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Abstract —In the basic Artificial Bee Colony (ABC) 

algorithm, if the fitness value associated with a food 

source is not improved for a certain number of specified 

trials then the corresponding bee becomes a scout to 

which a random value is assigned for finding the new 

food source. Basically, it is a mechanism of pulling out 

the candidate solution which may be entrapped in some 

local optimizer due to which its value is not improving. 

In the present study, we propose two new mechanisms 

for the movements of scout bees. In the first method, the 

scout bee follows a non-linear interpolated path while in 

the second one, scout bee follows Gaussian movement. 

Numerical results and statistical analysis of benchmark 

unconstrained, constrained and real life engineering 

design problems indicate that the proposed 

modifications enhance the performance of ABC. 

 

Index Terms — ABC, Artificial Bee Colony, Quadratic 

Interpolation, Gaussian distribution. 

 

I. INTRODUCTION 

The past few decades several nature inspired 

algorithms (NIA) have emerged as a potential tool for 

solving global optimization problems. Global 

optimization is an active area of research as most of the 

real life problems occurring in diverse areas can be 

modeled as optimization problems. More than often, it is 

not only desirable but also necessary to obtain the global 

optimum rather than a local optimum. We may 

categorize the global optimization methods as traditional 

and nontraditional. Traditional methods include the 

classical techniques like gradient based methods 

(steepest descent, Newton and quasi Newton methods 

etc) while the nontraditional ones include Genetic 

Algorithms, Ta-boo Search, Simulated Annealing 

methods. Basically the traditional methods depend 

largely on the mathematical properties of the objective 

function and the search domain and therefore have a 

restricted application.  

Nontraditional methods for global optimization have 

become more popular because of their generic nature 

which leads to wide applicability of these algorithms. 

Also it has been observed that these algorithms are also  

capable of locating the global optimum with a higher 

probability. 

In the past few decades many nontraditional 

algorithms have been developed most of which are 

inspired by some natural phenomena.  

The present study deals with artificial bee colony 

algorithm (ABC) a new computational technique 

proposed by Karaboga [1], based on the foraging 

behavior of honey bee swarm. ABC comes under the 

umbrella term of Swarm Intelligence (SI) algorithms 

which mimic the social behavior displayed by various 

species. Popular algorithms belonging to SI group are 

Particle Swarm Optimization (PSO), Ant Colony 

Optimization (ACO) and ABC, the recent addition to SI 

group. 

The performance of ABC is competitive to other 

population-based algorithms with an advantage of 

employing fewer control parameters [2 - 3], simplicity 

and ease of implementation. ABC has captured much 

attention from researchers and has been applied to solve 

many practical optimization problems [4 - 8], since its 

invention in 2005. However, similar to other 

nontraditional optimization methods, ABC also has 

some drawbacks which hamper its performance. For 

example, the convergence speed of ABC is typically 

slower than some other population-based algorithms like 

differential evolution (DE) [9 - 10] and PSO [11] when 

handling unimodal problems [6]. Also, ABC can easily 

get trapped in the local optima when solving complex 

multimodal problems [6]. It has also been observed that 

the search equation of ABC used to generate new 

candidate solutions, based on the information of 

previous solutions is good at exploration but is poor at 

exploitation [12], which results in an imbalance between 

exploration and exploitation. Therefore, accelerating 

convergence speed and avoiding the local optima have 

become two important and appealing goals in ABC 

research. A number of ABC variants have, been pro-

posed in literature to achieve these two goals [12 - 14]. 

ABC is based on the idea of division of labor in the 

colony of honey bees, (consisting of employed bees, on-

looker bees and scout bees) for the search of potential 

food sources. In this paper a variation is made in the 

movement of scout bees. In the basic ABC algorithm,  
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scouts are assigned a random location for determining 

the new food location. This is generally done with the 

help of computer generated random numbers following 

uniform distribution, which may not prove to be very 

efficient for locating new food sources. In the present 

study we focus on enhancing the movement of scout 

bees in order to get more efficient food locations. Two 

enhancements are proposed in the scout bee phase (1) 

quadratic interpolation and (2) Gaussian movements. 

The first variant is named as QABC, while the second 

variant is named as GABC.  

Here, we would like to mention that a part of this 

work has been published in a conference proceeding [15] 

but in the present paper we have sufficiently extended it 

by incorporating constrained and real life problems and 

have done a detailed analysis of the work. 

The rest of the paper is organized as follows: section 2 

gives an overview of ABC algorithm. In section 3, the 

proposed QABC and GABC are described. In section 4, 

experimental settings, evaluation criteria and results are 

given. Finally the paper concludes with section 5. 

 

II. SURVEY OF LITERATURE 

2.1 Unconstrained ABC 

ABC classifies the foraging artificial bees into three 

groups, namely, employed bees, onlooker bees and scout 

bees. Half of the colony consists of employed bees, and 

the other half includes onlooker bees. In the foraging 

process of honeybee colonies, initially, some bees search 

randomly for food in a given area around the hive. After 

finding a food source, these bees take some nectar back 

to the hive, deposit the nectar and share the nectar 

information of the food sources with other bees waiting 

at the dance area (where waggle dance, Figure 1, is 

performed) within the hive.  

