method Ref. Application Performance 

Decision Tree [58] EF-hand-like Prediction  96%* 

Decision Tree [58] Cytochrome Prediction 79%* 

Random Forest  [59] Enzyme Discrimination 79.25%* 

Random Forest  [59] Superfamily Prediction 98%* 

KNN [57] Superfamily Prediction 94.2%** 

Random Forest  [59] Family Prediction 91%* 

* Accuracy, ** Precision 

 

B.  Local-Structure Comparison-Based Approach 

Local-structure comparison-based approach differs 

from the previous approach that only substructures are 

analyzed. This includes finding motifs or conserved 

regions in proteins sharing the same function which is 

significant in function analysis. It also includes finding 

specific regions related to functions called protein 

functional sites such as binding sites [62]. Examples of 

the recent online resources for substructures databases are 

BioLiP database [63] and ProBiS [64]. PDB doesn’t 

present all biologically relevant ligands. Therefore, 

BioLiP database is developed for biologically relevant 

ligand–protein interactions. It includes manual 

verification phase. The latest version of BioLiP (Feb 27, 

2015) includes 308,776 entries. Each entry is annotated 

using ligand-binding, residues, EC numbers, GO terms. 

ProBiS database contains nearly 420 million searchable 

pre-calculated pairwise alignments. It includes over 

37600 locally structurally aligned non-redundant PDB 

structures to all other proteins. The sever is also used to 

identify functionally significant binding-site residues, 

detect weak similarities in proteins with non-similar folds, 

deriving functional annotation, finding similar binding-
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sites in proteins of different families. Table 3 provides 

databases and their URLs. 

Table 3. Protein Substructure Databases. 

Resource Short Description URL 

BioLiP  

 [63] 

Ligand-protein 

binding database 

http://zhanglab.ccmb.med.u

mich.edu/BioLiP/ 

ProBiS  

[64] 

Repository for 

structurally similar 

protein binding sites  

http://probis.cmm.ki.si/ 

CASTp  

[65] 

Protein pockets and 

cavities server 
http://sts.bioe.uic.edu/castp/ 

Catalytic 

Site Atlas  

[66] 

Database of enzyme 

active sites and 

catalytic residues in 

enzymes  

http://www.ebi.ac.uk/thornt

on-srv/databases/CSA/ 

eF-site [67] 
Binding sites 

database 

http://ef-site.protein.osaka-

u.ac.jp/eF-site/ 

 

Motif finding can be achieved by different 

methodologies. These include representing motifs based 

on SSEs features [49], representing proteins as graphs 

and motifs as sub-graphs [68], transforming the structure 

coordinates into alphabet sequences [69], representing 

motif using distance matrix [70] or based on structure 

spatial arrangement [71].  

ProSMoS server [49] or protein structure motif search 

(http://prodata.swmed.edu/ProSMoS/) used SSE types, 

connectivity, coordinates, interactions type to search for a 

motif. Jia et al. [68] applied graph algorithm, AProximate 

Graph Mining (APGM), to find repeated sub-graphs and 

hence conserved substructures and achieved an accuracy 

of 78%. Ku and Hu [69] used sequence-based tool to find 

motifs after transforming protein structure coordinates 

into alphabet sequences. A Distance matrix is also used 

by [70] to represent the spatial structure of the domain 

which is the functional unit of the whole protein, and 

perform fast domain classification with an accuracy of 

90%. Based on spatial arrangements, Rahimi et al. [71] 

searched for the representative motif for each EC number. 

Regarding sites prediction, these substructures may 

have a similar surface shape. Therefore, identifying 

unknown functional sites achieved by searching for 

similar structures related to functional sites in proteins 

with known function [72, 73]. Binding sites are where 

proteins function by binding to another protein. Nisius et 

al. [74] provide a review of methods for binding site 

prediction in terms of accuracy and limitations. There are 

available web servers for site prediction. The popular one 

is eF-seek [67]. eF-seek search finds the similar ligand 

binding sites. Recently, 3DligandSite [75], SPRITE [76] 

and mentioned earlier ProBiS web servers become 

available for binding-site prediction. 3DligandSite makes 

use of protein-structure prediction to model unsolved 

proteins. It searches for similar structures, then 

superimpose ligands bound to the model and used to 

predict the binding site. 3DligandSite provides 

conservation details like the predicted binding-site 

residues list with details of the number of ligands that 

they contact. SPRITE (Search for protein sites) aims to 

infer the functions by searching for matches in the 3D 

patterns of amino acid side chains based on graph theory. 

