
I.J.Modern Education and Computer Science, 2013, 5, 49-59
Published Online June 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2013.05.06

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 5, 49-59

Design and Development MIPS Processor Based

on a High Performance and Low Power

Architecture on FPGA

Tina Daghooghi

Shahid Chamran University, Ahvaz, Iran

E-mail: T-daghooghi@mscstu.scu.ac.ir

Abstract— This paper presents the design and

development of a high performance and low power

MIPS microprocessor and implementation on FPGA. In

this method we for achieving high performance and low

power in the operation of the proposed microprocessor

use different methods including, unfolding

transformation (parallel processing), C-slow retiming

technique, and double edge registers are used to get even

reduce power consumption. Also others blocks designed

based on high speed digital circuits. Because of

feedback loop in the proposed architecture C-slow

retiming can enhance designs that contain feedback

loops. The C-slow retiming is well-known for

optimization and high performance technique, it

automatically rebalances the registers in the proposed

design. The proposed high performance microprocessor

is modeled and verified using FPGA and simulation

results. The proposed methods in microprocessor have

been successfully synthesized and implemented in

Quartus II 9.1 and Stratix II FPGA, to target device

EP2S15F484C3, and power is analyzed with Xpower

analyzer. Results demonstrate that the proposed method

has high performance.

Index Terms— High Performance, Low Power, FPGA,

double edge register, Combinational Logic.

I. Introduction

Microcontrollers and microprocessors are used in

everyday systems. Basically, any electronic systems that

require computation or instruction execution require a

microcontroller or microprocessor. Therefore, at the core

of electronic systems with computational capability is a

microprocessor. Microprocessors have grown from 8

bits to 16 bits, 32 bits, and currently to 64 bits.

Microprocessor architecture has also grown from

complex instruction set computing (CISC) based on

reduced instruction set computing (RISC) based on a

combination of RISC-CISC based and currently very

long instruction word (VLIW) based [1]. Some

microprocessors are optimized for high-performance

servers, whereas others are optimized for long battery

life in laptop computers. A computer architecture is

defined by its instruction set and architectural state. The

architectural state of the MIPS processor consists of the

program counter and the 32 registers. Any MIPS micro

architecture must contain all of this state. Based on the

current architectural state, the processor executes a

particular instruction with a particular set of data to

produce a new architectural state. Some

microarchitectures contain additional nonarchitectural

state to either simplify the logic or improve performance

[2]. The IBM System z10™ microprocessor is currently

the fastest running 64-bit CISC (complex instruction set

computer) microprocessor. This microprocessor operates

at 4.4 GHz and provides up to two times performance

improvement compared with its predecessor, the System

z9® microprocessor. In addition to its ultrahigh-

frequency pipeline, the z10™ microprocessor offers

such performance enhancements as a sophisticated

branch-prediction structure, a large second-level private

cache, a data-prefetch engine, and a hardwired decimal

floating-point arithmetic unit. The z10 microprocessor

also implements new architectural features that allow

better software optimization across compiled

applications. These features include new instructions

that help shorten the code path lengths and new facilities

for software-directed cache management and the use of

1-MB virtual pages [3].

In recent years, a number of researches have been

proposed for Implementation of microprocessor by using

the FPGA by some companies [4-11]. In continuing we

present some researches, The Aviation Microelectronic

Center of NPU (Northwestern Polytechnical University)

has recently completed the development of a 32-bit

super-scalar RISC microprocessor, called "Longtium"

R2. In [4], the architecture of "Longtium" R2 is

presented. As explained in [5], the PowerPC 603e

microprocessor is a high performance, low cost, low

power microprocessor designed for use in portable

computers. The 603e is an enhanced version of the

PowerPC 603 microprocessor and extends the

performance range of the PowerPC microprocessor

family of portable products. The enhancements include

increasing the frequency to 100 MHZ doubling the on-

chip instruction and data caches to 16K bytes each,

increasing the cache associativity to 4-way set-

associative, adding an extra integer unit, and increasing

the throughput of stores and misaligned accesses. Three

new bus modes are added to allow for more flexibility in

system design. The estimated performance of the 603e at

100 MHz is 120 SPECint92 and 105 SPECfp92. In [6], a

new microprocessor design framework, called DOTTA

50 Design and Development MIPS Processor Based on a High Performance and Low Power

Architecture on FPGA

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 5, 49-59

(dynamic operation transport triggered array) is

introduced. An FPGA (field programmable gate array)

implementation of DOTTA is presented. The aim of this

new processor framework is to eliminate bottlenecks

introduced by traditional microprocessor architectures.

The framework defines a task-specific microprocessor

that is application customisable on the target system it is

operating on; this has been achieved by using

Xilinxtrade FPGA fabric. In [7], a 8-bit CISC

microprocessor core development which is intended as

an open core for teaching applications in the digital

systems laboratory. The core is fully open and therefore,

the user can have access to all internal signals as well as

the opportunity to make changes to the structure itself

which is very useful when lecturing microprocessor

design. The main advantages of the present core,

compared with commercially available equivalent cores,

are not being vendor sensitive allowing its

implementation in almost any FPGA family and being

an open core, that can be fully monitored and modified

to fit specific design constraints. Several tests were

performed to the microprocessor core, including an

embedded microcontroller with RAM, ROM and I/O

capabilities. The present development includes a meta-

assembler and linker to embed user programs in a ROM,

which is automatically generated as a VHDL description.