The bee colony then enters a new cycle of iterations. 

At each iteration, following steps take place:  

(1) After sharing the information, an employed bee 

will either become an onlooker after abandoning the 

food source or continue to forage its previously visited 

site;  

(2) Some onlookers in the hive will simultaneously 

follow some employed bees based on the received 

information in order to further forage on some specific 

memorized food sources; and  

(3) Some scouts will spontaneously start a random 

search.  

An important stage of the ABC algorithm, from which 

in fact the collective intelligence arises, is the sharing of 

information. This is achieved by influencing the 

behavior of onlookers which select their food source 

according to following probability Pi: 
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Where fi is the fitness value of ith, food source  

(position in parameter space). In other words onlookers 

will explore promising locations with higher probability 

than others. Candidate food sources are generated from 

memorized ones according to: 
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where ,,...,1,,...,1, njSNki  and iv  is the new food 

source generated by using both, the current food source 

ix and a randomly chosen food source kx  from the 

population and 11  ij  (generated randomly every 

time it is used) determines the step size of the movement. 

Both, i and j are generated randomly such that k ≠ i. 

When a source does not improve after a certain number 

of iterations, it is abandoned and replaced by the one 

found by a scout bee, using equation 2: which involves 

the generation of a new solution at random. 
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where i = 1,2,..,SN. j = 1, 2,…, n. xmax,j and xmin,j are 

upper and lower bounds of parameter j, respectively. 

These food sources are randomly assigned to SN number 

of employed bees and their finesses are evaluated. 

 

 
Figure.1: Waggle dance of Honey bee in the hive 

 

Basic steps of Artificial Bee Colony: 

Initialization of food sources (Population): The 

initial population of solutions is filled with SN number 

of randomly generated n-dimensional real-valued 

vectors (i.e., food sources). Let },...,,{ ,2,1, niiii xxxX   

represent the ith food source in the population, and then 

each food source is generated by equation (3). 

Employed bee initialization: In this phase each 

employed bee Xi generates a new food source Vi in the 

neighborhood of its present position by using solution 

search equation (2). Once Vi is obtained, it will be 

evaluated and compared to Xi. If the fitness of Vi is equal 

to or better than that of Xi, Vi will replace Xi and become 

a new member of the population; otherwise Xi is retained. 

In other words, a greedy selection mechanism is 

employed between the old and candidate solutions. 

Probabilistic Selection: An important stage of the 

ABC algorithm, from which in fact the collective 

intelligence arises, is the sharing of information. This is 
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achieved by influencing the behavior of onlookers which 

will select their food source according to probability 

equation (1) 

Onlooker bee phase: An onlooker bee evaluates the 

nectar information taken from all the employed bees and 

selects a food source Xi depending on its probability 

value Pi. Once the onlooker has selected her food source 

Xi, she produces a modification on Xi by using equation 

(2). As in the case of the employed bees, if the modified 

food source has a better or equal nectar amount than Xi, 

the modified food source will replace Xi and become a 

new member in the population. 

Scout bee phase: If a food source Xi cannot be further 

improved through a predetermined number of trials limit, 

the food source is assumed to be abandoned, and the 

corresponding employed bee becomes a scout. The scout 

produces a food source randomly using equation (3). 

2.2 Constrained ABC 

ABC algorithm for solving constrained optimization 

problems, we adopted the Pareto ranking method instead 

of the selection process (greedy selection) of the ABC 

algorithm described in the previous section. The 

following criteria are always enforced:  

 Any feasible solution is preferred to any 

infeasible solution,  

 Among two feasible solutions, the one having 

better objective function value is preferred,  

 Among two infeasible solutions, the one having 

smaller constraint violation is preferred.  

Because initialization with feasible solutions is very 

time consuming process and in some cases it is 

impossible to produce a feasible solution randomly, the 

ABC algorithm does not consider the initial population 

to be feasible. Structure of the algorithm already directs 

the solutions to feasible region in running process due to 

the selection process. Scout production process of the 

algorithm provides a diversity mechanism that allows 

new and probably infeasible individuals to be in the 

population. In order to produce a candidate food position 

from the old one in memory, the adapted ABC algorithm 

uses the following expression: 
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where k {1, 2,..., SN} is randomly chosen index. 

Although k is determined randomly, it has to be different 

from i. Rj is randomly chosen real number in the range 

[0,1] and j {1, 2,...,D}. MR, modification rate, is a 

control parameter that controls whether the parameter xij 

will be modified or not. In the version of the ABC 

algorithm proposed for constrained optimization 

problems, artificial scouts are produced at a 

predetermined period of cycles for discovering new food 

sources randomly. This period is another control 

parameter called scout production period (SPP) of the 

algorithm. At each SPP cycle, it is controlled if there is 

an abandoned food source or not. If there is, a scout 

production process is carried out. 

 
Detailed algorithm is discussed in Figure 2. 

