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Abstract— Some techniques for the use of bitwise operations 

are described in the article. As an example, an open problem of 

isomorphism-free generations of combinatorial objects is 

discussed. An equivalence relation on the set of square binary 

matrices having the same number of units in each row and 

each column is defined. Each binary matrix is represented 

using ordered n-tuples of natural numbers. It is shown how by 

using the bitwise operations can be implemented an algorithm 

that gets canonical representatives which are extremal 

elements of equivalence classes relative to a double order on 

the set of considered objects.  

 

Index Terms— Programming language, bitwise operations, 

isomorphism-free generations of combinatorial objects, binary 

matrix, equivalence relation, factor-set, cardinality. 

 

I.  INTRODUCTION 

The present study is thus especially useful for students 

educated to become programmers as well as for their 

lecturers. A meaningful example for the advantages of 

using bitwise operations for creating effective 

algorithms in programming is presented in this article. 

We will consider an open combinatorial problem on 

binary matrices and its solution using the algorithm for 

some values of the integer parameters 𝑛  and 𝑘 . To 

implement the algorithm, we will use essentially bitwise 

operations. 

 

The use of bitwise operations is a powerful method 

used in C/C++ and Java programming languages. 

Unfortunately, in the widespread books on this topic 

there is incomplete or no description for the work of the 

bitwise operations. The aim of this article is to correct 

this lapse to a certain extent and present a meaningful 

example of a programming task, where the use of 

bitwise operations is appropriate in order to facilitate the 

work and to increase the effectiveness of the respective 

algorithm. 

 

This work is an extension and complement to [1]. 

 

A binary (or boolean, or (0,1)-matrix) is a matrix 

whose all elements belong to the set ℬ = {0,1}. With ℬ𝑛  

we will denote the set of all 𝑛 × 𝑛 binary matrices. 

Some algorithms for isomorphism-free generations of 

combinatorial objects are discussed in detail in [2]. In 

our work we will consider a problem of this type. Its 

formulation is as follows: A set of binary matrices 

ℒ ⊆ ℬ𝑛  is given. In ℒ is defined an equivalence relation. 

An algorithm which did not study every element of the 

set ℒ , and which receives one representative of each 

equivalence class to be described. For this purpose, we 

will use significantly bitwise operations. 

 

In Section II we formulate the problem and we give 

some well known results. In Section IV we will describe 

in detail an algorithm for computer solution of the 

formulated problem. Section III is only for reference. 

 

II.  PRELIMINARIES AND PROBLEM FORMULATION  

Let 𝑛 and 𝑘 be positive integers. We let Λ𝑛
𝑘  denote the 

set of all 𝑛 × 𝑛 binary matrices in each row and each 

column of which there are exactly 𝑘 in number 1's. Let 

us denote with  

𝜆 𝑛, 𝑘 =  Λ𝑛
𝑘                                                                     (1) 

 the number of all elements of Λ𝑛
𝑘 . 

 

There is not any known formula to calculate the 

𝜆(𝑛, 𝑘)  for all 𝑛  and 𝑘 . There are formulas for the 

calculation of the function 𝜆(𝑛, 𝑘)  for each 𝑛  for 

relatively small values of 𝑘; more specifically, for 𝑘 = 1, 

𝑘 = 2  and 𝑘 = 3 . We do not know any formula to 

calculate the function 𝜆(𝑛, 𝑘)  for 𝑘 > 3  and for all 

positive integer 𝑛. 

It is easy to prove the following well-known formula 

𝜆(𝑛, 1) = 𝑛!                                                               (2) 

The following formula 

𝜆(𝑛, 2) =  2𝑥2+3𝑥3+⋯+𝑛𝑥𝑛 =𝑛  
(𝑛 !)2

 𝑛
𝑟=2 𝑥𝑟 !(2𝑟)𝑥𝑟

                 (3) 

is well known [3]. 

One of the first recursive formulas for the calculation 

of 𝜆(𝑛, 2) appeared in [4] (see also [5, p. 763]).  

𝜆(1,2) = 0,    𝜆(2,2) = 1,    𝜆(3,2) = 6;                     (4)  

for 𝑛 ≥ 4, 

𝜆 𝑛, 2 =
1

2
𝑛(𝑛 − 1)2 (2𝑛 − 3)𝜆(𝑛 − 2,2) + (𝑛 −

2)2𝜆(𝑛 − 3,2)                                                                        (5) 
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Another recursive formula for the calculation of 

𝜆(𝑛, 2) occurs in [6]. 