In [8], a new methodology based on practical sessions

with real devices and chips is proposed. Simple designs

of microprocessors are exposed to the students at the

beginning, raising the complexity gradually toward a

final design with a multiprocessor integrated in a single

FPGA chip. In [9], the implementation and delivery of a

microprocessor based on laboratory design is presented

design laboratory, in an attempt to achieve tighter

integration with theory and improve student's

performance. The design process follows a hierarchical

structure, requiring students to first build basic devices

such as logic gates, multiplexers, one-bit memory cells

etc. These basic devices are then used to build an ALU,

registers, (registers are used to build larger memories), a

data path and a control unit. Designs are completed

without any high level programming ensuring that

students cannot rely on the compiler to transform

specifications into implementations. In [10], several case

studies that examine the effects of various embedded

processor memory strategies and peripheral sets.

Comparing the benchmark system to a real-world

system, the study examines techniques for optimizing

the performance and cost of an FPGA embedded

processor system. The development of a microprocessor

based on automatic gate is presented by [11]. The

inconvenience encountered in gate operations has called

for an immense search for solutions. The microprocessor

based on automatic gate offers everything necessary to

put an end to these inconveniences as it incorporates an

intelligent device (microprocessor). The automatic gate

developed their project is unique in that it is controlled

by software, which can be modified any time the system

demands a change. The main goal of this paper is to

design a high performance microprocessor with a novel

way on FPGA. We applied several methods to

microarchitecture the performances and the

effectiveness of the proposed methods of the throughput

rate and hardware cost for the proposed structure are

given. This paper is organized as follows. An overview

of the MIPS processor will be given in section II. In

section III description of the proposed methods is

presented. A comparison of performance, power

consumption, chip utilization that verifies the

performance of the proposed work is focus of section IV.

In section V conclusion of the paper is presented.

II. MIPS PROCESSOR

MIPS is a 32-bit architecture, so its a 32-bit data path.

The control unit receives the current instruction from the

data path and tells the datapath how to execute that

instruction. Specifically, the control unit produces

multiplexer select, register enable, and memory writes

signals to control the operation of the data path. The

program counter is an ordinary 32-bit register. Its output,

PC, points to the current instruction. Its input, PC
‘
,

indicates the address of the next instruction. The

instruction memory has a single read port. It takes a 32-

bit instruction address input, A, and reads the 32-bit data

(i.e., instruction) from that address onto the read data

output, RD. The 32-element  32-bit register file has

two read ports and one write port. The read ports take 5-

bit address inputs, A1 and A2, each specifying one of

2
5
=32 registers as source operands. They read the 32-bit

register values onto read data outputs RD1 and RD2,

respectively. The write port takes a 5-bit address input,

A3; a 32-bit write data input, WD; a write enable input,

WE3; and a clock. If the write enable is 1, the register

file writes the data into the specified register on the

rising edge of the clock. The data memory has a single

read/write port. If the write enable, WE, is 1, it writes

data WD into address A on the rising edge of the clock.

If the write enable is 0, it reads address A onto RD. The

instruction memory, register file, and data memory are

all read combinationally. In other words, if the address

changes, the new data appears at RD after some

propagation delay; no clock is involved. They are

written only on the rising edge of the clock. In this

fashion, the state of the system is changed only at the

clock edge. The address, data, and write enable must

setup sometime before the clock edge and must remain

stable until a hold time after the clock edge. Because the

state elements change their state only on the rising edge

of the clock, they are synchronous sequential circuits.

The microprocessor is built on clocks state elements and

combinational logic, so it too is a synchronous

sequential circuit. Indeed, the processor can be viewed

as a giant finite state machine, or as a collection of

simpler interacting state machines [2]. To keep the

microarchitectures easy to understand, we consider only

a subset of the MIPS instruction set:

1- R-type arithmetic/logic instructions: add, sub,

and, or, slt

 Design and Development MIPS Processor Based on a High Performance and Low Power 51

Architecture on FPGA

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 5, 49-59

2- Memory instructions: lw, sw

3- Branches: beq

A. MIPS Microarchitectures

In this part, based on [2], a MIPS microarchitecture

executes instructions in a single cycle. The first step is to

read this instruction from instruction memory. That the

PC is simply connected to the address input of the

instruction memory. The instruction memory reads out,

or fetches, the 32-bit instruction, labeled Instr. The

processor‘s actions depend on the specific instruction

that was fetched. For a lw instruction, the next step is to

read the source register containing the base address. This

register is specified in the rs field of the instruction,

Instr25:21. These bits of the instruction are connected to

the address input of one of the register file read ports,

A1. The register file reads the register value onto RD1.

The lw instruction also requires an offset. The offset

is stored in the immediate field of the instruction,

Instr15:0. Because the 16-bit immediate might be either

positive or negative, it must be sign-extended to 32 bits.

The 32-bit sign-extended value is called SignImm. Sign

extension simply copies the sign bit of a short input into

all of the upper bits of the longer output. Specifically,

SignImm15:0 = Instr15:0 and SignImm31:16 = Instr15. The

processor must add the base address to the offset to find

the address to read from memory. Introduces an ALU to

perform this addition. The ALU receives two operands,

SrcA and SrcB. SrcA comes from the register file, and

SrcB comes from the sign-extended immediate. The

ALU can perform many operations. The 3-bit

ALUControl signal specifies the operation. The ALU

generates a 32-bit ALUResult and a Zero flag, that

indicates whether ALUResult == 0. For a lw instruction,

the ALUControl signal should be set to 010 to add the

base address and offset. ALUResult is sent to the data

memory as the address for the load instruction, as shown

in Fig.1. The data is read from the data memory onto the

ReadData bus, then written back to the destination

register in the register file at the end of the cycle, Port 3

of the register file is the write port. The destination

register for the lw instruction is specified in the rt field,

Instr20:16, which is connected to the port 3 address input,

A3, of the register file. The ReadData bus is connected

to the port 3 write data input, WD3, of the register file.