Initialize pw, the percentage of employed bees 

Initialize 
max

e
n maximum number of explorer bees 

Initialize λ, the foraging limit 

Set ns as the size of swarm 

Set the fittest bee, β to null 

Create and initialize to random positions nw = nspw employed 

bees 

Set the number of onlooker bees, no = ns - nw 

for each worker bee, wi do 

 Set ai = 0, where ai is the number of failed position 

updates 

end 

while stopping condition is false do 

 Set ne = 0, where ne is the number of explorer bees 

 for i = 1,…,nw do 

  Randomly select ijnj
w

 ],,1[  

  Create a new position vwiwj from worker 

bees using equation (4) 

  if f(vwiwj)<f(xwi) based on Pareto Ranking 

Method then 

   xwi = vwiwj 

  end 

  else 

   ai++ 

  end 

  if ai > λ and ne < 
max

e
n  then 

   ne++ 

   Move wi to a new random 

position in the search space 

   ai = 0 

  end 

 end 

 for i = 1,…, no do 

  Select ],1[
w

nj  proportionate to f (xwi) 

  Set oi = wj  

  Select jknk
w

 ],,...,1[  

  Create a new position voiwj from onlooker 

bee oi and worker bee wj using equation (4) 

  if f (voiwj) < f (xoi) based on Pareto Ranking 

Method then     

   xoi = voiwj 

  end 

 end 

 for each bee, bi, in the swarm do 

  if f (xbi < f (xβ) then 

   β = bi 

  end 

 end 

end 

Return xβ as Solution. 

Figure.2: Algorithm: Constrained Artificial Bee Colony 

 

III. QABC AND GABC: THE PROPOSED 

VARIANTS 

The proposed QABC and GABC differ from the basic 

ABC in terms of the movements of the scout bees. 
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Instead of assigning a random movement for the scout 

bees, in the proposed variants the scout bees are moved 

in order to find a better location for them. For this 

purpose we have used the method of interpolation and 

method following Gaussian distribution. 

Quadratic Interpolation: In the present study, the 

three initial solution vectors xr1, xr2, and xr3 are selected 

randomly between 0 and 1, distinct from each other. 

From these three points, the coordinates of the new Food 

Location ),...,,( 1,1,21,11,   GnGGGi vvvV , are determined as: 
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Gaussian movement: Gaussian distribution also 

called a ―bell shaped curve‖ as a mode of perturbation 

(or mutation) has been used for generating new 

candidate solutions. The PDF for Gaussian function is 

given as: 2

2

2

1
)(

x

exf






; with mean 0 and standard 

deviation 1, i.e. N (0, 1). 

Proposed Variants: After initialization QABC starts 

like the usual ABC as discussed in previous section and 

when the food source Xi cannot be further improved 

through a fixed trial limit, the food source get abandoned, 

and the     corresponding employed bee act as scout bee. 

Than scout bee produces a new food source using, the 

quadratic interpolation given in equation (5) for QABC. 

In GABC the scout bee produces a new food source 

using, Gaussian random numbers and the equation is 

given as: 

, min, max, min,( 1,1)( )i j j j jx x Gauss x x     (5) 

where, Gauss is a random number following Gaussian 

distribution. Fig. 3 explains the pseudocode of QABC 

and GABC & flow graph is shown in Fig. 4. 

 

Begin 

1. Initialize the population of food sources xi, i = 1,…,SN 

2. Evaluate each food source xi, i = 1,…,SN 

3. cycle = 1 

Repeat 

For each food source xi in the population 

4. Generate a new food source vi by its corresponding 

employed bee (equation (2)) 

5. Evaluate vi 

6. Keep the best solution between xi and vi 

End 

7. Select, based on fitness proportional selection, the food 

sources to be visited by onlooker bees 

For each food source xi chosen by an onlooker bee 

8. Generate a new food source vi by its corresponding 

onlooker bee (equation (2)) 

9. Evaluate vi 

10. Keep the best solution between xi and vi 

End 

11. Use the scout bee to replace those abandoned food 

sources using (equation (4) for QABC and equation (5) 

for GABC)       

12. Keep the best solution between xi and vi 

13. Save in memory the best food source so far 

14. cycle = cycle + 1 

Until cycle 

End 

Figure.3: Pseudocode of Proposed QABC & GABC 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.4: Flow Graph of Proposed Variants 

 Initialization of Food Sources 

Employed Bees Search 

Probability Condition 

Satisfied? 

Onlooker’s Search 

Memorize Best Food Source 
Scout’s Random Search Using Equation (4) for QABC 

& (5) for GABC 

Final Solution 
Termination Criteria Met? 

No 

Yes 

Yes 
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IV. EXPERIMENTAL SETTINGS, 

PERFORMANCE CRITERIA AND RESULTS 

Benchmark and Engineering Problems: In order to 

assess the performance of the proposed QABC and 

GABC algorithm, we considered four unconstrained, six 

constrained and five engineering design given in 

Appendix I, II and III respectively. 

Structure of the Problems: The general NLP is 

given by nonlinear objective function f, which is to be 

minimized/maximized with respect to the design 

variables ),.....,,( 21 nxxxx   and the nonlinear 

inequality and equality constraints. The mathematical 

models of the problems considered in the paper are of 

the type: 

 

MaximizeMinimize / )(xf  

Subject  :to    ,0)( xg j  pj ,......,1   

               ,0)( xhk  qk ,......,1  

  maxmin iii xxx  ),......,1( ni   

 

where p and q are the number of inequality and 

equality constraints respectively.  