ProBiS offers comparison of a binding site, pairwise 

alignment and superimposition of PDB structures. 

Table 4. List of Popular and Recent Structure-Based Binding Sites 

Prediction Tools. 

Tool Ref. URL 

eF-seek  [67] http://ef-site.protein.osaka-u.ac.jp/eF-seek/ 

3DLigandSt

ie  
[75] http://www.sbg.bio.ic.ac.uk/3dligandsite/ 

SPRITE  [76] http://mfrlab.org/grafss/sprite/ 

ProBiS  [64] http://probis.cmm.ki.si/ 

 

Several structure based prediction methods were 

proposed to predict binding sites in proteins. They mainly 

based on representing proteins using shape descriptor as 

in [77] that identified accurately 85% of known binding 

sites using alpha carbon atom of each residue. 3D Zernike 

descriptor introduced by [78], represents a protein 

structure as a series expansion of 3D functions. The 

advantages of using 3D Zernike that it allows fast protein 

structures retrieval, it is rotation invariant as no alignment 

is needed for protein structure comparison and it can be 

adjusted to the different resolutions of protein structures 

description [79]. For more readings in 3D Zernike 

descriptor, see [80], for more moments-based descriptors 

see [81]. Other methods are based on structural features 

as in Zhao et al. [82] that made use of knowledge-based 

energy function and atom-type-dependent features and 

correctly predicted 98% of DNA binding proteins. Spin 

Images which also used for three-dimensional object 

recognition in computer vision area are proposed by [83] 

to represent protein surfaces as a set of two dimensional 

images. Moment-based descriptors have lower time 

complexity than graph methods and spin images. Results 

are summarized in Table 5.  

Table 5. Results Summary of Local-Structure Comparison-Based. 

Methodology Ref. Application Accuracy 

AProximate Graph 

Mining (APGM) 
[68] 

Finding 

conserved 

structures 

78% 

Shape Descriptor [77] 
Binding site 

prediction 
85% 

Structural Features [82] 
DNA Binding site 

prediction 
98% 

Spatial Structure [70] 
Domain 

Classification 
90% 

 

IV.  DISCUSSION 

There is a continuous and rapid growth in protein 

structures. New NMR Protein structures that are 

deposited the last year were more than combined NMR 

depositions in the first 10 years since 1989. Protein 

structures are usually classified to derive their function 

annotation. The two recent structural classification of 
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protein considers two important factors missed in the 

popular leading classifications: remote homology 

between proteins and loop classification. Protein 

representations, its computational cost and dimensionality 

directly, affect the efficiency and accuracy of the protein 

function prediction method. Regarding function 

prediction based on global structure comparison, most of 

available online servers are aiming to provide fast and the 

most accurate results for structure comparison and 

function prediction. CLICK [40], ALYDYN [41] and 

TM-align [42] are example of geometry-based methods in 

literature that are faster with high accuracy levels than 

popular CE and DALI. CLICK is statistically better than 

DALI in terms of structure overlap. ALYDYN can align 

in less than 1 minute proteins with up to 250 amino acids. 

TM-align is faster than DALI with 20 times and CE with 

4 times. However, SSEs-based methods [46, 47] are 

faster than geometry methods because they depend on 

reduced and simpler representation of proteins. TS-AMIR 

[46] runs hundreds of times faster than geometry based 

methods CE and TM-Align while maintaining the same 

accuracy levels. Deconstruct handles a test query data in 

only 2 minutes, which is faster than CE and Top Match 

which takes 2,915 minutes and 67 minutes, respectively. 

Based on the distance matrix concept, decision trees 

achieved range of overall accuracy from 79% to 98% 

(Table 2). The cons of distance matrix are its sensitivity 

to construction parameters and its high dimensionality. 