A control signal called RegWrite is connected to the port

3 write enable input, WE3, and is asserted during a lw

instruction so that the data value is written into the

register file. While the instruction is being executed, the

processor must compute the address of the next

instruction, PC
‘
. Because instructions are 32 bits = 4

bytes, the next instruction is at PC + 4. Uses another

adder to increment the PC by 4. The new address is

written into the program counter on the next rising edge

of the clock. This completes the data path for the lw

instruction. Like the lw instruction, the sw instruction

reads a base address from port 1 of the register and sign-

extends an immediate. The ALU adds the base address

for the immediate to find the memory address. The

register is specified in the rt field, Instr20:16. These bits of

the instruction are connected to the second register file

read port, A2. The register value is read onto the RD2

port. It is connected to the write data port of the data

memory. The write enable port of the data memory, WE,

is controlled by MemWrite. For a sw instruction,

MemWrite= 1, to write the data to memory;

ALUControl = 010, to add the base address and offset;

and RegWrite = 0, because nothing should be written to

the register file. The R-type instructions read two

registers from the register file, and write the result back

to a third register file. They differ only in the specific

ALU operation, using different ALUControl signals.

The register file reads two registers. The ALU

performs an operation on these two registers. In Fig.1,

the ALU always receives its SrcB operand from the

sign-extended immediate (SignImm). A multiplexer

choose SrcB from either the register file RD2 port or

SignImm. The multiplexer is controlled by a new signal,

ALUSrc. ALUSrc is 0 for R-type instructions to choose

SrcB from the register file; it is 1 for lw and sw to

choose SignImm. The register file always gets its write

data from the data memory. However, R-type

instructions write the ALUResult to the register file.

Therefore, another multiplexer is needed to choose

between ReadData and ALUResult. That calls its output

Result. This multiplexer is controlled by another new

signal, MemtoReg. MemtoReg is 0 for R-type

instructions to choose a result from the ALUResult; it is

1 for lw to choose ReadData. The register to write was

specified by the rt field of the instruction, Instr20:16.

However, for R-type instructions, the register is

specified by the rd field, Instr15:11. Thus, add a third

multiplexer to choose WriteReg from the appropriate

field of the instruction. The multiplexer is controlled by

RegDst. RegDst is 1 for R-type instructions to choose

WriteReg from the rd field, Instr15:11; it is 0 for lw to

choose the rt field, Instr20:16. Finally, beq compares two

registers. If they are equal, it takes the branch by adding

the branch offset to the program counter. That the offset

is a positive or negative number, stored in the imm field

of the instruction, Instr31:26. The offset indicates the

number of instructions to branch past. Hence, the

immediate must be sign-extended and multiplied by 4 to

get the new program counter value: PC
‘
=PC+4+

SignImm  4. The next PC value for a taken branch,

PCBranch, is computed by shifting SignImm left by 2

bits, then adding it to PCPlus4. The left shift by 2 is an

easy way to multiply by 4, because a shift by a constant

amount involves just wires. The two registers are

compared by computing SrcA-SrcB using the ALU. If

ALUResult is 0, as indicated by the Zero flag from the

ALU, the registers are equal. A multiplexer chooses PC
‘

from either PCPlus4 or PCBranch. PCBranch is selected

if the instruction is a branch and the Zero flag is asserted.

Hence, Branch is 1 for beq and 0 for other instructions.

For beq, ALUControl =110, so the ALU performs a

subtraction. ALUSrc = 0 to choose SrcB from the

register file. RegWrite and MemWrite are 0, because a

branch does not write to the register file or memory.

52 Design and Development MIPS Processor Based on a High Performance and Low Power

Architecture on FPGA

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 5, 49-59

0

1

0

0

0

1

1

1
PC

’

PC
I
n

s
tr

a
c
ti

o
n

M
e
m

o
r
y

A1

A2

A3

WD3

RD1

RD2R
e
g

is
te

r

F
il

e

WD

A RD

Data

Memory

A
L

U

<<2Sign Extend

CLK CLK
CLK WE

instr

PCPuls4
Signlmm

PCbranch

WriteReg

SrcA

S
r
c
B

Write Data

ALU

Result Read

Data

WE3

4

Fig.1: MIPS processor with single cycle datapath.

The pipelined datapath is formed by chopping the

single cycle datapath into five stages separated by

pipeline registers. Fig.2 shows the pipelined datapath

formed by inserting four pipeline registers to separate

the datapath into five stages. Signals are given a suffix

(F, D, E, M, or W) to indicate the stage in which they

reside. The register file is peculiar because it is read in

the Decode stage and written in the Writeback stage. It

is drawn in the Decode stage, but the write address and

data come from the Writeback stage. This feedback will

lead to pipeline hazards. The register file write logic

should operate in the Writeback stage. The data value

comes from ResultW, a Writeback stage signal. But the

address comes from WriteRegE, an Execute stage signal.

The WriteReg signal is pipelined along through the

Memory and Writeback stages, so it remains in sync

with the rest of the instruction. WriteRegW and ResultW

are feedback together in the register file in the

Writeback stage. The astute reader may notice that the

PC
‘
 logic is also problematic, because it might be

updated with a Fetch or a Memory stage signal

(PCPlus4F or PCBranchM).

