
I.J. Modern Education and Computer Science, 2014, 8, 45-58
Published Online August 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2014.08.06

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 8, 45-58

MLP based Reusability Assessment Automation

Model for Java based Software Systems

Surbhi Maggo
Jaypee Institute of Information Technology, India

surbhi.maggo@gmail.com

Chetna Gupta
Jaypee Institute of Information Technology, India

Chetnagupta04@gmail.com

Abstract—Reuse refers to a common principle of using

existing resources repeatedly, that is pervasively

applicable everywhere. In software engineering reuse

refers to the development of software systems using

already available artifacts or assets partially or

completely, with or without modifications. Software

reuse not only promises significant improvements in

productivity and quality but also provides for the

development of more reliable, cost effective, dependable

and less buggy (considering that prior use and testing

have removed errors) software with reduced time and

effort. In this paper we present an efficient and reliable

automation model for reusability evaluation of procedure

based object oriented software for predicting the

reusability levels of the components as low, medium or

high. The presented model follows a reusability metric

framework that targets the requisite reusability attributes

including maintainability (using the Maintainability

Index) for functional analysis of the components. Further

Multilayer perceptron (using back propagation) based

neural network is applied for the establishment of

significant relationships among these attributes for

reusability prediction. The proposed approach provides

support for reusability evaluation at functional level

rather than at structural level. The automation support for

this approach is provided in the form of a tool named

JRA2M2 (Java based Reusability Assessment Automation

Model using Multilayer Perceptron (MLP)), implemented

in Java. The performance of JRA2M2 is recorded using

parameters like accuracy, classification error, precision

and recall. The results generated using JRA2M2 indicate

that the proposed automation tool can be effectively used

as a reliable and efficient solution for automated

evaluation of reusability.

Index Terms—Back propagation; Maintainability Index;

Metrics; Multi Layer Perceptron; Neural Network;

Procedure Oriented; Reusability.

I. INTRODUCTION

Human dependability on computer software has

increased multifold in the past few decades, making

software very omnipresent. This requires development of

more and more complex, sophisticated, reliable and

secure software systems on a very large scale. Such a

growth in software requirements is exponential in nature

and is difficult to achieve even with the advancements in

technology, enhanced hardware performances, increase

in storage and memory capacity, improved computing

architectures and rising number of computer

professionals [1]. This has placed immense pressure on

software engineers for fulfilling software requirements

timely with high quality and reliable software thus

keeping software productivity in pace with the demands

placed on the software industry. Several years of research

and study have shown that using the traditional practices

for software development has led to widening the gap

between the demands placed on the software industry and

their fulfillment, and software reuse is the only realistic,

practical and technically feasible solution that could help

reduce this gap while improving software quality.

Conceptually software reuse refers to the development

of new software systems using the already available

software assets and resources in combination with each

other or some newly developed components, rather than

from scratch. As proposed by Mcllory in [2], the formal

idea of software reuse proposed the development of an

industry of reusable software components and the

industrialization of the production of application software

from off-the-shelf components. Reuse possesses great

potential for significant improvements in software

productivity, quality and reliability [3]. Further software

reuse also leads to the accelerated development (reducing

both development and maintenance time and effort) of

more reliable, cost and time effective, dependable,

maintainable, less buggy and error free (considering that

prior use and testing has led to removal of bugs) software

products. Other potential benefits of reusability include

effective use of specialist, reduced process risk, standard

compliance etc. [4]. Software reusability thus can be

defined as the measure of the ease of using the formerly

acquired concepts and objects in new contexts [5]. This

ease of reuse depends on certain attributes and factors

that influence the reusability of a software component.

Loose coupling, modularity, high cohesion, separation of

concerns, ease of understanding, proper documentation,

46 MLP based Reusability Assessment Automation Model for Java based Software Systems

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 8, 45-58

information hiding and low complexity are a few

attributes that increase the likelihood of a component of

being reusable [6].

Software reuse has long been misconstrued as source

code reuse, whereas the term software reuse refers to the

reuse of any artifact or asset or product associated with

software development, be it algorithm, requirement, plan,

design, documentation, estimation templates, test plans or

test cases, user manuals or even human interfaces [7].

Software Reuse has been an active and open area of

research over the past 35 years where research challenges

associated with systematic reuse still exist. Reuse can be

perceived as applicable in software development industry

in two different forms, one being “development for reuse”

and the other being “development with reuse”.

Developing for reuse refers to the design and

development of software in such a way that it can be

reused in the future whereas developing with reuse refers

to currently benefiting from reuse by using the already

existing software resources for development of new ones.

Clearly development with reuse offers greater potential

benefits with lesser efforts as compared to the former one,

still there are a number of risks and challenges associated

with it that include identification of components that are

worth reuse, understanding and adapting these

components and maintaining them. Researchers have

presented a number of empirical approaches for

measuring reusability based on different complexity

based and other metrics as discussed in related work.

Lately the focus of research in the field of software reuse

has drifted towards the development of functions that

could help in the establishment of meaningful

relationships among various reusability attributes

represented (measured) by reusability metrics for the

evaluation of reusability levels (high, medium or low)

and identification of reusable software components. For

the generation of such functions domains like neural

networks, data mining, machine learning, artificial

intelligence etc are being explored by researchers. Many

such proposed approaches are presented in a tabular form

in section 2.