However, such limitations can be solved using Wavelets 

to reduce dimensionality and extract features. Regarding 

function prediction based on local structure comparison, 

shape descriptors which consider overall protein surface 

shape features achieved higher prediction accuracy than 

SSEs features. Surface shape based approaches are 

proving to be more accurate and biologically meaningful 

with binding and functional sites. However, they are 

computationally higher than utilizing the residues 

coordinates. Some structure based methods utilize 

evolutionary information with structure information to 

improve the accuracy of prediction. Till now, no one 

exact method or one exact representation can be decided 

to be the best for predication. Accurate and dataset-

independent methods with lower computational 

complexity are still needed for different aspects of protein 

function prediction. 

 

V.  CONCLUSION 

Using computational methods for the prediction of 

protein functions became essential. It saves much 

laboratory needed effort, time and cost. They may be 

based on any of protein characteristics, i.e. sequences or 

structures. However, protein functions are highly related 

to their structures. Therefore, structure-based function 

prediction methods attract a great attention. They are 

highly required and challenging in the function analysis 

of proteins. Therefore, this review provides both leading 

and recent structural classifications, function prediction 

methods, databases and tools that are based on protein 

structures.  

REFERENCES 

[1] E.W. Sayers, T. Barrett, D.A. Benson, et al. ―Database 

resources of the national center for biotechnology 

information,‖ Nucleic Acids Res, vol. 40, pp. D13–D25, 

2012. 

[2] H. Vuong, R.M. Stephens and N. Volfovsky, ―AVIA: An 

interactive web-server for annotation, visualization and 

impact analysis of genomic variations,‖ BMC Proceedings, 

vol. 6, pp. 37, 2012. 

[3] D. Barrell, E. Dimmer, R. P. Huntley, D., Binns, C. 

O’Donovan and R. Apweiler, ―The GOA database in 

2009—an integrated gene ontology annotation resource,‖ 

Nucleic Acids Res, vol. 37, pp. D396–D403, 2009. 

[4] T. Hawkins and D. Kihara, ―Function prediction of 

uncharacterized proteins,‖ J Bioinform Comput Biol, vol. 5, 

pp. 1-30, 2007. 

[5] S. Erdin, A. M. Lisewski and O. Lichtarge, ―Protein 

function prediction: towards integration of similarity 

metrics,‖ Curr Opin Struc Biol, vol. 21, pp. 180–188, 2011. 

[6] S.C. Rastogi, P. Rastogi and N. Mendiratta, Bioinformatics 

Methods and Applications: Genomics Proteomics and 

Drug Discovery. 3rd edition. PHI Learning Pvt. Ltd. 2008. 

[7] B. Boeckmann, A. Bairoch, R. Apweiler, et al. ―The 

SWISS-PROT protein knowledgebase and its supplement 

TrEMBL in 2003,‖ Nucleic Acids Res, vol. 31, pp. 365–

370, 2003. 

[8] H. M. Berman, J. Westbrook, Z. Feng, et al. ―The protein 

data bank,‖ Nucleic Acids Res, vol. 28, pp. 235–242, 2000. 

[9] A. B. Murzin, ―SCOP: a structural classification of 

proteins database for the investigation of sequences and 

structures,‖ J Mol Biol, vol. 247, pp. 536–540, 1995. 

[10] C. A. Orengo, A. D. Michie, S. Jones, D. T. Jones, M. B. 

Swindells and J. M. Thornton, ―CATH--a hierarchic 

classification of protein domain structures,‖ Structure, vol. 

5, pp. 1093–1108, 1997. 

[11] M. Levitt and C. Chothia, ―Structural patterns in globular 

proteins,‖ Nature, vol. 261, pp. 552–558, 1976. 

[12] N. K. Fox, S.E. Brenner and J.M. Chandonia, ―SCOPe: 

structural classification of proteins—extended, integrating 

SCOP and ASTRAL data and classification of new 

structures,‖ Nucleic Acids Res, vol. 42, D304-309, 2014.  

[13] I. Sillitoe, A. L. Cuff, B. H. Dessailly, N. L. Dawson, N. 

Furnham, D. Lee, J. G. Lees, T. E. Lewis, R. A. Studer, R. 

Rentzsch, C. Yeats, J. M. Thornton and C. A. Orengo, 

―New functional families (FunFams) in CATH to improve 

the mapping of conserved functional sites to 3D 

structures,‖ Nucleic Acids Res, vol. 41(Database issue): 

D490–D498, 2013). 