0

1

0

1

PC
’

PC

I
n

s
tr

a
c
ti

o
n

M
e
m

o
r
y

A1

A2

A3

WD3

RD1

RD2R
e
g
is

te
r

F
il

e

WD

A RD

Data

Memory

A
L

U

<<2Sign Extend

CLK CLK
CLK WE

in
s
tr

D

PCPuls4F

SignlmmE

PCbranchM

WriteRegW

SrcAE

S
r
c
B

E

Write DataM

Read DataW

WE3

4

0

1

0

1

WriteRegM

WriteRegE

Write DataE

Z
e
r
o
M

ALUM

BranchM

PCPuls4D PCPuls4E

ALUW

Fig.2: MIPS processor with pipelined datapath.

We simply analyze using Data Flow Graph (DFG),

thus we should convert microarchitecture (MIPS

processor) to DFG in this proposed DFG we consider

only main blocks of microarchitecture including:

Instruction Memory (IM), Register File (RF), ALU (A),

Data Memory (DM). The proposed DFG of MIPS

processor is shown in Fig.3 this DFG is included

feedback loops.

RFRF AA DMDMIMIM

PC

Fig.3: Proposed DFG of MIPS processor.

III. PROPOSED METHODS

This part of paper is considered in explaining

proposed methods, now in continuing our description

any method in the following sections. The goal of this

work, is the design and development of one high

performance microprocessor based on MIPS processor

thus using several techniques. The design composed

these different techniques, all parts are interconnected

with each other to perform the designed method task to

achieve high performance and high speed.

A. Unfolding Transformation

Unfolding is a transformation technique to change the

program into another program such that one iteration of

the new program describes more than one iteration in the

original program. Also used to design bit parallel and

word parallel architectures from bit serial and word

serial architecture. Base on unfolding is same parallel

processing. This technique can be used in Sample period

reduction and parallel processing.

a. Algorithm for Unfolding

For each node U in the original DFG, draw J node U0,

U1, U2 ,…, UJ-1. Also for each edge U  V with w

delays in the original DFG, draw the J edges Ui  V (I

+ w) %J with (i+w) /J (delays for I = 0, 1, …, J-1. The

DFG in Fig 5 is unfolded using unfolding factor 4 to get

the DFG in Fig. 5(b). Note that unfolding of an edge

with w delays in the original DFG produces j-w edges

with no delays and w edges with 1 delay in j-unfolded

DFG when unfolding of an edge with w delays in the

original DFG when w < j.

UU VV U0U0 V0V0

U1U1 V1V1

U2U2 V2V2

U3U3 V3V3

9D9D

9D9D

9D9D

10D10D

37D37D

 
3,10

2,1,0,94/)(

37







i

iWi

W

(a)(a)

(b)(b)

Fig.5: Unfolding of an edge with w delays in the original DFG.

 Design and Development MIPS Processor Based on a High Performance and Low Power 53

Architecture on FPGA

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 5, 49-59

Unfolding of an edge with w delays in the original

DFG produces J-w edges with no delays and w edges

with 1delay in J unfolded DFG for w < J. Unfolding

preserves precedence constraints of a DSP program.

Applications of Unfolding include: Sample Period

Reduction, Parallel Processing.

b. Sample Period Reduction

Iteration bound is not an integer. The original DFG

cannot have sample period equal to the iteration bound

because the iteration bound is not an integer. If a critical

loop bound is of the form tl/wl where tl and wl are

mutually co-prime, then wl-unfolding should be used. In

the example tl=60 and wl=45, then tl/wl should be

written as 4/3 and 3-unfolding should be used. A simple

example of this is shown Fig 6(a), where the DFG has

iteration bound T=4/3; however, even retiming cannot

be used to achieve a critical path of less than 2. This

DFG can be unfolded DFG has iteration bound T=4, and

its critical path is 4. The unfolded DFG performans 3

iterations of the original problem in 4, so the sample

period of the unfolded DFG is 4/3, which is the same as

the iteration bound of the original DFG. To summarize,

the original DFG in Fig5(a) cannot achieve a sample

period equal to the iteration bound because the itration

bound is not an integer, but the unfolded DFG in Fig 5(b)

can have a sample period equal to the iteration bound of

the original DFG. In general, if a critical loop bound is

of the form t1/w1 where t1 and wl are mutually coprime,

then wl-unfolding should be used.

SS TT UU VV

S0S0 T0T0 U0U0 V0V0

S1S1 T1T1 U1U1 V1V1

S2S2 T2T2 U2U2 V2V2

DD

DD

DD

DD

(a)(a)

(b)(b)

Fig.6: (a) The original DFG with iteration bound T=4/3 and minimum

sample period of 2. (b) The 3-unfolded DFG with iteration bound T=4

and minimum sample period of 4/3.

c. Parallel processing

Word-level parallel processing, Bit level parallel

processing is included: Bit-serial processing, Bit-parallel

processing, and Digit-serial processing. In the proposed

method we use unfolding technique and design proposed

architecture base on 4 level parallel processing. Until

increase speed of data process. Fig.4 shows the

interconnection between different system blocks. As

seen proposed design based on 4 level parallel

processing (unfolded), DM0 and DM1 are Dual Port

RAM (DPRAM).

IM

RF0

PC
RF1

RF2

RF3

A0

A1

A2

A3

DM

1

DM

0

Fig.4: Proposed design based on 4 level parallel processing (unfolded).