A set of six constrained benchmark problems taken 

from literature [16] is considered to evaluate the 

performance of the proposed QABC and GABC. All the 

problems are nonlinear in nature i.e. either the objective 

function or the constraints or both have a nonlinear term 

in it.  The mathematical models of the problems along 

with the optimal solution are given in Appendix II.  

Characteristics of test functions (f) 

f n Func.Type 

Type 

ρ (%) li ni le ne a 

g01 13 Quad. 0.0003 9 0 0 0 6 

g02 20 Nonl. 99.9973 2 0 0 0 1 

g03 10 Nonl. 0.0026 0 0 0 1 1 

g04 5 Quad. 27.0079 4 2 0 0 2 

g05 4 Nonl. 0.0000 2 0 0 3 3 

g06 2 Nonl. 0.0057 0 2 0 0 2 

 

Parameter n denotes the number of parameters. The 

function can be linear, nonlinear (Nonl.) or quadratic 

(Quad.), li is the number of linear inequality constraints, 

ni is the number of nonlinear inequality constraints, le is 

the number of linear equality constraints, ne is the 

number of nonlinear inequality constraints, a is the 

number of active restrictions and ρ is a percentage of the 

feasible area. A percentage of feasible area is: 

 

ρ=|F|/|S|                                                                        (6) 

 

where |F| is the number of feasible solutions and |S| is 

the total number of solutions randomly generated. 

Michalewicz and Schoenauer [17] suggested a total 

number of 1,000,000 solutions for |S|. 

Engineering Design Problems: The credibility of an 

optimization algorithm also depends on its ability to 

solve real life/engineering’s problems. In this paper we 

took five real life engineering design problems to 

validate the efficiency of all the proposed algorithms. 

Mathematical models of problems are given in 

Appendix III. 

Experimental Settings: The proposed algorithms are 

tested on 4 unconstrained, 6 constrained benchmark 

problems and 5 engineering problems given in Appendix 

I, II and III respectively. The following control 

parameters are: colony size (SN), MCN (Maximum 

Cycle Numbers) and ―limit‖. ABC and the proposed 

variants are implemented on Dev-C++ and the 

experiments are conducted on a computer with 2.00 

GHz Intel (R) core (TM) 2 duo CPU and 2- GB of RAM. 

For each problem, all the algorithms independently run 

30 times. The parameter setting is taken as follows: 

 
 

Parameter Values 

Unconstrained Problems 

Population size  100  

limit 100 

Value to Reach (VTR) 10-15 

Maximum MCN  8000 

Constrained and Engineering Design Problems 

Colony Size 20 

Limit MCN/(2*SN) 

Max. Cycle Numbers (MCN) 6000 

NFE (for Engg. desing. Prob) 5.0E+06 

Max. Func. Evaluations (Max_FEs) 6.0E+05 

MR (Modification Rate) (Akay and Karaboga, 

2010) 

0.4 

Runs 30 

 

Performance Criteria: Mean Fitness, Standard 

Deviation, Best and Worst: The average of function 

fitness value that an algorithm can find, using predefined 

MCN, is recorded in each run and then average of the 

function fitness values are calculated. Also the average, 

standard deviation, best and worst of the fitness values 

are calculated. 

MCN: The MCN (Maximum Cycle Number) is 

recorded when the VTR is reached before to reach 

maximum MCN. i.e. we set the termination criteria as 

VTRff globaloptimal   and record MCN over 30 runs. 

Acceleration rate (AR) in %: This criterion is used to 

compare the convergence speeds between ABC, GABC 

and QABC. It is defined as follows: 

 

,

,

%
ABC GABC QABC

ABC GABC

MCN MCN
AR

MCN


   

 

Comparison Criteria, Results and Discussion: 

Comparison Criteria: We used several criteria to 

measure the performance of the proposed QABC and 

GABC algorithm and to compare it with basic ABC. In 

Tables 1 – 2 we recorded the performance the proposed 

QABC and GABC for unconstrained problems in terms 
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of best worst and average fitness function value along 

with the standard deviation (Std) while increasing the 

MCN to two different values 5000 with D=30 & SN=20 

and 8000 with D=50 & SN=50. t-Test and acceleration 

rate is given in Table 3. 

In Tables 4 and 5 the performance of QABC and 

GABC is compared with basic ABC for solving 

constrained optimization problems. The comparison 

criteria for all the algorithms taken in the present study 

are given as: 

 

1. Feasible Run: A run during which at least one 

feasible solution is found in Max NFE. 