[14] J. Bonet, J. Planas-Iglesias, J. Garcia-Garcia, M. A. Marín-

López, N. Fernandez-Fuentes and B. Oliva, ―ArchDB 

2014: structural classification of loops in proteins,‖ 

Nucleic Acids Res, vol. 42 (Database issue), D315-9, 2014. 

[15] H. Cheng, R. D. Schaeffer, Y. Liao, L. N. Kinch, J. Pei, S. 

Shi, B. Kim and N. V. Grishin, ―ECOD: an evolutionary 

classification of protein domains,‖ Plos Comput Biol, vol. 

10, e1003926, 2014. 

[16] F. J. Burkowski, Structural Bioinformatics An algorithmic 

Approach. Chapman and Hall/CRC Mathematical & 

Computational Biology Series, 2009. 

[17] D. E. Almonacid, E. R. Yera, J. B. O. Mitchell and P. C. 

Babbitt, ―Quantitative comparison of catalytic mechanisms 

and overall reactions in convergently evolved enzymes: 

implications for classification of enzyme function,‖ Plos 

Comput Biol, vol. 6, No. 3, pp. e1000700, 2010. 

[18] M. Ashburner, C. A. Ball, J. A. Blake, et al. ―Gene 

ontology: tool for the unification of biology, The Gene 



 Structural Protein Function Prediction - A Comprehensive Review 55 

Copyright © 2015 MECS                                                  I.J. Modern Education and Computer Science, 2015, 10, 49-57 

Ontology Consortium,‖ Nat Genet, vol. 25, pp. 25–29, 

2000. 

[19] Z. P. Feng, ―An overview on predicting subcellular 

location of a protein,‖ In Silico Biol, vol. 2, pp. 291-303, 

2002. 

[20] D. L. Wild and M. A. S. Saqi, ―Structural proteomics: 

inferring function from protein structure,‖ Current 

Proteomics, vol. 1, No. 1, pp. 59–65, 2004. 

[21] J. Han and M. Kamber, Data Mining: Concepts and 

Techniques. San Francisco, CA: Elsevier, 2008. 

[22] P. Larranaga, B. Calvo, R. Santana, R. et al. ―Machine 

learning in bioinformatics,‖ Brief Bioinform, vol. 7, No. 1, 

pp. 86–112, 2006. 

[23] W. Ewens and G. Grant, ―Statistical methods in 

bioinformatics: an introduction,‖ in Statistics for biology 

and health, M. Gail, K. Krickeberg, J. Samet, A. Tsiatis, 

and W. Wong, Eds. 2nd ed., Springer, 2005. 

[24] A. K. Tiwari and R. Srivastava, ―A survey of 

computational intelligence techniques in protein function 

prediction,‖ International Journal of Proteomics, vol. 2014, 

2014. 

[25] A. Cuff, O. Redfern, B. Dessailly and C. Orengo, 

―Exploiting protein structures to predict protein functions,‖ 

in Protein Function Prediction for Omics Era, D. Kihara,  

Ed. USA: Springer, 2011. 

[26] O. C. Redfern, B. Dessailly and C. A. Orengo, ―Exploring 

the structure and function paradigm,‖ Curr Opin Struct 

Biol, vol. 18, pp. 394–402, 2008. 

[27] D. Lee, O. Redfern and C. Orengo, ―Predicting protein 

function from sequence and structure,‖ Nat Rev Mol Cell 

Bio, vol. 8, pp. 995–1005, 2007. 

[28] J. D. Watson, R. A. Laskowski and J. M. Thornton, 

―Predicting protein function from sequence and structural 

data,‖ Curr Opin Struct Biol, vol. 15, pp. 275–284, 2005. 

[29] G. J. Bartlett, A. E. Todd and J. M. Thornton, ―Inferring 

protein function from structure,‖ in Structural 

Bioinformatics, P. E. Bourne and H. Weissig, Eds. 

Hoboken, New Jersey: Wiley-Liss, 2003. 

[30] R. A. Laskowski, J. D. Watson and J. M. Thornton, 

―ProFunc: a server for predicting protein function from 3D 

structure,‖ Nucleic Acids Res, vol. 33, pp. W89-W93, 2005. 