B. C-Slow Retiming

Although pipelining is a huge benefit FPGA design,

and may be required on some FPGA fabrics it is often

difficult for a designer to manage and balance pipeline

stages and to insert the necessary delays to meet design

requirements. Leiserson et al. Were the first to propose

returning, an automatic process to relocate pipeline

stages to balance a design. Their algorithm, in O (n2lg

(n)) time, can rebalance a design so that the critical path

is optimally pipelined. In addition, two modifications,

repipelining and C-slow retiming, can add additional

pipeline stages to a design to further improve the critical

path. The key idea is simple: If the number of registers

around every cycle in the design does not change, the

end-to-end semantics do not change. Thus, retiming

attempts to solve two primary constraints: All paths

longer than the desired critical path are registered, and

the number of registers around every cycle is unchanged.

 This optimization is useful for conventional FPGAs

but absolutely essential for fixed-frequency FPGA

architectures, which are devices that contain large

numbers of registers and are designed to operate at a

fixed, but very high, frequency, often by pipelining the

interconnect as well as the computation. To meet the

array‘s fixed frequency, a design must ensure that every

path is properly registered. Repipelining and C-slow

retiming enables a design to be transformed to meet this

constraint. Without automated repipelining and C-slow

retiming, the designer must manually ensure that all

pipeline constraints are met by the design. The goal of

retiming is to move the pipeline registers in a design into

the optimal position. Fig.5 shows a trivial example. In

this design, the nodes represent logic delays (a), with the

inputs and outputs passing through mandatory, fixed

registers. The critical path is 5, and the input and output

registers cannot be moved. Fig.5(b) shows the same

graph after retiming. The critical path is reduced from 5

to 4, but the I/O semantics have not changed, as three

cycles are still required for a datum to proceed from

input to output. As can be seen, the initial design has a

critical path of 5 between the internal register and the

output. If the internal register could be moved forward,

the critical path would be shortened to 4. However, the

feedback loop would then be incorrect. Thus, in addition

to moving the register forward, another register would

54 Design and Development MIPS Processor Based on a High Performance and Low Power

Architecture on FPGA

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 5, 49-59

be needed to be added to the feedback loop, resulting in

the final design. Additionally, even if the last node is

removed, it could never have a critical path lower than 4

because of the feedback loop. There is no mechanism

that can reduce the critical path of a single-cycle

feedback loop by moving registers: Only additional

registers can speed such a design. Retiming‘s objective

is to automate this process: For a graph representing a

circuit, with combinational delays as nodes and integer

weights on the edges, find a new assignment of edge

weights that meets a targeted critical path or fail if the

critical path cannot be met. Leiserson‘s retiming

algorithm is guaranteed to find such an assignment, if it

exists, that both minimizes the critical path and ensures

that around every loop in the design the number of

registers always remains the same. It is the second

constraint, ensuring that all feedback loops are

unchanged, which ensures that retiming doesn‘t change

the semantics of the circuit.

11 11

11 11

22 22

11 11

11 11

22 22

inin

inin outout

outout

(a)(a)

(b)(b)
Fig.5: A small graph before retiming (a) and the same graph after

retiming (b).

In equation below r (u) is the lag computed for each

node (which is used to determine the final number of

registers on each edge), w (e) is the initial number of

registers on an edge, W (u,v) is the minimum number of

registers between u and v, and D (u,v) is the critical path

between u and v. Leiserson‘s algorithm takes the graph

as input and then adds an additional node representing

the external world, with appropriate edges added to

account for all I/Os. This additional node is necessary to

ensure that the circuit‘s global I/O semantics are

unchanged by retiming. Two matrices are then

calculated, W and D, that represents the number of

registers and critical path between every pair of nodes in

the graph. These matrices are necessary because

retiming operates by ensuring that at least one register

exists on every path that is longer than the critical path

in the design.

Each node also has a lag value r that is calculated by

the algorithm and used to change the number of registers

that will be placed on any given edge. Conventional

retiming does not change the design semantics: All input

and output timings remain unchanged while minor

design constraints are imposed on the use of FPGA

features. The biggest limitation of retiming is that it

simply cannot improve a design beyond the design-

dependent limit produced by an optimal placement of

registers along the critical path. Repipelining and C-slow

retiming are transformations designed to add registers in

a predictable matter that a designer can account for,

which retiming can then move to optimize the design.

Repipelining adds registers to the beginning or end of

the design, changing the pipeline latency but no other

semantics. C-slow retiming creates an interleaved design

by replacing every register with a sequence of C

registers [12].

a. Proposed Method based on C-slow Retiming

As explained in [12], unlike repipelining, C-slow

retiming can enhance designs that contain feedback

loops. C-slowing enhances retiming simply by replacing

every register with a sequence of C separate registers

before retiming occurs; the resulting design operates on

C distinct execution tasks. Because all registers are

duplicated, the computation proceeds in a round-robin

fashion, as illustrated in Fig.6. In this example, this is 2-

slow, the design interleaves between two computations.

On the first clock cycle, it accepts the first input for the

first stream of execution. On the second clock cycle, it

accepts the first input for the second stream, and on the

third it accepts the second input for the first stream.

Because of the interleaved nature of the design, the two

streams of execution will never interfere. On odd clock

cycles, the first stream of execution accepts input; on

even clock cycles, the second stream accepts input.

11 11

11 11

22 22

11 11

11 11

22 22

inin

inin outout

outout

(a)(a)

(b)(b)
Fig.6: converted to 2-slow operation (a), The design retimed (b).