2. Successful Run: A run during which the 

algorithm finds a feasible solution ~x satisfying 

(f(x) – f(x*) <= 0.0001· 

3. Feasible Rate = (# of feasible runs) / total runs 

4. Success Rate = (# of successful runs) / total 

runs 

5. Success Performance = mean (FE’s for 

successful runs) * (# of total runs) / (# of 

successful runs) 

 

Further, the average acceleration rate (ARavg) and the 

average success rate (SRavg) over test functions are 

calculated as follows: 
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In order to get a better insight into the relative 

performance of ABC, QABC, GABC, [18] and [19], the 

value of their performance is calculated. This 

performance gives specified importance to the number 

of function evaluations to observe the efficiency of the 

algorithm. For the computational algorithms under 

comparison the value of performance Pj for the jth 

algorithm is computed as under: 
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Here, Afi is the average number of function 

evaluations used by the jth algorithm in obtaining the 

optimal solution of ith problem in the case of the 

successful runs, and Mfi the minimum of the average 

number of function evaluations of successful runs used 

of the algorithms under comparison in obtaining the 

optimal solution of ith problem. N is total number of 

problems on which the performance of algorithms has 

been tested. 

The larger the value of Pj, better is the performance of 

the algorithm. 

For engineering design problems the performance of 

ABC and proposed variants is compared in terms of 

mean fitness value & standard deviation (Std.) given in 

Table 6 and in Table 7 the iterations and acceleration 

rate is given. 

Results and Discussions: Unconstrained Problems: 

In Table 2 we have taken the results on the basis of 

average error. In this case MCN is fixed at 5000 and 

8000, to estimate the average of minimum fitness 

function value in 30 runs. From the Table 2 it can be 

clearly observed that for all benchmark functions QABC 

gives better results than GABC and ABC. A two tail 

sample t-test is also applied to analyze the statistical 

significance of the proposed algorithm. We have 

checked the significant difference of QABC with respect 

to GABC and ABC at 5% level of significance. The 

calculated t-value (Table 3) of all function is greater 

than t-table value that shows the significantly better 

performance in the comparison of ABC. In the Table-2, 

we fixed VTR as given in experimental setting and then 

calculated the MCN of 30 runs. From Table-2 we can 

see that the proposed QABC gives the better results for 

every function in the comparison to the other algorithms. 

From the Table-3 it is clear that the proposed QABC is 

faster than GABC by 13.50% and ABC by 16.50%, 

when MCN=5000, D=30 & SN=20 and in other case 

when MCN=8000, D=50 & SN=50, QABC is again 

faster than GABC by12.27% and ABC by 10.57%. Best 

and worst function values in 30 runs are also presented 

in Table-1. 

Fig. 4(a) & 4(b) shows the convergence graph 

Rosenbrock’s and Griekwank function. MCN taken to 

estimate the average of minimum fitness function value 

in 30 runs are also presented graphically in Fig. 5. 

Constrained Problems: The results obtained in Table 

4 using QABC are better or equal to that of results 

obtained by original ABC, GABC algorithm and MO-

ABC for constrained optimization problems. The g05 

function illustrates that the QABC due to greater 

exploration capability, better best results are reached, 

but also the worst result is slightly worse than compared 

algorithm. The standard deviation for g02 function is 

also inferior for the same reason. QABC reaches much 

better results for g02 and g03 function then the original 

ABC algorithm. 

The superior performance of QABC is more visible 

from Tables 4 and 5 where the results are recorded after 

fixing the accuracy at 0.0001. In these tables we can see 

that the proposed QABC gave a better or at par 

performance with the other three algorithms. We will 

now take the comparison criteria one-by-one and discuss 

them briefly. The first criterion is that of a feasible run. 

A run is said to be feasible if at least one feasible 

solution is obtained in maximum number of function 

evaluations. According to this criterion all the algorithm 

gave 100% feasible rate for all the test problems. 
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However, if we observe the second criterion which is of 

successful run and is recorded when the algorithm finds 

a feasible solution satisfying the given accuracy 

(=0.0001) it can be seen that the proposed QABC 

outperforms the other algorithms in all the test cases. 

The third criterion is that of the success performance 

which depends on the feasibility rate and success rate, as 

described in the previous subsection. Here also QABC 

gave a better performance in comparison to the other 

three algorithms taken for comparison. 

Comparative acceleration rate is also shown 

graphically in Fig. 6 using radar representation, which 

explains that QABC is 4.18% better than ABC, 3.64% 

better than GABC, 58.11% better than [18] where as 

68.7% better than [19] for g01. Similarly the graphs 

explain the acceleration rate for rest of the problems g02 

- g06. 

The performance comparison graph of algorithms is 

given in Fig. 7 (a). This curves (best solution versus 

NFE’s) show that QABC converges faster than others 

toward the optimal solution. Also Average Success 

performance and acceleration performance graph to 

solve six constrained benchmark problems are given in 

single graph shown in Fig. 7(b). 

Engineering Design Problems: The results of 

engineering design problems are presented in Table 6 

and 7. We see that in terms of average fitness function 

value and standard deviation all the algorithms gave 

more or less similar results although in some cases the 

proposed algorithms gave a marginally better 

performance than basic ABC and GABC. From Table 7 

it can be clearly observed that QABC emerges clear 

winner in terms of iterations taken to reach the optimum 

value, further QABC is 24.36% faster than ABC where 

as 8.24% faster than GABC when compared in terms of 

acceleration rate. 