The presented work proposes an efficient and reliable

automated solution to the problem of software reusability

measurement and prediction of reusability levels (low,

medium or high) of procedure based object oriented

software components thereby easing and systematizing

the software reuse process and reducing the risks

associated with it. The proposed solution model follows a

reusability metric framework that targets the requisite

reusability attributes including maintainability (using the

Maintainability Index) for the functional analysis of the

software components. Further Multilayer perceptron

(using back propagation) based neural network is applied

for the establishment of significant relationships among

these attributes for reusability level prediction. The

proposed approach works at functional level rather than

at structural level. The performance of the tool JRA2M2

(Java based Reusability Assessment Automation Model

using MLP) is evaluated using the results generated by it

using parameters like accuracy, classification error,

precision and recall (based on the confusion matrix

generated). The results generated by JRA2M2 indicate

that the presented automation model can be effectively

used as an efficient and reliable solution for the

automated identification of reusable procedure based

object oriented software components from the existing

resources.

The remaining paper is organized as: the next section

talks about the related work present in the literature of

software reuse. Section 3 presents the problem

formulation followed by the Proposed solution model for

reusability measurement presented in section 4. The next

section 5 presents an overview of the results generated by

the proposed automation tool JRA2M2 implemented in

Java. JRA2M2 is compared with other existing approaches

for measuring reliability of various parameters, the

results of which are presented in section 6. Finally

section 7 and 8 discuss the applications and significance

of the proposed system and the conclusion respectively.

II. RELATED WORK

The literature of software reuse presents numerous

approaches for the identification and assessment of

reusability levels of the software components. Initial

research primarily focused on: 1) identifying the

attributes and qualities of a software component that

could determine its reuse potential and 2) establishing

metrics that could be used to measure the degrees or

levels of these attributes by direct or indirect means in

order to predict reusability. Further with the

advancements in the field of computer science, software

reuse researchers tried to explore relationships between

these attributes to see how these attributes can be used

collectively for reusability evaluation and identification

of reusability levels of software components. Many fields

like data mining, artificial intelligence, machine learning,

neural networks and genetic algorithms etc have been

explored by researchers lately with the motive of

generating such functions that can establish relationships

among various reusability attributes and can efficiently

automate collective reusability evaluation using these

metric relationships. Different works proposed using

these domains are presented in table 1 below. The

approaches presented in table 1 use functional or

structural level metric measures to support the reusability

evaluation using domains like data mining, machine

learning, neural network and also genetic algorithms.

Manhas et al. [8] and Kumar [10] explore the Caldiera

and Basili (CB) metric suite along with neural networks

for reusability assessment. Manhas et al. [8] experiment

with five different neural network algorithms under their

approach that included Batch Gradient Descent, Batch

Gradient Descent with momentum, Variable Learning

Rate, Variable Learning Rate training with momentum

and Resilient Back propagation. They also provide for a

performance based comparison of these algorithms based

on mean accuracy, mean MAE and mean RMSE. Kumar

[10] explores the reusability evaluation as an application

 MLP based Reusability Assessment Automation Model for Java based Software Systems 47

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 8, 45-58

of Support Vector Machine (SVM). Neural networks

approaches like Neuro fuzzy neural network and

multilayer perceptron based network for reusability

prediction have been used by Sandhu et al. [14] and

Singh et al. [18] respectively but at structural level. Both

use the Chidamber and Kemerer (CK) metric suite for the

structural analysis of the software components for testing

reusability levels. Structural analysis using CK suite has

been supported by different data mining techniques as

well. Shri et al. [9] propose the use of a hybrid k- means

and decision tree based approach along with this

structural analysis (using CK suite). A very similar model

has been proposed by Sandhu et al. [15] that uses the CK

suite and k-means algorithm for software reusability

prediction.

Sandhu et al. [19] also propose an approach that uses a

hybrid of Neuro fuzzy and genetic algorithm for

identifying reusable software components at the

functional level with the help of the CB metric suite.

Cheema et al. [11] and Saini et al. [12] experiment and

explore the domain of machine learning for reusability

evaluation at functional level. They use k-Nearest

neighbors and Density Based Spatial Clustering of

Applications with Noise (DBSCAN) respectively. The

later highlights the concept of density of components as

important for reuse evaluation. Goel et al. [16] achieve

appreciable prediction results with function oriented

software metrics [16] and expectation maximaization

algorithm. Kanellopoulos et al. [17] employ a metric

framework along with k-Means for evaluating the

maintainability and hence reusability of OO software

systems. The solution is semi automated as the parsing

engine extracts the data from the source code and stores it

on a database. Most of the approaches presented in this

section lack proper automation support, that is provided

by the automation model proposed in this paper.