The example from Fig.5, converted to 2-slow

operation (a). The critical path remains unchanged, but

the design now operates on two independent streams in a

round-robin fashion. The design retimed (b). By taking

advantage of the extra flip-flops, the critical path has

been reduced from 5 to 2. In this paper, we designed .),(

,1),()()(

0)()(0)()(

1-w(e)r(v)-r(u)

PvuDthatsuch

vuallforvuWvrur

vrvrandvrur









 Design and Development MIPS Processor Based on a High Performance and Low Power 55

Architecture on FPGA

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 5, 49-59

proposed architecture base on 2-slow retiming and 3-

slow retiming. C-slow retiming can be enhanced by

designing with feedback loops. Thus we with more

registers retiming can break the design into finer pieces

until improves throughput total of design. It also enables

more throughputs when exploiting task level parallelism.

Using C-slow retiming technique in proposed method

automatically rebalances the registers in the proposed

design, in order to minimize the worst case register to

register path. Fig.7 shows the proposed architecture for

2-slow retiming.

IMIM

RF0RF0

PCPC
RF1RF1

RF2RF2

RF3RF3

A0A0

A1A1

A2A2

A3A3

DM

1

DM

1

DM

0

DM

0

IMIM

RF0RF0

PC
RF1RF1

RF2RF2

RF3RF3

A0A0

A1A1

A2A2

A3A3

DM

1

DM

1

DM

0

DM

0

IMIM

RF0RF0

PC
RF1RF1

RF2RF2

RF3RF3

A0A0

A1A1

A2A2

A3A3

DM

1

DM

1

DM

0

DM

0

Fig.7: Proposed architecture for 2-slow retiming

Also Fig.8 shows the proposed architecture for 3-slow

retiming.

IM

RF0

PC
RF1

RF2

RF3

A0

A1

A2

A3

DM

1

DM

0

IM

RF0

PC
RF1

RF2

RF3

A0

A1

A2

A3

DM

1

DM

0

IM

RF0

PC
RF1

RF2

RF3

A0

A1

A2

A3

DM

1

DM

0

Fig.8: Proposed architecture for 3-slow retiming.

C. Double Edge Triggered Registers

One of the reasons using double edge register is

reducing power consumption. Thus we in proposed

datapath transition of data that are in two edge clock

signal i.e. we reduce the operation frequency to half but

without reducing efficiency. As explained in [13], a

digital system, synchronization/clocking has its special

role. By its action as timing signal the system clock

controls the working rhythm of the chip. If the system is

considered as a set of interconnected gates and flip-flops,

56 Design and Development MIPS Processor Based on a High Performance and Low Power

Architecture on FPGA

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 5, 49-59

the clock signal controls all flip-flops to sample and

store their input data synchronously. In addition, to

distribute the clock and control the clock skew, one

needs to construct a clock network with clock buffers.

Recent studies indicate that the clock signals in digital

computers consume a large (15% - 45%) percentage of

the system power [14]. In the stored state, the clock level

switches off the input path, and, the input data are thus

rejected, while the input state, the clock level allows the

input signal to travel to the output terminal of the latch.

However, if the input date can be received and sampled

at both levels of the clock, the flip-flop will receive and

process two data values in one clock period. In other

words, the clock frequency could be reduced by half

while keeping the data rate the same. This means that

under the requirement of preserving the original circuit

function and data rate, the dynamic power dissipation

due to clock transitions can be reduced by half. It is

expected that the half-frequency reduced clock system is

useful in low power systems. The latch is the basic unit

for composing a flip-flop. The levels of a clock, CLK,

are used to drive the latch to either the storage state or

the input state. If we use D, Q and Q‘ to express the

input signal, present state and next state of a latch, the

state equations for positive and negative level-sensitive

latch can be expressed as:

Equation (2) describes a latch which passes the input

data when CLK = 1 and stores it when CLK = 0.

Inversely, equation (3) describes a complementary latch,

which receives input data at CLK = 0 and stores it at

CLK = 1. The corresponding logic structures can be

realized with a MUX, as shown in Fig.9(a). If two

complementary latches are connected in series, one will

be in the storage state while another is in the input state

and a ―non-transparent‖ edge triggered flip-flop is

formed. Taking the latches in Fig.9 (a), they can

compose a well known ―master-slave flip-flop‖ as

shown in Fig.10 (b), when CLK = 1, its master latch

passes input data and its slave latch is in the storage state;

when CLK = 0, its master latch will be in the storage

state and its slave latch will pass and output the signal

stored by the master latch. Therefore, this flip-flop

changes its state at the clock‘s falling edge and keeps its

state unchanged on the clock‘s rising edge. The master

latch does not receive the input data when CLK = 0.

Obviously, if the input data has to be received at both

clock levels, these two complementary latches should be

connected in parallel rather than in series. Then obtain a

―side-by-side flip-flop‖ as shown in Fig.9 (c). Since the

flip-flop is required to be non transparent from input to

output, the output terminal should always be connected

to the latch which is in storage state. Because the flip-

flop‘s state can change at both falling and rising edges of

the clock, it is named ―Double-Edge-Triggered Flip-

Flop‖ and is denoted by the legend shown in Fig.9 (c).

0

1

0

1

0

1

0

1

0

1

0

1

D

Q

CLK

D

Q

CLK

D

D

CLK

(a)

(b)

(c)
Fig.9: Positive level-sensitive latch (a), SET flip-flop (b), DET flip-

flop (c).

The proposed double edge register is shown in Fig.10.

0

1

0

1

0

1

D[0]
Q[0]

0

1

0

1

0

1

D[1]
Q[1]

0

1

0

1

0

1

D[2]
Q[2]

0

1

0

1

0

1

D[3]
Q[3]

CLK

Fig.10 : Proposed double edge register.

We increase system throughput by applying parallel

streams of execution to operate simultaneously.