[31] J. Yang, R. Yan, A. Roy, D. Xu, J. Poisson and Y. Zhang, 

―The I-TASSER Suite: Protein structure and function 

prediction,‖ Nat Methods, vol. 12, pp. 7-8, 2015. 

[32] D. Xu, J. Zhang, A. Roy and Y. Zhang, ―Automated 

protein structure modeling in CASP9 by I-TASSER 

pipeline combined with QUARK-based ab initio folding 

and FG-MD-based structure refinement,‖ Proteins: Struct, 

Func, Bioinf, vol. 79, (Suppl 10), pp. 147-160, 2011. 

[33] M. Boaretoa, M. Yamagishib, N. Catichaa, and V. Leite, 

―Relationship between global structural parameters and 

Enzyme Commission hierarchy: Implications for function 

prediction,‖ Comput Biol Chem, vol. 40, pp. 15–19, 2012. 

[34] R. Wang and S. C. Schmidler, ―Bayesian multiple protein 

structure alignment,‖ Research in Computational 

Molecular Biology. Lecture Notes in Computer Science, 

vol. 8394, pp. 326-339, 2014. 

[35] D. W. Ritchie, A. W. Ghoorah, L. Mavridis and V. 

Venkatraman, ―Fast protein structure alignment using 

Gaussian overlap scoring of backbone peptide fragment 

similarity,‖ Bioinformatics, vol. 28, pp. 3274–3281, 2012. 

[36] M. Wiederstein, M. Gruber, K. Frank, F. Melo and M. J. 

Sippl, ―Structure-based characterization of multiprotein 

complexes,‖ Structure, vol. 22, pp. 1063–1070, 2014. 

[37] K. Olechnovič and Č. Venclovas, ―The CAD-score web 

server: contact area-based comparison of structures and 

interfaces of proteins, nucleic acids and their complexes,‖ 

Nucleic Acids Res, vol. 42 (Web Server issue), W259-W2, 

2014. 

[38] S. Minami, K. Sawada and G. Chikenji, ―MICAN: a 

protein structure alignment algorithm that can handle 

Multiple-chains, Inverse alignments, Ca only models, 

Alternative alignments, and Non-sequential alignments,‖ 

BMC Bioinformatics, vol. 14, 24, 2013. 

[39] M. J. Sippl and M. Wiederstein, ―Detection of spatial 

correlations in protein structures and molecular 

complexes,‖ Structure, vol. 20, pp.718–728, 2012. 

[40] M. N. Nguyen, K. P. Tan and M. S. Madhusudhan, 

―CLICK - Topology independent comparison of 

biomolecular 3D structures,‖ Nucleic Acids Res, vol. 39, 

Issue suppl 2, pp. W24-W28, 2011. 

[41] R. Potestio, T. Aleksiev, F. Pontiggia, S. Cozzini and C. 

Micheletti, ―ALADYN: a web server for aligning proteins 

by matching their large-scale motion,‖ Nucleic Acids Res, 

vol. 38(Web Server issue), W41-5, 2010. 

[42] Y. Zhang and J. Skolnick, ―TM-align: A protein structure 

alignment algorithm based on TM-score,‖ Nucleic Acids 

Res, vol. 33, pp. 2302-2309, 2005. 

[43] I. N. Shindyalov and P. E. Bourne, ―Protein structure 

alignment by incremental combinatorial extension (CE) of 

the optimal path,‖ Protein Eng, vol. 11, pp. 739–747, 1998. 

[44] L. Holm and C. Sander, ―Dali: a network tool for protein 

structure comparison,‖ Trends Biochem Sci, vol. 20, No. 

11, pp. 478–80, 1995. 

[45] T. Madej, C. J. Lanczycki, D. Zhang, P. A. Thiessen, R. C. 

Geer, A. Marchler-Bauer and S. H. Bryant, ―MMDB and 

VAST+: tracking structural similarities between 

macromolecular complexes,‖ Nucleic Acids Res, vol. 42, 

pp. D297-303, 2014). 

[46] J. Razmara, S. Deris and S. Parvizpour, ―TS-AMIR: a 

topology string alignment method for intensive rapid 

protein structure comparison,‖ Algorithm Mol Biol, vol. 7, 

4, 2012. 