𝜆(1,2) = 0,    𝜆(2,2) = 1;                                               (6) 

for 𝑛 ≥ 3        

𝜆 𝑛, 2 = (𝑛 − 1)𝑛𝜆(𝑛 − 1,2) +
(𝑛−1)2𝑛

2
𝜆(𝑛 − 2,2)         

(7) 

The next recursive system is to calculate 𝜆(𝑛, 2): 

𝜆(1,2) = 0, 𝜆(2,2) = 1,                                                  (8) 

for 𝑛 ≥ 2         

 𝜆 𝑛 + 1,2 = 𝑛 2𝑛 − 1 𝜆 𝑛, 2 + 𝑛2𝜆 𝑛 − 1,2 −
     𝜋(𝑛 + 1);                                                                           (9) 

𝜋(1) = 𝜋(2) = 𝜋(3) = 0, 𝜋(4) = 9;                        (10) 

for 𝑛 ≥ 4         

 𝜋(𝑛 + 1) = (𝑛 − 1)24[8(𝑛 − 2)(𝑛 − 3)𝜆(𝑛 − 2,2 +
      𝑛 − 2)2𝜆 𝑛 − 3,2 − 4𝜋 𝑛 − 1                            (11)                                           

where 𝜋(𝑛) identifies the number of a special class of 

Λ𝑛
2 -matrices [7]. 

The following formula is an explicit form for the 

calculation of 𝜆(𝑛, 3). 

𝜆(𝑛, 3) =
𝑛 !2

6𝑛
 

(−1)𝛽 (𝛽+3𝛾)!2𝛼 3𝛽

𝛼 !𝛽 !𝛾 !26𝛾  ,                                (12) 

where the sum is done as regards all  
(𝑛+2)(𝑛+1)

2
  

solutions in nonnegative integers of the equation 

𝛼 + 𝛽 + 𝛾 = 𝑛  [8]. As it is noted in [9], the above 

formula does not give us good opportunities to study 

behavior of 𝜆(𝑛, 3). 

 

Let 𝐴, 𝐵 ∈ Λ𝑛
𝑘 . We will say that 𝐴: 𝐵, if 𝐴 is obtained 

from 𝐵  by moving some rows and/or columns. 

Obviously, the relation defined like that is an 

equivalence relation. We denote with  

𝜇(𝑛, 𝑘) =  Λ𝑛
𝑘

/~
                                                              (13) 

the number of equivalence classes on the above defined 

relation. 

 

Problem 1 Find 𝜇(𝑛, 𝑘) for given integers 𝑛 and 𝑘 , 

1 ≤ 𝑘 < 𝑛.  

 

The task of finding the number of equivalence classes 

for all integers 𝑛 and 𝑘, 1 ≤ 𝑘 < 𝑛 is an open scientific 

problem. We partially solve this problem by making a 

computer program to find this number for some (not 

great) values of 𝑛  and 𝑘 . Moreover, using bitwise 

operations, our algorithm will receive one representative 

from each equivalence class without examining the 

whole set Λ𝑛
𝑘 . 

 

III.  BITWISE OPERATIONS  

Bitwise operations can be applied for integer data type 

only, i.e. they cannot be used for float and double types. 

For the definition of the bitwise operations and some of 

their elementary applications could be seen, for example, 

in [10, 11, 12]. 

 

We assume, as usual that bits numbering in variables 

starts from right to left, and that the number of the very 

right one is 0. 

 

Let x,y and z are integer variables or constants of one 

type, for which bits are needed. Let x and y are 

initialized (if they are variables) and let the assignment z 

= x & y; (bitwise AND), or z = x | y; (bitwise inclusive 

OR), or z = x ^ y; (bitwise exclusive OR), or z = ~x; 

(bitwise NOT) be made. For each 𝑖 = 0,1,2, … , 𝑤 − 1, 

the new contents of the 𝑖 -th bit in z will be as it is 

presented in the Table I. 

 

 

 

 

 

 

 

TABLE I.   

BITWISE OPERATIONS 

 𝑖-th bit of   𝑖-th bit of   𝑖-th bit of   𝑖-th bit of   𝑖-th bit of   𝑖-th bit of  

x   y   z = x & y;   z = x | y;   z = x ^ y;   z = ~x; 

 0   0   0   0   0   1 

 0   1   0   1   1   1 

 1   0   0   1   1   0 

 1   1   1   1   0   0 
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In case that k is a nonnegative integer, then the 

statement z = x<<k (bitwise shift left) will write (𝑖 + 𝑘) 

in the bit of z the value of the 𝑘  bit of x, where 𝑖 =
0,1, … , 𝑤 − 𝑘 − 1, and the very right 𝑘 bits of x will be 

filled by zeroes. This operation is equivalent to a 

multiplication of x by 2𝑘 . 