 

 

TABLE 1: Mean, Standard Deviation, Best, Worst, Mean and values obtained by ABC, GABC and QABC through 30 independent 

runs on function from f1 to f4 

F Algorithm 

MCN=5000/D=30/SN=20 MCN=8000/D=50/SN=50 

Mean Std. Dev Best Worst Mean Std. Dev Best Worst 

f1 

ABC 
1.162e-015 

1.896e-015 

0.062e-015 

2.235e-014 

2.841e-014 

3.867e-014 

1.507e-014 

4.654e-014 

GABC 
8.295e-016 

2.531e-017 

1.460e-016 

3.310e-014 

3.159e-015 

9.268e-016 

1.679e-016 

5.130e-017 

QABC 
1.437e-016 

4.448e-017 

8.377e-016 

4.626e-014 

2.551e-014 

0 

1.962e-014 

4.818e-014 

f2 

ABC 
3.750e-015 

6.297e-014 

9.277e-016 

5.245e-012 

1.379e-012 

4.167e-013 

1.001e-013 

1.712e-014 

GABC 
1.053e-015 

7.870e-015 

2.894e-016 

5.277e-013 

1.313e-014 

4.578e-015 

1.065e-015 

1.579e-016 

QABC 
4.256e-016 

1.406e-015 

2.976e-016 

6.041e-015 

1.036e-014 

3.838e-015 

1.075e-015 

1.633e-016 

f3 

ABC 
2.016e-002 

8.446e-003 

1.953e-002 

3.337e-002 

1.075e-001 

0 

1.056e-002 

3.458e-003 

GABC 
2.738e-004 

8.152e-004 

1.199e-004 

7.972e-004 

1.181e-002 

0 

0.326e-002 

2.707e-003 

QABC 
2.264e-004 

8.389e-005 

9.163e-005 

5.065e-001 

9.753e-003 

0 

2.808e-004 

2.983e-003 

f4 

ABC 
1.514e-016 

4.309e-017 

8.289e-017 

1.514e-014 

1.147e-015 

3.265e-016 

0.472e-016 

1.147e-017 

GABC 
3.176e-017 

9.039e-017 

1.982e-018 

3.691e-016 

7.155e-017 

2.036e-018 

3.673e-018 

7.155e-019 

QABC 
8.206e-018 

1.333e-019 

2.549e-020 

1.355e-017 

1.670e-017 

2.183e-018 
6.006e-018 

7.670e-019 
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TABLE 2: MCN taken by functions for VTR (NC-Not Converge) 

F 

D=30/SN=20 D=50/SN=50 

ABC GABC QABC ABC GABC QABC 

f1 
1148 1102 1069 1737 1770 1255 

f2 
4011 3903 1928 7023 6552 5790 

f3 
NC NC NC NC NC NC 

f4 
1083 1009 1005 1674 1636 1610 

 

 

TABLE 3: T-test and AR(%), (here 3/1 implies QABC /ABC, and 3/2 implies QABC /GABC ) 

F 

t-test AR 

SN=20/D=30 SN=50/D=50 SN=20/D=30 SN=50/D=50 

3/1 3/2 3/1 3/2 3/1 3/2 3/1 3/2 

f1 1.611 40.20 0.224 72.35 6.9 3.0 27.7 29.1 

f2 0.16 0.235 9.853 1.391 51.9 50.6 17.6 11.6 

f3 7.080 0.173 1.#NF 10.385 NC NC NC NC 

f4 9.969 0.781 1.#NF 55.123 7.2 0.4 3.8 1.6 

                         1.#NF indicates std. dev. = 0; NC Not Converge 
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Figure.5: Convergence plot of (a) Griekwank (b) Rosenbrock 
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(a)                                                                          (b) 

Figure.6: MCN taken by function f1, f2 & f3 (a) D=30, SN=20 (b) D=50, SN=50 

 

TABLE 4: Simulation results for the constrained optimization problems 

f Statistics 
Algorithm 

ABC MO-ABC QABC GABC 

g01  Mean -15 -15 -15 -15 

SD 0 0 0 1.01E-14 

Worst -15 -15 -15 -15 

Best -15 -15 -15 -15 

g02  Mean 0.792412 0.793506 0.799731 0.80357 

SD 0.012 0.014 0.027 0.00481 

Worst 0.749797 0.744311 0.799431 0.794531 

Best 0.803598 0.803605 0.803609 0.803614 

g03 Mean -1 -1 -1.00037 -0.7563 

SD 0 0 0 0.0217 

Worst -1 -1 -1.00037 -0.7981 

Best -1 -1 -1.00037 -0.8753 

g04 Mean -30665.539 -30665.539 -30665.531 -30665.538 

SD 0 0 0 0 

Worst -30665.539 -30665.539 -30665.539 -30665.539 

Best -30665.539 -30665.539 -30665.539 -30665.539 

g05 Mean 5185.714 5162.496 5125.9462 5126.5067 

SD 75.358 47.8 52.21 51.40 

Worst 5438.387 5229.134 5232.179 5126.4967 

Best 5126.484 5126.582 5126.531 5126.4967 

g06 Mean -6961.814 -6961.814 -6961.805 -6961.8138 

SD 0.002 0 0.00001 1.98E-15 

Worst -6961.805 -6961.814 -6961.8129 -6961.8138 

Best -6961.814 -6961.814 -6961.8139 -6961.8138 
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TABLE 5: Comparison Results: NFE (Best, Worst and Mean) to achieve the fixed accuracy level ((f(x) – f(x*)) <= 0.0001), success 

rate, Feasible Rate and Success Performance for problems g01 – g06. Algo: Algorithms 