Table 1. Literarure Survey

Approach Proposed

By

Domain Scope Metrics & Algorithms Used

Manhas et al. [8] Neural Network Functional level

Object Oriented

CB[20], Neural Network

Shri et al. [9] Data Mining Structural level Object

Oriented

CK[21], Hybrid k-Means & Decision Tree

Kumar [10] Neural Network Functional level

Object Oriented

CB, SVM

Cheema et al. [11] Machine Learning Functional level

Object Oriented

CB, k-NN

Saini et al. [12] Machine Learning Functional level

Object Oriented

CB, DBSCAN

Czibula et al. [13] Data Mining Object Oriented

Paradigm

S/W Metric[13], Hierarchical

Sandhu et al. [14] Neural Network Structural level Object

Oriented

CK, Fuzzy Neuro

Sandhu et al. [15] Data Mining Structural level Object

Oriented

CK, k-Means

Goel et al. [16] Data Mining Function Oriented S/W Metric[16], Expectation Maximization

Kanellopoulos et al.

[17]

Data Mining Object Oriented

Systems

S/W Metric[17], k-Means

Singh et al. [18] Neural Network Structural level Object

Oriented

CK, Multi Layer Perceptron

Sandhu et al. [19] Genetic Algorithm Functional level

Object Oriented

CB, Hybrid fuzzy Genetic Algorithm

III. PROBLEM FORMULATION

Software reuse offers a great deal of potential in terms

of improvements in quality and productivity. Software

reuse acts as a boon for the software industry as it

provides for the development of error free software

products along with gains in time of development and

cost and effort required. The concept of software reuse

can be realized using two different approaches: a)

identifying reusable resources from existing software

reservoirs and using them for the development of current

projects/software, b) initiate the development of reusable

software products that can be reused at later stages. Using

the later approach towards reuse i.e. development of

reuse libraries by creating reusable components from

scratch involves an additional associated designing and

development cost, which can be avoided using the earlier

approach based on assessment of the existing software

repositories in order to identify and extract the reusable

software components and utilizing them in the current

scenario. Numerous reusability metrics and measures

based approaches for the assessment of reusable

components have been proposed in the literature of

software reuse as presented in section 2 on Related Work,

however the issue of how these measures support each

other and contribute collectively to the reusability level

evaluation, is relatively unexplored. With the capabilities

of a neural network like extracting and storing knowledge,

48 MLP based Reusability Assessment Automation Model for Java based Software Systems

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 8, 45-58

reasoning like humans and training itself with experience,

it can prove to be immensely helpful in the establishment

of relationships among these metrics for the collective

reusability level evaluation process.

Hence the paper proposes a procedure oriented

reusability metric framework and neural network based

efficient and reliable system for automated evaluation of

components identifying them as high, medium or low

reusable components. The model presented in the paper

focuses on a Multi-layer perceptron based neural network

for the mapping of exact relationships among the various

reusability metrics for the correct identification of the

reusability levels of the software components. The

training process followed by the MLP based neural

network model uses the back propagation algorithm thus

minimizing the risks associated with wrong reuse and

making the prediction far more accurate and efficient,

thereby providing for promising results in predicting

reusability levels. Software developers can thus use the

proposed Java based automation model for efficient and

reliable identification of procedure based reusable

components, which works at functional level rather than

at structural level for the precise prediction of reusability

levels of procedure based object oriented software

systems.

IV. PROPOSED SOLUTION/ METHODOLOGY

The basic framework of the proposed tool for

identification of reusable components is presented in fig

1 below. Our tool JRA2M2 extracts components from

existing inventory of software resources, further a metric

framework followed by a neural network based module is

used for evaluating the reusability levels of different

components.

Fig. 1. Framework for proposed tool

A. Software Metric Framework Module:

The metric framework modules assess the input

software components for various carefully selected

reusability attributes. This module consists of sub

modules that include: Metric Selection Module,

Component Extractor and Analyzer and Metric

Calculator. Fig 2a shows in detail the Metric Framework

module with its sub modules.

 Metric Selection Module:

The first step of the system model is the selection of

metrics for measuring reusability attributes. The

evaluation model presented in our paper attempts to

select metrics that either provide a direct measure for the

reusability attributes or indirectly assess them by

providing the evidences of the attribute’s presence. These

attributes that are responsible for making a component

reusable in another system include its low reuse cost, its

quality and its functional usefulness in the context of its

application domain. These reusability attributes namely

Quality, Cost and Usefullness are presented in the table 2

below along with the factors

that affect these attributes respectively. The table 2

also presents with each factor, one or more associated

metrics that either measure these factors directly or

indirectly indicate their presence at functional level.

The metrics selected under our approach include

Cyclomatic complexity (CC), Halstead Program Volume

(HPV), Regularity Metric (RM), Reuse Frequency (RF)

and Maintainability Index (MI). The values generated by

these metrics are interpreted as high, low or medium

using [20,22] in order to determine the reusability values.

Under the presented approach the maintainability

index (MI) has been considered as an important metric

for the precise and accurate prediction of reusability

levels. Here in the proposed reusability prediction model

we explore and use MI as our fifth metric in order to take

into account maintenance efforts in case of partial reuse

or reuse with modification. MI is an effective way of

evaluating software by quantifying software’s

maintainability, as it acts as an excellent guide to direct

human investigation thereby identifying maintainable

components. It helps identify components having designs

and plans in closer proximity with the problem domain

and those with greater readability and reliability

Input

Software

Reusable
Components

Meta Data
Metric Framework

Module

Neural Network Module

Reservoir

for Reusable

Software

Components

Inventory of

available

software

components

 MLP based Reusability Assessment Automation Model for Java based Software Systems 49

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 8, 45-58

thus having a very positive impact on the reusability level

of such software components [22]. With the help of MI

the presented system is able to provide support for

identifying components appropriate not only for direct

reuse but also for partial reuse or reuse after modification

easily and in a very time and cost effective manner.