 

The statement z=x>>k (bitwise shift right) works the 

similar way. But we must be careful if we use the 

programming language C or C++, as in various 

programming environments this operation has different 

interpretations – somewhere 𝑘  bits of z from the very 

left place are compulsory filled by 0 (logical 

displacement), and elsewhere the very left 𝑘 bits of z are 

filled with the value from the very left (sign) bit; i.e. if 

the number is negative, then the filling will be with 1 

(arithmetic displacement). Therefore it is recommended 

to use unsigned type of variables (if the opposite is not 

necessary) while working with bitwise operations. In the 

Java programming language, this problem is solved by 

introducing the two different operators: z=x>>k and 

z=x>>>k [12]. 

 

Bitwise operations are left associative. 

 

The priority of operations in descending order is as 

follows: ~ (bitwise NOT); the arithmetic operations * 

(multiply), / (divide), % (remainder or modulus); the 

arithmetic operations + (addition) - (subtraction); the 

bitwise operations << and >>; the relational operations 

<, >, <=, >=, ==, !=; the bitwise operations &,^ and |; 
the logical operations && and ||. 

 

To compute the value of the i -th bit of an integer 

variable x we can use the function:  

int BitValue(int x, unsigned int i)  

{  

return ( (x & 1<<i) == 0 ) ? 0 : 1;  

}  

The next function prints an integer in binary notation. 

We don't consider and we don't print the sign of integer. 

For this reason we work with || n . 

void DecToBin(int n)  

{  

n = abs(n);  

int b;  

int d = sizeof(int)*8 - 1;  

while ( d>0 && (n & 1<<(d-1) ) == 0 ) d--;  

while (d>=0)  

{  

b= 1<<(d-1) & n ? 1 : 0;  

cout<<b;  

d--;  

}  

}  

The following function calculates the number of 1's in 

the binary representation of an integer n. Again we 

ignore the sign of the number. 

int NumbOf_1(int n)  

{  

n = abs(n);  

int temp=0;  

int d = sizeof(int)*8 - 1;  

for (int i=0; i<d; i++)       if (n & 1<<i)  temp++;  

return temp;  

}  

 

IV. DESCRIPTION AND IMPLEMENTATION OF THE 

ALGORITHM 

Let ℕ be the set of natural numbers and let  

𝒯𝑛 =  〈𝑥1 , 𝑥2 , … , 𝑥𝑛〉  |  𝑥𝑖 ∈ ℕ, 𝑖 = 1,2, … , 𝑛          (14) 

An one to one corresponding  

𝜑 ∶   ℬ𝑛 →
~

𝒯𝑛                                                                   (15) 

which is based on the binary presentation of the natural 

numbers, is described in [1]. If 𝐴 ∈ ℬ𝑛  and 𝜑(𝐴) =
〈𝑥1 , 𝑥2 , … 𝑥𝑛 〉, then 𝑖-th row of 𝐴 is integer 𝑥𝑖  written in 

binary notation. 

 

In [13], it is proved that the representation of the 

elements of ℬ𝑛  using ordered 𝑛 -tuples of natural 

numbers leads to making a fast and saving memory 

algorithms. 

Let 𝐴 ∈ ℬ𝑛  and let 

 𝐱 = 〈𝑥1 , 𝑥2 , … , 𝑥𝑛 〉 = 𝜑(𝐴).                                        (16) 

Then we denote  

𝐱𝑡 = 𝜑(𝐴𝑡),                                                                     (17) 

where 𝐴𝑡 ∈ ℬ𝑛  is the transpose of the matrix 𝐴. 

Let 

 𝐱 = 〈𝑥1 , 𝑥2 , … , 𝑥𝑛 〉                                                         (18) 

and let 

 𝐱𝑡 = 〈𝑦1 , 𝑦2 , … , 𝑦𝑛 〉.                                                      (19) 

Then we will call 𝐱 a canonical element, if 

 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛                                                         (20) 

and 

 𝑦1 ≤ y2 ≤ ⋯ ≤ 𝑦𝑛 .                                                       (21) 



22 Bitwise Operations Related to a Combinatorial Problem on Binary Matrices  

Copyright © 2013 MECS                                                    I.J. Modern Education and Computer Science, 2013, 4, 19-24 

Proposition 1  There is un unique canonical element 

in every equivalence class of factor-set 𝛬𝑛
𝑘

/:
.  