Problem Algo Best Worst Mean Feasible Rate (%) Success Rate (%) Success Performance 

g01 

  

  

  

  

ABC 25850 86500 33308 100 100 33308 

QABC 25619 67997 31914 100 100 31914 

GABC 27981 83536 33120 100 100 33120 

[18] 25273 346801 76195 100 52 146528.8 

[19] 95100 106900 101532 100 100 101532 

g02 

  

  

  

  

ABC 175832 428719 199273 100 100 199273 

QABC 92764 192850 117290 100 100 117290 

GABC 127823 215782 168382 100 100 168382 

[18] - - - 100 0 - 

[19] 180000 327900 231193 100 56 412844.6 

g03 

  

  

  

  

ABC 498266 587179 543319 100 58 936756.9 

QABC 440982 479265 449071 100 76 590882.9 

GABC 475387 511732 463196 100 59 785078 

[18] - - - 100 0 - 

[19] 450100 454000 450644 100 100 450644 

g04 

  

  

  

  

ABC 11956 13651 12651 100 100 12651 

QABC 9659 10842 9915 100 100 9915 

GABC  10750  12281 11917 100 100 11917 

[18] 15363 25776 20546 100 100 20546 

[19] 74300 85000 79876 100 100 79876 

g05 

  

  

  

  

ABC 21765 91985 25964 100 76 34163.16 

QABC 13350 65400 19286 100 88 21915.91 

GABC 19573 78194 57934 100 78 74274.36 

[18] 94156 482411 364218 100 16 2276363 

[19] 450100 457200 452256 100 100 452256 

g06 

  

  

  

  

ABC 9167 10284 9948 100 100 9948 

QABC 7373 9892 8952 100 100 8952 

GABC 8791 9972 9073 100 100 9073 

[18] 16794 22274 20043 100 100 20043 

[19] 47800 61100 56508 100 100 56508 

 

 

 
(a)                                                                (b)
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(c)                                                               (d) 

Figure.7: Radar representation of acceleration rate of constrained benchmark problems (a) ABC Vs. QABC (b) GABC Vs. QABC (c) 

[18] Vs. QABC (d) [19] Vs. QABC 
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(a)                                                                                        (b) 

Figure.8: (a) Average Success performance graph for all algorithms (b) Average Success performance and acceleration performance 

graph to solve six constrained benchmark problems. 

 
TABLE 6: Mean of fitness function value and (standard deviation) and for all algorithms 

F D 

ABC GABC QABC 

Mean (Std.) Mean (Std.) Mean (Std.) 

F1 2 169.849 (0.00801) 169.846 (1.7034e-016) 169.842 (1.6309.e-016) 

F2 3 4.21319 (3.1904e-016) 4.20916 (1.4291e-017) 4.20079 (.000101) 

F3 4 
4.7457e-008 (1.8741e-

018) 

1.8536e-009 8.0873e-

023) 

2.9014e-009 (2.9443e-

024) 

F4 10 -26.0119 (0.71933) -26.0317 (0.03981) -26.0418 (0.65189) 

F5 6 2.9975e+006 (0.22175) 2.9975e+006 (0.0) 2.7917e+006 (0.00319) 

 

TABLE 7: Comparison of QABC with other algorithms in terms of Iterations and AR (%), Here 3/1 implies QABC vs. ABC and 3/2 

implies QABC vs.GABC 

Function ABC GABC QABC AR 3/1 AR 3/2 

F1 289 249 197 31.83 20.88 

F2 756 524 513 32.14 2.10 

F3 418 317 321 
23.21 --- 

F4 240000 240000 240000 0.00 0.00 

F5 8517 6913 5568 34.62 19.46 

Average Acceleration Rate (AR(%)) 
24.36 8.24 

51.742
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V. CONCLUSION 

ABC is one of the latest additions to the class SI 

based algorithms. In the present study enhancements are 

suggested in the scout bee phase of the ABC algorithm. 

Instead of providing a random movement for scout bees, 

like the basic ABC algorithm, interpolation and 

Gaussian movements are embedded to generate more 

efficient food locations. The corresponding variants 

named as QABC and GABC are able to explore and 

exploit the search space more effectively. These variants 

are tested on 4 unconstrained, 6 constrained benchmark 

problems and five engineering design problems. Various 

performance criteria were considered to assess the 

proposed algorithms. Numerical results and graphical 

illustrations indicate that the proposed enhancements 

improve the performance of basic ABC in terms of 

convergence rate and fitness function. 
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Appendix A 
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The optimum value is 1*)( xf  at )/1(* nx   10, n . 
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 08.894)25.0sin(1000)25.0sin(1000)( 1433  xxxxh  

 08.894)25.0sin(1000)25.0sin(1000)( 24334  xxxxxh  

 08.1294)25.0sin(1000)25.0sin(1000)( 3445  xxxxh  

  12000  ix )2,1( i , 55.055.0 2  x )4,3( i . 