Additional to data processing with parallel execution

path, we use several techniques. The ideal goal of all

these methods is to increase architecture throughput by

operating on multipath streams of execution in highly

complex designs, including microprocessors. The

proposed microarchitecture is shown in Fig.11. Total of

methods are applied to the MIPS processor. As seen in

Fig.11 microarchitecture is divided into two interacting

parts: the data path and the control. The datapath

)3(Q.CLKCLKD.Q

)2(CLKQ.D.CLKQ





 Design and Development MIPS Processor Based on a High Performance and Low Power 57

Architecture on FPGA

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 5, 49-59

operates on words of data. It contains structures such as

memories, registers, ALUs, and multiplexers. The

microarchitecture includes 4 level parallelism.

Fig. 11: Proposed microarchitecture.

We use a demaltiplexer 1 to 4, That is after instruction

memory and based on bits 33:32 of the instructions.

Proposed instruction is shown in below:

Bits 33:31 (I33:32) are for selecting one of level

parallelism. As seen in Table II if bits of 33:32 be ‗00‘

level0 is selected, if I33:32 = ‗01‘ level1 is selected, if I33:32

= ‗10‘ level2 is selected and also I33:32 = ‗11‘ level3 is

selected.

Table I: Bits 33:31of instruction in proposed architecture.

I33:32
Level of

parallelism

‗00‘ Level0

‗01‘ Level1

‗10‘ Level2

‗11‘ Level1

Structure of instruction is shown in Fig 12(a), for

example, an addition instruction (a = b + c) that is in the

level0 format of this instruction is in Fig 12 (b):

Level[0] Oprand(add) a b c

Level[0 to 3] Other bits

Bit[33:32] Bit[31:0]

(a)

(b)
Fig 12: (a) Structure of instruction in the proposed method. (b) level0

format of instruction (a = b + c).

The proposed microarchitecture is a 34-bit

architecture, so its a 34-bit data path. The control unit

receives the current instruction from the data path and

tells the datapath how to execute that instruction.

Specifically, the control unit produces multiplexer select,

and memory writes signals to control the operation of

the data path. The program counter register contains the

address of the instruction to execute in one of the levels.

The PC is an ordinary 32-bit register. Its output, PC,

points to the current instruction. We begin constructing

the datapath by connecting the state elements with

combinational logic that can execute the various

instructions in ALUs we also use high speed digital

circuits for adders and multiplier. Control signals

determine which specific instruction is carried out by the

data path at any given time. The controller contains

combinational logic that generates the appropriate

control signals based on the current instruction proposed

control unit that is based on logic gates. The proposed

datapath is formed by: 4 parallelism level, C-slow

retiming with applied double edge registers (dash line

demonstrated in microarchitecture), demaltiplexer 1 to 4

for selecting any one of level parallelism, this principle

of enhancing the datapath‘s capabilities is extremely

useful, one multiplexer 4 to 1 to choose inputs from

several possibilities which is for selecting next

instruction or branch instruction, and in the proposed

microarchitecture (we) instead of one port RAM for

Data Memory we use one Dual Port RAM(DPRAM) for

any two level parallelism thus two DPRAM are use in

total of the proposed architecture.

IV. COMPARISON

This paper presents a novel high performance and low

power microprocessor based on MIPS processor on

FPGA for high speed applications. In this paper for

verification MIPS processor is chosen as a benchmark

for test applied methods. The proposed method has

better performance than a traditional MIPS processor.

The proposed method has been written with VHDL

hardware description language. In order to get actual

numbers for the hardware usage and maximum

operation frequency this work was synthesized and

implemented using Quartus II 9.1V software. Table II

58 Design and Development MIPS Processor Based on a High Performance and Low Power

Architecture on FPGA

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 5, 49-59

shows logic utilization (number of registers,

combinational ALUTs, total block Memory bits) and

maximum frequency in traditional MIPS (MIPS_only),

pipelined traditional MIPS with one edge register

(MIPS_pipe), the proposed architecture with one edge

register(method_1), and proposed architecture with a

double edge register(method_2).

Table II: Logic utilization and maximum frequency in

different implementation.

Impleme

ntation
Device ALUTs Regs

Memory

bits

FMax(

MHz)

MIPS_on

ly

EP2S15
F484C3

109 2 640
184.6
4

MIPS_pi

pe

EP2S15

F484C3
265 772 2560

296.8

2

Method_

1

EP2S15
F484C3

776 1176 2896
401.6
5

Method_

2

EP2S15
F484C3

2438 102 832
252.1
1

Table III shows the power consumption in methd_1

and method_2. Power is analyzed using the Xilinx

XPower analyzer. XPower is the power analysis

software available for programmable logic design. It

enables to interactively and automatically analyze power

consumption for Xilinx FPGA and CPLD devices.

XPower includes both interactive and batch applications.

Earlier in the design flow than ever, the total device

power, power per-net, routed, partially routed or

unrouted designs can be analyzed. The achieved results

of applied the proposed method to MIPS processor show

that a low power and fast architecture have been

achieved successfully.

Table III: Power consumption.

Clock Device
Power_method_1

(mW)

Power_method_2

(mW)

100MH

z
Xc4vfx100 200 167

75MHz Xc4vfx100 158 133

50MHz Xc4vfx100 116 96

25MHz Xc4vfx100 74 58

As seen in the two above Tables maximum frequency

is increased in method_1 (the proposed architecture with

one edge register) and power consumption of the

proposed method with a double edge register (method_2)

is decreased.