[47] Z. H. Zhang, K. Bharatham, W. A. Sherman and I. 

Mihalek, ―deconSTRUCT: general purpose protein 

database search on the substructure level,‖ Nucleic Acids 

Res, vol. 38(Web Server issue), W590-W594, 2010. 

[48] Z. H. Zhang, H. K. Lee and I. Mihalek, ―Reduced 

representation of protein structure: implications on 

efficiency and scope of detection of structural similarity,‖ 

BMC Bioinformatics, vol. 11, 155, 2010. 

[49] S. Shi, B. Chitturi and N. V. Grishin, ―ProSMoS server: a 

pattern-based search using interaction matrix 

representation of protein structures,‖ Nucleic Acids Res, 

vol. 37(Web Server issue), W526-31, 2009.  

[50] C. A. Orengo and W. R. Taylor, ―SSAP: sequential 

structure alignment program for protein structure 

comparison,‖ Methods Enzymol, vol. 266, pp. 617–635, 

1996. 

[51] J. F. Gibrat, T. Madej and S. H. Bryant, ―Surprising 

similarities in structure comparison,‖ Curr Opin Struct 

Biol, vol. 6, pp. 377-85, 1996. 

[52] G. Mayr, F. Domingues and P. Lackner, ―Comparative 

analysis of protein structure alignments,‖ BMC Struct Biol, 

vol. 7, 50, 2007. 

[53] L. Holm and P. Rosenström, ―Dali server: conservation 

mapping in 3D,‖ Nucleic Acids Res, vol. 38, pp. W545-

549, 2010. 

[54] A. Prlic, S. Bliven, P. W. Rose, W. F. Bluhm, C. Bizon, A. 

Godzik, P. E. Bourne, ―Pre-calculated protein structure 

alignments at the RCSB PDB website,‖ Bioinformatics, 

vol. 26, pp. 2983-5, 2010. 

[55] L. Bartoli, E. Capriotti, P. Fariselli, P. L. Martelli and R. 

Casadio, ―The pros and cons of predicting protein contact 



56 Structural Protein Function Prediction - A Comprehensive Review  

Copyright © 2015 MECS                                                  I.J. Modern Education and Computer Science, 2015, 10, 49-57 

maps,‖ in: Protein Structure Prediction, M. J. Zaki and C. 

Bystroff, Eds. 2nd ed., Totowa, New Jersey: Humana 

Press, 2008. 

[56] J. Hu, X. Shen, Y. Shao, C. Bystroff and M. J. Zaki, 

―Mining protein contact maps,‖ in Proceedings of 

BIOKDD02: Workshop on Data Mining in Bioinformatics, 

with SIGKDD02 Conference, M. Zaki, J. Wang and H. 

Toivonen, Eds. Edmonton, Alberta, Canada, 2002. 

[57] D. E. Pires, R. C. Melo-Minardi, M. A. Santos, C. H. 

Silveira, M. M. Santoro and W. Meira, ―Cutoff Scanning 

Matrix (CSM): structural classification and function 

prediction by protein inter-residue distance patterns,‖ BMC 

Genomics, vol. 12, S12, 2011. 

[58] D. Bhavani, K. Suvarnavani and S. Sinha, ―Mining of 

protein contact maps for protein fold prediction,‖ Wiley Int. 

Review on Data Mining and Knowledge Discovery, vol. 1, 

No. 4, pp. 362–368, 2011. 

[59] H. A. Maghawry, M. G. Mostafa and T. F. Gharib, ―A new 

protein structure representation for efficient protein 

function prediction,‖ J Comput Biol, vol. 21, pp. 936-46, 

2014. 

[60] K. Marsolo and K. Ramamohanarao, ―Structure based 

querying of proteins using wavelets,‖ Proceedings of the 

15th ACM International Conference on Information and 

Knowledge Management (CIKM '06.), November 5–11; 

Arlington, VA, USA. USA: ACM New York, 2006. 

[61] G. Mirceva, I. Cingovska, Z. Dimov and D. Davcev, 

―Efficient approaches for retrieving protein tertiary 

structures,‖ IEEE Trans on Computational Biology and 

Bioinformatics, vol. 9, No. 4, pp. 1166–1179, 2012. 