Fig .2 a. Metric Framework module and its sub modules

Table 2. Factors affecting reusability

Reusability

Attribute

Factors Affecting

 the attribute

Metric Measures for direct or indirect

assessment these factors

 Usefulness

Variety of Functions

Commonality of Functions

- Within a System

- Within a Domain

- Overall

CC, RM

RF

RF

 Quality

Ease of Modification

Correctness

Testability

Readability

Performance

- Time

- Space

MI

HPV

CC

MI

MI

 Cost

Packaging

Use in New Systems

- Retrieval

- Integration

- Modification

Extraction

- Identification

- Qualification

CC, HPV

RM

HPV, RM, MI

HPV

HPV

CC, HPV, RM,

RF, MI

Provides Input

Selects and Provides Input

Stores Reusability Metric Values (CC, HPV,

RM, RF, MI) to be used by the neural network

(MLP) for reusability prediction

G

U

I

Component Extractor and

Analyzer

Metric Calculator Metric Selection Module

Provides Meta Data

DB1

Metric Values

Inventory of available

software components

50 MLP based Reusability Assessment Automation Model for Java based Software Systems

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 8, 45-58

 Component Extractor and Analyzer and Metric

Calculator:

The prediction model proposed is based on the

automation of the selected metrics for the extracted

components from the input object oriented software

system. The component extractor and analyzer module,

extracts modular class based components from the

software system under test and analyzes them in order to

calculate parameters required for the generation of the

selected metric values. Further, a set of acceptable values

for all these metrics are determined for reusability level

prediction. These acceptable values can be either simple

ranges or even more sophisticated relations among

different metrics [20,23].

The five metrics selected for the reusablility level

assessment model are explained in detail in the following

section.

1) Cyclomatic Complexity – It is a software metric that

reflects the complexity of a program, with the help of its

control flow graph. The value of Cyclomatic complexity

of a component is obtained using the following equation

as proposed by Mc Cabes [24]:

CC=Number of Predicate Nodes+1 (1)

Number of predicate nodes represent the decision

nodes like if-else, for and while statements etc. in the

software code components.

2) Halstead Software Science Indicator – This metric is

used to indicate the program volume of the source code

of the software components. The equation used to

express the Halstead program volume based on Halstead

software science indicator [25] is expressed as follows:

Halstead Volume = N1+N2log2(η1+ η2) (2)

Where, ŋ1 is the number of distinct operators that

appear in the program, ŋ2 is the number of distinct

operands that are present in the program, N1 is the total

number of operator occurances and N2 is the total

number of operand occurances in the component.

3) Regularity Metric – [20] The notion behind Regularity

is to predict length based on some Regularity

assumptions. Regularity is the ratio of the estimated

length to the actual length. As actual length (N) is the

sum of N1 and N2. The estimated length is shown in the

following equation:

Estimated Length = N’= η1log2 η1+ η2log2 η2 (3)

The closeness of the estimate is a measure of the

Regularity of Component coding is calculated as:

Regularity = 1 – { (N-N’)/N } = N’/N (4)

4) Reuse Frequency – Reuse frequency is calculated by

comparing the number of static calls addressed to a

component with a number of calls addressed to the

component whose reusability is to be measured.

 (5)

5) Maintainability Index – Maintainability Index is a

software metric which measures how maintainable (easy

to support and change) the source code is. The

maintainability index is calculated as a factored formula:

MI = 171-5.2*ln(V)-0.23*(G)-16.2*ln(LOC) (6)

Where LOC is the lines of Codes, G is Cyclomatic

complexity and V is volume of code.

The analyzer and metric calculator modules take an

input system from the GUI, extracts and analyzes the

components from the input system in order to obtain the

metric values that can be further used as metadata for the

next Neural Network module. Of the five selected

metrics, for the first two metrics i.e. Cyclomatic

Complexity and Halstead Program Volume, the values

obtained have no specified range as they depend directly

on the size of the component. Hence as part of the

preprocessing of generated meta data for the next Neural

Network module, these metric values are normalized to

bring them into a particular range i.e. from 0-10.

Although the values of the other three metrics –

regularity, reuse frequency and maintainability index,

already lie in a predefined range i.e. 0-1 for regularity

metric and reuse frequency and 0-100 for maintainability

index.

B. Neural Network Module:

The meta data generated in the above module in the

form of pre processed reusability metric values of all the

components, works as the input to the neural network

model. The metadata of the various components is used

to train and develop a Multilayer perceptron (MLP) based

neural network for the prediction of readability levels as

low, medium and high. Fig 2b represents the Neural

network module. Further the generated levels (reusability

classes) are evaluated using criteria like recall, precision,

accuracy and classification error on the basis of the

confusion matrix generated.