V. CONCLUSION

The aim of this paper is to develop implementation an

FPGA based novel modified high performance and low

power microprocessor. Proposed methods applied to

increase performance and reduce power consumption of

the designed architecture included, unfolding

transformation (parallel processing), C-slow retiming,

and also with using a double edge register. The main

ideal goal of all these methods is to increase architecture

throughput by reduce execution time in highly complex

designs including microprocessor. The achieved results

ensure verification of the proposed microarchitecture on

high-speed FPGA.

REFERENCES

[1] Weng Fook Lee, ―VLIW Microprocessor

Hardware Design for ASIC and FPGA‖,

McGraw-Hill Professional; 1, edition (28 Aug

2007).

[2] David Money Harris, Sarah L. Harris, ―Digital

Design And Computer Architecture‖, published

by Elsevier Morgan Kaufmann March 16, 2007.

[3] Shum, C.-L. K.; Busaba, F.; Dao-Trong, S.;

Gerwig, G.; Jacobi, C.; Koehler, T.; Pfeffer, E.;

Prasky, B. R.; Rell, J. G.; Tsai, A.c, ―Design and

microarchitecture of the IBM System z10

microprocessor‖, IBM Journal of Research and

Development , Volume: 53 , Issue: 1 , pp. 1 - 12,

2009.

[4] Qu Wenxin; Fan Xiaoya; Hu Ying, ―32-bit High

Performance Embedded Microprocessor‖,

Electronic Measurement and Instruments.

ICEMI '07. 8
th

 IEEE International Conference ,

pp. 196 – 198, 2007.

[5] Slaton, J.; Licht, S.P.; Alexander, M.; Reeves, S.;

Jessani, R.; Kishore, K.R., ., ―The PowerPC

603e microprocessor: an enhanced, low-power,

superscalar microprocessor‖, Computer Design:

VLSI in Computers and Processors. ICCD '95.

Proceedings., IEEE International Conference ,

pp. 196 – 203, 1995.

[6] Hlophe, H.B.; Chatelain, D.; van Wyk, B.J.

―DOTTA: a dynamic VLIW like microprocessor

framework for high speed parallel computing ‖,

AFRICON, 2004. 7th IEEE AFRICON

Conference in Africa, pp. 557 – 562, Vol.1,

2004.

[7] R. De J. Romero-Troncoso; A. Ordaz-Moreno; J.

A. Vite-Frias; A. Garcia-Perez, ―8-bit CISC

Microprocessor Core for Teaching Applications

in the Digital Systems

Laboratory‖,Reconfigurable Computing and

FPGA's, Reonfig. IEEE, pp.1 – 5, 2006.

[8] Joaquín Olivares, José Manuel Palomares, José

Manuel Soto, Juan Carlos Gámez, ―Teaching

Microprocessors Design Using FPGAs‖,

Education Engineering (EDUCON), 2010 IEEE,

14-16 April 2010, pp. 1189 - 1193 .

[9] Skobla, J. , ―A novel approach to teaching

microprocessor design using FPGA and

hierarchical structure‖, Microelectronic Systems

Education. MSE '09. IEEE International

Conferencen , pp. 111 – 114, 2009.

[10] Bryan H. Fletcher, ―FPGA Embedded

Processors: Revealing True System

Performance‖, Embedded Systems Conference

San Francisco 2005 ETP-367.

[11] O. Shoewu and O.T. Baruwa, ―Design of a

Microprocessor Based Automatic Gate‖ The

Pacific Journal of Science and Technology ,

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5288520
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5288520
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5388570
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4350888&contentType=Conference+Publications&queryText%3Dmicroprocessor
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4350888&contentType=Conference+Publications&queryText%3Dmicroprocessor
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4350396
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4350396
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=528810&contentType=Conference+Publications&pageNumber%3D2%26queryText%3Dmicroprocessor
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=528810&contentType=Conference+Publications&pageNumber%3D2%26queryText%3Dmicroprocessor
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=528810&contentType=Conference+Publications&pageNumber%3D2%26queryText%3Dmicroprocessor
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1406740&contentType=Conference+Publications&pageNumber%3D2%26queryText%3Dmicroprocessor
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1406740&contentType=Conference+Publications&pageNumber%3D2%26queryText%3Dmicroprocessor
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5487606
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Skobla,%20J..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5234370
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5234370
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5234370

 Design and Development MIPS Processor Based on a High Performance and Low Power 59

Architecture on FPGA

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 5, 49-59

Volume 7. Number 1. May 2006 (Spring), pp.

31-44.

[12] Scott Hauck and Andr é DeHon,

―Reconfigurable Computing The Theory And

Practice Of FPGA-Basedcomputation‖, Elsevier

Morgan Kaufmann Series in Systems on Silicon,

2008.

[13] Massoud Pedram, Qing Wu, Xunwei Wu, ―A

New Design for Double Edge Triggered Flip-

flops‖, Design Automation Conference 1998.

Proceedings of the ASP-DAC '98. Asia and

South Pacific, pp. 417-421.

[14] G. E. Tellez, A. Farrah and M. Sarrafzadeh,

―Activity-driven clock design for low power

circuits,‖ in Proc. IEEE ICCAD, San Jose,

pp.62-65, Nov. 1995.

Tina Daghooghi, was born in 1987 in

Ahvaz, Iran. She received her B.SC.

Degree in Electrical Engineering from the

Shahid Chamran University, Iran, in 2010

and she is now a Master student in the

Shahid Chamran University, Ahvaz, Iran.

Her research interests include

Semiconductor Analytical modelling,

Digital design Hardware modeling with hardware description

languages VHDL.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5474
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5474
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5474