[62] B. J. Polacco and P. C. Babbitt ―Automated discovery of 

3D motifs for protein function annotation,‖ Bioinformatics, 

vol. 22, pp. 723–730, 2006. 

[63] J. Yang, A. Roy and Y. Zhang, ―BioLiP: a semi-manually 

curated database for biologically relevant ligand-protein 

interactions,‖ Nucleic Acids Res, vol. 41, D1096-D1103, 

2013. 

[64] J. Konc and D. Janezic, ―ProBiS–2012: web server and 

web services for detection of structurally similar binding 

sites in proteins,‖ Nucleic Acids Res, vol. 40, pp. W214-

W221, 2012. 

[65] J. Dundas, Z. Ouyang, J. Tseng, A. Binkowski, Y. Turpaz 

and J. Liang, ―CASTp: computed atlas of surface 

topography of proteins with structural and topographical 

mapping of functionally annotated residues,‖ Nucleic 

Acids Res, vol. 34, W116-W118, 2006. 

[66] N. Furnham, G. L. Holliday, T. A. de Beer, J. O. Jacobsen, 

W. R. Pearson and J. M. Thornton, ―The Catalytic Site 

Atlas 2.0: cataloging catalytic sites and residues identified 

in enzymes,‖ Nucleic Acids Res, vol. 42(Database issue), 

D485-9, 2014.  

[67] K. Kinoshita and H. Nakamura, ―Identification of the 

ligand binding sites on the molecular surface of proteins,‖ 

Protein Sci, vol. 14, pp. 711-718, 2005. 

[68] Y. Jia, J. Huan, V. Buhr, J. Zhang and L. N. 

Carayannopoulos, ―Towards comprehensive structural 

motif mining for better fold annotation in the "twilight 

zone" of sequence dissimilarity,‖ BMC Bioinformatics, vol. 

10, No. 1, S46, 2009. 

[69] S. Ku and Y. Hu, ―Structural alphabet motif discovery and 

a structural motif database,‖ Comput Biol Med, vol. 42, pp. 

93–105, 2012. 

[70] J. Shi and Y. Zhang, ―Fast SCOP classification of 

structural class and fold using secondary structure mining 

in distance matrix‖ in Proceedings of fourth IAPR 

International Conference (PRIB 2009), V. 

Kadirkamanathan, G. Sanguinetti, M. Girolami, M., 

Niranjan and J. Noirel, Eds. September 7–9; Sheffield, UK. 

Heidelberg: Springer, pp. 344–353, 2009. 

[71] A. Rahimi, A. Madadkar-Sobhani, R. Touserkani and B. 

Goliaei, ―Efficacy of function specific 3D-motifs in 

enzyme classification according to their EC-numbers,‖ J 

Theor Biol, vol. 336, pp. 36–43, 2013. 

[72] D.R. Livesay, D. KC and D. La, ―Predicting protein 

functional sites with phylogenetic motifs: past, present and 

beyond,‖ in Protein Function Prediction for Omics Era, D. 

Kihara, Ed. USA: Springer, 2011. 

[73] D. KC and D. R. Livesay, ―A spectrum of phylogenetic-

based approaches for predicting protein functional sites,‖ 

in Bioinformatics for Systems Biology. S. Krawetz, Ed. 

New York: Humana Press, 2009. 

[74] B. Nisius, F. Sha and H. Gohlke, ―Structure-based 

computational analysis of protein binding sites for function 

and druggability prediction,‖ J Biotechnol, vol. 159, No. 3, 

pp. 123–134, 2012. 

[75] M. N. Wass, L. A. Kelley and M. J. Sternberg, 

―3DLigandSite: predicting ligand-binding sites using 

similar structures,‖ Nucleic Acids Res, vol. 38, W469-73, 

2010. 

[76] N. Nadzirin, E. Gardiner, P. Willett, P. J. Artymiuk and M. 

Firdaus-Raih, ―SPRITE and ASSAM: web servers for side 

chain 3D-motif searching in protein structures,‖ Nucleic 

Acids Res, vol. 40(Web Server issue), W380-6, 2012. 