A neural network [26] is an information processing

model influenced by the working and the behavior of the

human brain. The numerous neurons from the key

processing elements of the neural network model. A

 MLP based Reusability Assessment Automation Model for Java based Software Systems 51

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 8, 45-58

neural network with its capabilities like extracting and

storing knowledge, reasoning like humans and training

itself with experience, can be employed to solve difficult

and complex problems under a wide diversity of

applications including nonlinear system, optimization,

functional approximation, pattern classification and

recognition. Hence in the proposed approach neural

network is worked upon in order to develop approximate

functions that could represent relations among the

selected reusability metrics for the prediction of

reusability levels of the software components as high,

medium or low.

The neural network model used here (MLP) is a

perceptron [27] based model containing multiple hidden

layers that uses backpropagation algorithm [28] for

reusability evaluation. The neurons in a network are

arranged into groups that form layers. A multilayer

perceptron model [29] as the name suggests contains

multiple layers of neurons: an input layer, one or more

hidden layers and an output layer [29]. Fig 3 presents an

MLP network with the three layers used in the presented

approach. In the model presented in the paper the

reusability metrics are taken as the input neurons of the

first input layer and the reusability classes (high, medium

and low) are generated as the output layer neurons.

Fig 2 b: Neural Network Module

Fig. 3. MLP network with three layers

The output reusability levels generated from the above

neural network are evaluated using the confusion matrix

[30] which is an important tool for evaluating the

classification results as it presents the results in an easy

to understand way. Section 5 presents the confusion

matrix generated from the results of classification, along

DB1
Stored Reusability

Metric Values (CC,

HPV, RM, RF, MI)

Neural Network Module
(MLP)

Confusion Matrix based

Reusability Levels Evaluation

Reservoir for Reusable

Software components

Output: Software Components with

high and medium Reusability Levels

Reusability Levels for various software
components

52 MLP based Reusability Assessment Automation Model for Java based Software Systems

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 8, 45-58

with the values for evaluation parameters: precision,

recall, accuracy and classification error.

V. DISCUSSIONS AND RESULTS

In this section we present the steps that were followed

for the collection of relevant data and generation of

results in our study. For the tool proposed, the

implementation is done in Java using NetBeans IDE

7.0.1. and for input, data collection is done over 175

object oriented Java based code fragments. A GUI based

interface is provided by the tool for user interaction.

Users can browse through and select any Java based

system as input for the tool. JRA2M2 extracts different

object oriented code fragments from the input system and

generates meta data after analysis based on the metric

framework discussed in section 4. The generated

metadata is used by an MLP based intelligence system

for predicting the reusability levels of the identified

components. The resulting predictions are evaluated

using parameters like precision, recall, accuracy and error

rate. In the following section we discuss the step by step

results of data collection, processing and result

generation at functional level using JRA2M2. Next

section followed by a comparison of results obtained

using the proposed approach with already existing

reusability prediction models.

Step 1: Individual components (classes or code segments)

are identified from the system provided as input by the

user. The identified components are then analyzed by the

Component extractor and analysis module of the metric

framework of the JRA2M2. Fig 4 below presents the

interface of the tool displaying the extracted components.

Fig. 4. Snapshot of interface of the tool displaying the extracted components

Step 2: Now the meta data is generated in the form of the

values for the selected reusability metrics (as discussed in

section 4) for all the identified components in the

previous step. Fig 5 represents the meta data view

generated for the identified components.

Fig. 5. Snapshot of meta data view generated for identified components.

In the next two steps, the meta data values generated in

step 2 are pre processed such that they can be used for

reusability prediction using the MLP based neural

network approach.

Step 3: Firstly the meta data generated is normalized.

Normalization need not be applied to metrics Reuse

Frequency, Regularity Metric and Maintainability Index

as already their values lie in specific ranges i.e. 0-1 for

Reuse Frequency and Regularity metric and 0-100 for

Maintainability Index (as can be seen from fig 5 above).

Although the values of Cyclomatic Complexity and

Halstead Program Volume do not fall in a pre defined

range as they vary according to the size of the component.

Hence we normalize these values to a range of 0-10. The

normalized meta data view is presented in fig 6 .

 MLP based Reusability Assessment Automation Model for Java based Software Systems 53

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 8, 45-58

Step 4: After the metric values are normalized, they are

raised in a hierarchial level of interpretation. The numeric

metric values are transformed into categorical text

(classes: low, medium or high) using [20] and [23]. This

transformation is represented using fig 7 below. The

reusability class labels are defined as low, medium or

high based on the categorical metric values of the

respective components.

Steps 2-4 are performed by the metric calculator

module of the metric framework module of the proposed

system JRA2M2.

Fig. 6. Snapshot of normalized meta data view

Fig. 7. Sanpshot of transformation into categorical text

Step 5: For the establishment of meaningful relationships

between the reusability metrics calculated in the previous

steps JRA2M2 trains and develops a Multilayer

perceptron based neural network using the generated

metadata. The aim is to create a model that predicts the

reusability values of a target variable (component) based

on several input variables (metrics). We use MLP [29]

algorithm in our model. The user is required to provide

the percentage of inputs to be used as the training and test

set as shown in fig 8 below. The instances of the training

set are classified under three different class labels namely

low reusability, medium reusability and high reusability,

as per the combination of the metric values for the

respective components. A snapshot of the extended

reliability data set along with the enerated class labels is

illustrated in fig 9.