The optimum value is 4981.5126*)( xf at )3962336.0,1188764.0,067.1026,9463.679(* x . 

 

6. g06 

Minimize 
3

2
3

1 )20()10()(  xxxf  

Subject to: 

 0100)5()5()( 2
2

2
11  xxxg  

 081.82)5()6()( 2
2

2
12  xxxg  

  10013 1  x , 1000 2  x  

The optimum value is 81388.6961*)( xf at )84296.0,095.14(*x . 

 

Appendix A 

 

(a) F1: Optimal Capacity of Gas Production Facilities [20] 

This is the problem of determining the optimum capacity of production facilities that combine to make an oxygen 

producing and storing system. Oxygen for basic oxygen furnace is produced at a steady state level. The demand for 

oxygen is cyclic with a period of one hour, which is too short to allow an adjustment of level of production to the 

demand. Hence the manager of the plant has two alternatives. 

He can keep the production at the maximum demand level; excess production is lost in the atmosphere. 

He can keep the production at lower level; excess production is compressed and stored for use during the high 

demand period. 

The mathematical model of this problem is given by: 

 

Minimize: 75.0

2

2

1

85.02

1
23.700)

200
ln()40(087.0)]

200
ln()40[(2623.0172.58.61)(   x

x
x

x
xxxf  

 

Subject to: 600300,405.17;200,5.17
2121
 xxxx  
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(b) F2: Optimal Thermo hydraulic Performance of an Artificially Roughened Air Heater [21] 

In this problem the optimal thermohydraulic performance of an artificially roughened solar air heater is considered. 

Optimization of the roughness and flow parameters (p/e, e/D, Re) is considered to maximize the heat transfer while 

keeping the friction losses to be minimum. The mathematical model of this problem is given by: 

 

Maximize 
HGMReL 


 1.05.5ln*51.2  

where 53.0
295.0 x

M
R  ; 57.0

)7.0(
28.0

)(5.4


 e
H

G  

 
2/1

31 )2/( fxxe 

; 2/)( rs fff   
25.0

3079.0


 xfs ;
22

1
53.0

3 )75.3)2/1ln(*5.295.0(2  xxfr  

Subject to: 200003000,4010,8.002.0
321
 xxx  

 

(c) F3: Design of Gear Train [22] 

This problem is to optimize the gear ratio for the compound gear train. This problem shown in Figure 5 was 

introduced by Sandgren [32]. It is to be designed such that the gear ratio is as close as possible to 1/6.931. For each gear 

the number of teeth must be between 12 and 60. Since the number of teeth is to be an integer, the variables must be 

integers. The mathematical model of gear train design is given by, 

 

Minimize 

2

43

21

2

931.6

1

931.6

1























xx

xx

TT

TT
f

fa

bd  

 

Subject to: 6012  ix  4,3,2,1i  

],,,[],,,[ 4321 fabd TTTTxxxx  , xi’s should be integers. Ta, Tb, Td, and Tf are the number of teeth on gears A, B, D and 

F respectively. The design of a compound gear train is shown in Figure 2. 

 

 
Compound Gear Train 

 

(d) F4: The lennard-jones atomic cluster problem [23] 

The Lennard-Jones (LJ) model of inert gas cluster has been investigated intensively as a challenging testing ground 

for global optimization algorithms. The LJ problem can be formulated as follows: Let N atoms be given in three 

dimensional space. Let 
Tiiii xxxx ),,( 321 represent the coordinates of atom i. let 

TTNT xxX ))(,...,)(( 1 the LJ 

potential energy function )( ijrv of a pair of atoms (i, j) is given by ||x||xrwhereNi,j,
rr

)v(r ji

ij

ijij

ij  1
11

612
 

The LJ potential function for a single pair of neutral atoms is a simple unimodal function. This is illustrated by Figure 

3. It is easy to find the overall minimum of this function that is assumed at 1 with energy −1. In a complex system, 

many atoms interact and we need to sum up the LJ potential functions for each pair of atoms in a cluster. The result is a 

complex energy landscape with many local minima. It is given by:  

 

 




 

















ji

N

i

N

ij
jiji

ji

xxxx
xxvXVMinimize

1

1 1
612 ||||

1

||||

1
||)(||)(  

 

As it is known the LJ problem is a highly nonlinear, non convex function with numerous local minimum that takes 

the LJ problem a challenging standard test problem for the global optimization algorithms. For illustration, we fix one 

atom’s position and let the others move around the fixed one. A cluster of more than 20 atoms has many of local 

minima along its LJ PES. 
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LJ potential of a single pair of atoms 

 

(e) F5: Gas transmission compressor design [20]  

 

Minimize   2/12

2

3/2

32

2/1

1

5 )1(*10*61.8)( xxxxxf 1

1

6219.0

2

1

1

8

3

4 *10*43.765*10*72.7*10*69.3   xxxx  

 

Bounds: 4010,21.1,5510 321  xxx  
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