[77] L. Xie and P. E. Bourne, ―A robust and efficient algorithm 

for the shape description of protein structures and its 

application in predicting ligand binding sites,‖ BMC 

Bioinformatics, vol. 8(Suppl 4):S9, 2007. 

[78] L. Sael, D. La, B. Li, R. Rustamov and D. Kihara, ―Rapid 

comparison of properties on protein surface,‖ Proteins, vol. 

73, pp. 1–10, 2008. 

[79] L. Sael, B. Li, D. La, et al., ―Fast protein tertiary structure 

retrieval based on global surface shape similarity,‖ 

Proteins, vol. 72, pp. 1259–1273,  2008. 

[80] D. Kihara, L. Sael, R. Chikhi and J. Esquivel-Rodriguez, 

―Molecular surface representation using 3d Zernike 

descriptors for protein shape comparison and docking,‖ 

Curr Protein Pept Sc, vol. 12, pp. 520–530, 2011. 

[81] R. Chikhi, L. Sael and D. Kihara, ―Protein binding ligand 

prediction using moments-based methods,‖ in Protein 

Function Prediction for Omics Era, D. Kihara, Ed. USA: 

Springer, 2011. 

[82] H. Zhao, Y. Yang and Y. Zhou, ―Structure-based 

prediction of DNA-binding proteins by structural 

alignment and a volume-fraction corrected DFIRE-based 

energy function,‖ Bioinformatics, vol. 26, pp. 1857–1863, 

2010. 

[83] M. E. Bock, C. Garutti and C. Guerra, ―Discovery of 

similar regions on protein surfaces,‖ J Comput Biol, vol. 

14, No. 3, pp. 285–99, 2007. 

 

 

 

Authors’ Profiles 

 
Huda A. Maghawry received her B.Sc. 

(Excellent with Honor Degree with Rank 1st) 

in 2003, her M.Sc. degree entitled ―An 

Enhanced Clustering Algorithm for Gene 

Expression Data‖ in 2008, and her Ph.D. 

degree entitled ―Mining Structural Patterns 

for Automatic Protein Function Prediction‖ 

in 2014 from faculty of Computer and 

Information Sciences, Ain Shams University, Cairo, Egypt.



 Structural Protein Function Prediction - A Comprehensive Review 57 

Copyright © 2015 MECS                                                  I.J. Modern Education and Computer Science, 2015, 10, 49-57 

Mostafa Gadal-Haqq M. Mostafa is a 

Professor of Computer Science. He received 

a B.Sc. (Honor) in 1984 in Physics, a M.Sc. 

in 1989 in Computational Physics from the 

Faculty of Science, Ain Shams University, 

Cairo, Egypt, and a Ph.D. in 1996 in 

Computational Physics through joint 

supervision between Ain Shams University 

and Oak Ridge National Lab (ORNL), USA, in the period from 

1993 to 1995. He joined the Department of Electrical and 

Computer Engineering, University of Louisville, USA, as a 

Postdoc in the period 1998-2000. He also joined the Faculty of 

Computer Science and Engineering, Taibah University, 

Madinah, Saudi Arabia in the period from 2001-2009. His 

research interests includes: Computer Vision, Pattern 

Recognition, Arabic OCR, Medical Image Analysis, Data 

Mining, Bioinformatics, and Information Security. 

 

 

Mohamed A Hashem is a Professor of 

information systems. He received his B.Sc. in 

Elec. Eng. & Communications, from Military 

Technical Collage (M.T.C), Cairo, Egypt, 

1976. He received his M. Sc. and Ph.D. in 

Elec. Eng. & Communications from faculty 

of Engineering, Cairo University, in 1990 

and 1996, respectively. His research interest 

includes Computer Networks and Information Security. 

 

 

Tarek F. Gharib is a Professor of 

information systems. He received his Ph.D. 

degree in Theoretical Physics from the 

University of Ain Shams. His research 

interests include data mining techniques, 

bioinformatics, graph and sequential data 

mining and information retrieval. He has 

published over 30 papers on data mining. He 

received the National Science Foundation Award in 2001. Prof 

Gharib is currently with faculty of Computing and Information 

Technology, King Abdulaziz University, Saudi Arabia. 

 

 
Manuscript received March 24, 2015; revised Month Date, 

Year; accepted September 17, 2015. 