Fig. 8. Sanpshot of percentage inputs to be used as training and test set

54 MLP based Reusability Assessment Automation Model for Java based Software Systems

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 8, 45-58

Fig. 9. Snapshot of extended reliability data set along with the generated class labels

The multilayer perceptron model is trained using the

instances from dataset presented in fig 9. The training is

based on the error rate reduction using the

backpropagation algorithm. Fig 10 shows the snapshot of

JRA2M2 for test data result with actual and predicted

classes and fig 11 presents the structure of the Multilayer

Perceptron neural network model developed.

Step 5 and Step 6 are performed using the Neural

Network Module of the proposed system model JRA2M2

for performance evaluation of the system.

Fig. 10. snapshot of JRA2M2 for test data result with actual and predicted classes.

Fig. 11. Snapshot of structure of the Multilayer Perceptron neural network model

Step 6: The performance of the presents reusability

evaluation model is assessed with the hel of confusion

matrix for actual and predicted reusability classes for all

the components. The confusion matrix hence obtained is

resented in Table 3a. Based on the matrix parameters like

precision and recall are calculated for the three

reusability classes (low, medium and high) and accuracy

and classification error of the system are also evaluated.

The next Table 3b shows the values generated for these

performance evaluation parameters.

 MLP based Reusability Assessment Automation Model for Java based Software Systems 55

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 8, 45-58

Table 3a. Confusion matrix [30]

 Predicted Reusability Classes

Actual

Reusability

Classes

 Low Medium High

Low 8 2 0

Medium 1 3 1

High 0 1 32

Table 3b. Values generated for performance evaluation parameters.

Reusability classes Precision Recall Accuracy Classification Error

Low 0.88 0.8

87.75%

12.25% Medium 0.43 0.6

High 0.96 0.94

Using the reusability level prediction model presented

here in our paper, the values of accuracy and

classification error obtained (as can be seen from Table

3b) are 87.75% and 12.25% respectively. These values

obtained clearly reflect the potential of the proposed

automation tool/system JRA2M2, for detecting the

components according to their correct reusability levels

with a high probability. Hence ensuring that the proposed

system is reliable enough for predicting reusability of

software components, as it results in a low probability of

false alarms (wrong usability level detection), thus

avoiding the risks associated with wrong reuse

(identifying a negligibly reusable component as reusable)

thus preventing the wastage of time, effort and cost

required in its reuse. Hence the developed tool JRA2M2 is

a safe, reliable and effective approach for assessment and

identification of reusable components from existing

reservoirs for the development of reuse rpositories. Fig

12 below presents the number of components (used in

our study, as per section 4) categorized under the three

classes namely high, medium and low reusability.

Fig. 12. Number of Components Classified Under different Classes

Hence it can be seen that the presented tool JRA2M2

can be used as a reliable, effective and efficient solution

for reusability evaluation and prediction of function

based object oriented software systems using Multilayer

perceptron neural network, that provides for reduced

error rates and better learning based on the feedback

provided with the backpropagation learning algorithm.

JRA2M2 not only estimates effective reuse of a

component for complete or direct reuse but also provides

reliable estimates for reuse after modification or partial

reuse. Thus the presented evaluation model (JRA2M2)

can be of immense potential use for software

practitioners for assessing reusability levels and

enhancing the software reuse repositories.

0

20

40

60

80

100

120

140

Low
Reusability

Medium
Reusability

High
Reusability

Number of Components Classified Under different
Classes

Number of Components
Classified Under
different Classes

56 MLP based Reusability Assessment Automation Model for Java based Software Systems

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 8, 45-58

VI. COMPARISON WITH OTHER EXISTING APPROACHES

In this section the results generated by the presented

tool JRA2M2 are compared with those of the other

existing approaches for reusability prediction. Table 4

presents the comparison based on various criteria like

tool support, approaches used, support for estimating

partial reuse effort and performance parameters.

Accuracy and Classification error rates for various

approaches are compared using graph presented in fig

13a. Performance parameters include Precision, Recall

values for each reusability class, low, medium and high

for the techniques (presented graphically in fig 13b).

From the comparison presented using Table 4 and fig

13, it is clearly evident that the results generated by our

proposed tool JRA2M2 are more reliable and promising as

compared to those of the other existing techniques. With

respect to techniques 1, 2 and 3, our tool JRA2M2 has

higher accuracy levels and lower error rates. Technique 1

looks for structural aspects of reusability unlike our tool

that works on functional basis for reusability evaluation.

Techniques 2 and 3 although focus on the functional

aspects, but do not provide support for the estimation of

maintainability of the detected reusable components,

which is an important aspect for reuse and has been

incorporated in our approach via the use of

Maintainability Index metric. Comparison graph from

figure 13b reflects that JRA2M2 has better precision,

recall results for high reusability class than those of

technique 1, thus showing that highly reusable

components are identified better by JRA2M2.

As compared to technique 3, the values of precision,

recall for high reusability class may be almost equivalent

to our approach, but the recall and precision values for

low reusability level are zero, thus increasing the risk

associated with wrong reuse (identifying non reusable

components as reusable) with the use of technique 3.

Hence, it can be concluded that JRA2M2 proves to be a

more efficient and reliable solution as a reusability

evaluation model.

Table 4. Comparision with other approaches

Attributes Technique1[9] Technique2 [13] Technique3 [12] JRA2M2

Tool Support No No No Yes

Metrics Used Structural

(CK Metric Suite [21])

Functional

(CB Metric Suite [20])

Functional

(CB Metric Suite [20])

Functional

(CB Metric Suite [20]

along with

Maintainability Index)

Data Mining Approach k-Means Hybrid Hierarchical DBSCAN MLP Neural Network

Support for Estimating

efforts of Partial Reuse /

Reuse after modification

No

No

No

Yes (Using

Maintainability Index)

RESULTS:

Accuracy

Classification Error

Precision Recall

Figure 13 (a)

Figure 13 (b)

Figure 13 (a)

NA

Figure 13 (a)

Figure 13 (b)

Figure 13 (a)

Figure 13 (b)

Fig. 13 a. Comaprison of Results with other approaches (Accuracy & Classification Error)

0
10
20
30
40
50
60
70
80
90

100

Technique1 Technique2 Technique3 JRA2M2

Comaprison of Results with other approaches (Accuracy & Classification

Error)

Accuracy (%)

Classification Error (%)

 MLP based Reusability Assessment Automation Model for Java based Software Systems 57

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 8, 45-58

Fig. 13 b. Comaprison of Results with other approaches

VII. SIGNIFICANCE/ APPLICATION

The presented automation system JRA2M2 effectively

supports software practitioners, helping them increase the

software development throughput by encouraging reuse

of software components by providing them the

knowledge about the levels of reusability of the already

existing or newly developed software components. It can

also help software development organizations apprehend

time to market benefits for the “to be developed”

software products. The acceptance of the approach

presented in the industry can help software organizations

strengthen their reuse repositories using the available

inventories of resources while saving immensely on time,

cost and effort. Also, it may lead to better reliability,

maintainability, quality and effectiveness of newly

developed software on the basis of better and safer reuse

on account of its predictions.

VIII. CONCLUSION

In our paper a function based object oriented software

metric framework is followed by an MLP based neural

network training for the evaluation and assessment of

reusability attributes of the input software components.

The proposed model is implemented in Java with an

automated and reliable tool support named using JRA2M2

NetBeans IDE. The metadata generated by the proposed

metric framework (including support for partial reuse

assessment via the Maintainability Index) is used to

predict reliability by training and developing a multilayer

perceptron based neural network that follows the

backpropagation algorithm for error reduction. The

model generates high precision and recall values for high

reusability class, 96% and 94% respectively, thus helping

in easy and efficient identification of highly reusable

components. This implies 94% of them are identified and

with 96% precision. Even for low reusability level the

precision, recall values are good enough being 88% and

80% respectively, hence avoiding risks associated with

wrong reuse. The precision and recall values for medium

reusability class are 43% and 60% respectively.

Performance results for JRA2M2 indicate how clearly it is

able to differentiate between components belonging to

different readability levels, especially between High and

Low reusable components, at functional level. The

overall accuracy of JRA2M2 is 87.75% with a

classification error rate of 12.25%. Hence for such

performance results of JRA2M2, it can be effectively used

as an efficient and a reliable automation tool for

identifying and evaluating reusable software components

by software developers.

In future we plan to further extend the system JRA2M2

for identification or reusable components and their levels

for more generic Object Oriented systems, i.e.

independent of the language (presently Java). It can be

extended to support other OO languages like Python,

C++ etc. Also the application of the presented model can

be investigated further in order to provide more precise

levels of reusability classification by increasing the

number of levels used for reusability classification.

REFERENCES

[1] Mili H., Mili F., Mili A. (1995), “Reusing Software:

Issues and Research Directions”, IEEE Transactions on

Software Engineering, Vol. 21, No. 6.

[2] Mcllroy D., (1968), “Mass Produced Software

Components”, Software Engineering Concepts and

Techniques, 1968 NATO Conference on Software

Engineering, pp. 88-98.

[3] Singh S., Singh S., Singh G. (2010), “Reusability of the

Software”, International Journal of Computer

Applications (0975-8887), Vol. 7-No. 14.

[4] Sarbjeet Singh, Sukhvinder Singh, Gurpreet Singh,

“Reusability of the Software”, International Journal of

Computer Applications (0975 – 8887)Volume 7– No.14,

October 2010.

0

0.2

0.4

0.6

0.8

1

1.2

Technique1 Technique3 JRA2M2

Comaprison of Results with other approaches (Precision & Recall for Max & Min

Reusablity levels

Precision (Max Reusability Class)

Recall (Max Reusability Class)

Precision (Min Reusability Class)

Recall (Min Reusability Class)

58 MLP based Reusability Assessment Automation Model for Java based Software Systems

Copyright © 2014 MECS I.J. Modern Education and Computer Science, 2014, 8, 45-58

[5] J. F. Peters, W. Pedrycz, Software Engineering: An

Engineering Approach, John Wiley & Sons, Inc., 2000.

ISBN 0-471-18964-2.

[6] B.Jalender, Dr. A Govardhan, Dr. P Premchand, “A

Pragmatic Approach to Software Reuse”, Journal of

Theoretical and Applied Information Technology.

[7] Jacob L. Cybulski, “Introduction to Software Reuse”,

Technical Report TR 96/4 The University of Melbourne

Australia.

[8] Manhas S., Sandhu P.S., Chopra V., Neeru N. (2010),

“Identification of Reusable software Modules in Function

Oriented Software System using Neural Network Based

Technique”, World Academy of Science, Engineering and

Technology, Vol. 67.

[9] Shri A., Sandhu P. S., Gupta V., Anand S. (2010),

“Prediction of Reusability of Object Oriented Software

System using clustering Approach”, World Academy of

Science, Engineering and Technology, Vol. 67, PP. 853-

856.

[10] Ajay Kumar,” Measuring Software reusability using SVM

based classifier approach”, International Journal of

Information Technology and Knowledge Management,

January-June 2012, Volume 5, No. 1, pp. 205-209.

[11] Amritpal Kaur, Rajbir Singh Cheema and Parvinder S.

Sandhu, “Identification of Reusable Procedure Based

Modules using kNN Approach”, International Conference

on Latest Computational Technologies (ICLCT'2012)

March 17-18, 2012 Bangkok..

[12] Jagdeep Kaur Saini, Amitabh Sharma, Dr. Parvinder S.

Sandhu, “Software Reusability Prediction using Density

Based Clustering”, 2006 “psrcentre.org”.

[13] Czibula I. G., Serban G. (2007), “Heirarchial clustering

for Software System Recnstructing”, Babes bolyai

University, Romania.

[14] Sandhu P. S., singh H. (2006), “A Reusability Evaluation

Model for OO-Based software Components”,

International Journal of Electrical and Computer

Engineering 1:4.

[15] Sandhu P. S., Singh J., Gupta V., Kaur M., Manhas S.,

Sidhu R. (2010), “A K-Means Based Clustering Approach

for finding Faulty Modules in Open Source software

Systems”, World Academy of Science, Engineering and

Technology, Vol. 72.

[16] Dr Himani Goel, Gurbhej Singh,” Evaluation of

Expectation Maximization based Clustering Approach for

Reusability Prediction of Function based Software

Systems”, International Journal of Computer Applications

(0975 – 8887) Volume 8– No.13, October 2010.

[17] Kanellopoulos Y., Dimopulos T., Tjortjis C., Makris C.

(2006), “Mining source code Elements for

Comprehending Object-Oriented systems and Evaluating

Their Maintainability”, SIGKDD Explorations, Vol. 8,

Issue 1.

[18] Singh S., Singh P., Mohan N. (), “Identification of Object

Oriented Reusable Components Using Multilayer

Perceptron Based Approach”, International Conference on

Computer Engineering and Multimedia Technologies

(ICCEMT'2012) September 8-9, 2012 Bangkok

(Thailand).

[19] Sandhu P. S., Salaria D. S., Singh H. (2008), “A

Comparative Analysis of Fuzzy, Neuro-Fuzzy and Fuzzy-

GA Based Approaches for Software Reusability

Evaluation”, World Academy of Science, Engineering

and Technology 15 2008.

[20] Caldiera, Gianluigi and Victor R. Basili, “Identifying and

Qualifying Reusable Software Components,,” IEEE

Software, Vol. 24, No. 2, February 1991, pp. 61-70.

[21] Chidamber, S.R., Kemereer C.F., “A metrics suite for

object oriented design”, IEEE Transactions on Software

Engineering June 1994.

[22] Kurt D. Welker, “The Software Maintainability Index

Revisited”, The Journal of Defense Software Engineering

august 2001.

[23] Code Metric Values,” http://msdn.microsoft.com/en-

us/library/bb385914.aspx.

[24] Thomas J. McCabe, “A Complexity Measure”, IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING,

VOL. SE-2, NO.4, DECEMBER 1976.

[25] Halstead, M. H., Elements of Software Science, 1977,

New York: Elsevier North-Holland.

[26] Hebb, Donald (1949), The Organization of Behavior.

New York: Wiley.

[27] Rosenblatt, F. (1958). "The Perceptron: A Probalistic

Model For Information Storage And Organization In The

Brain". Psychological Review 65 (6): 386–408.

[28] Werbos, P.J. (1975), Beyond Regression: New Tools for

Prediction and Analysis in the Behavioral Sciences.

[29] Haykin, Simon (1998), Neural Networks: A

Comprehensive Foundation (2 ed.), Prentice

Hall. ISBN 0-13-273350-1.

[30] “Wikipedia - Confusion matrix”,

http://en.wikipedia.org/wiki/Confusion_matrix#cite_note-

0.

Author’s Profile:

Surbhi Maggo: She has done Masters

of Technology and Bachelor of

Technology from Jaypee Institute of

Information Technology, India in

Computer Science & Engineering and

her area of interest is Software

Engineering, Software Testing, Data

Mining and Machine Learning.

Currently she is working in a research

and development company in India.

Chetna Gupta: She is Assistant

Professor at Jaypee Institute of

Information Technology, India. She

obtained her Doctorate in the area of

Software Testing. She also holds a

Masters of Technology and a Bachelor

of Engineering degree in Computer

Science and Engineering. Her areas of

interest are Software Engineering,

Requirement Engineering, Software Testing, Software Project

Management, Data Structures, Data Mining and Web

Applications. She has many publications in international

journals and conferences to her credit.