 

The proof of proposition 1 is within the reach of any 

student who has successfully studied the properties of 

the binary system concept and we will miss it here. 

 

Proposition 1 is the base of our algorithm, which we 

describe in brief below. For its implementation, we will 

use also the functions shown in Section III. 

 

As it is well known, there are exactly 2𝑛  nonnegative 

integers, which are presented with no more than 𝑛 digits 

in binary notation. We need to select all of them, which 

have exactly 𝑘 1's in binary notation. Their number is 

 
𝑛
𝑘
 ≪ 2𝑛 . We could use the function NumbOf_1(int) 

from section 3, but then we have to use it for each 

integer from the interval [0, 2𝑛 − 1], i.e. 2𝑛  times. We 

will describe an algorithm that directly receives the 

necessary elements without checking whether any 

integer 𝑚 ∈ [0, 2𝑛 − 1] satisfies the conditions. We will 

remember the result in the array p[] of size 𝑐 =  
𝑛
𝑘
 . 

Moreover, the obtained array is sorted in ascending 

order and there are no duplicate elements. The algorithm 

is based on the fact that the set of all ordered 𝑚-tuples  

ℬ𝑚 = 〈𝑏1 , 𝑏2, … , 𝑏𝑚 〉,  𝑏𝑖 ∈ ℬ = {0,1},                     (22) 

𝑖 = 1,2, … , 𝑚, 𝑚 = 1,2, … , 𝑛, 

is partitioned into two disjoint subsets  

ℬ𝑚 = ℳ1 ∪ ℳ2, ℳ1 ∩ ℳ2 = ∅,                               (23) 

where 

ℳ1 = {〈𝑏1 , 𝑏2, … , 𝑏𝑚 〉  |  𝑏1 = 0}                               (24) 

and  

ℳ2 = {〈𝑏1 , 𝑏2, … , 𝑏𝑚 〉  |  𝑏1 = 1}.                              (25) 

The described recursive algorithm again uses bitwise 

operations 

void DataNumb(int p[], unsigned int n, int k, int& c)  

{ 

 if (k<=0)  

{  

c = 1;  

p[0] = 0;  

}  

else if (k==n)  

{  

c = 1;  

p[0] = (1<<n)-1;    //  p[0]= 12 n
 

}  

else  

{  

int p1[10000], p2[10000];  

int c1, c2;  

DataNumb(p1, n-1, k, c1);  

DataNumb(p2, n-1, k-1, c2);  

c = c1+c2;  

for (int i=0; i<c1; i++)  

p[i] = p1[i];  

for (int i=0; i<c2; i++)  

p[c1+i] = p2[i] | 1<<(n-1);  

}  

} 

We also will use bitwise operations in constructing 

the next two functions. 

 

The function int n_tuple(int[], int, int, int) gets all 

𝑡 =  
𝑛 + 𝑘 − 1

𝑘
  (combinations with repetitions) 

ordered 𝑛 -tuples 〈𝑥1 , 𝑥2 , … , 𝑥𝑛 〉 , where 0 ≤ 𝑥1 ≤ 𝑥2 ≤
⋯ ≤ 𝑥𝑛 < 𝑐 , 𝑥𝑖 , 𝑖 = 1,2, … , 𝑛  are elements of sorted 

array p[] of size c. As a result, the function returns the 

number of canonical elements. 

 

The function bool check(int[], int) refers to the use of 

each received 𝑛 -tuples. It examines whether this is a 

canonical element and prints it. 

bool check(int x[], int n, int k)  

{  

int yj;         // the integer representing column (n-j)  

int y0=0;        // integer preceding column j  

int b;  

for (int j=n-1; j>=0; j--)  

{  

yj=0; 

for (int i=0; i<n; i++)  

{  

b = 1<<j & x[i] ? 1 : 0;  

yj |= b << (n-1-i);  

}  

if (yj<y0 || (NumbOf_1(yj) != k)) return false;  

y0 = yj;  

}     

// We have received a canonical element. Print it: 

for (int i=0; i<n; i++) cout<<x[i]<<" ";  

cout<<'\n';  

return true;  

} 

  

int n_tuple(int p[], int n, int k, int c)  

{  

int t=0;  

int a[n], x[n];  

int indx = n-1;  

for (int i=0; i<n; i++) a[i]=0;  

while (indx >= 0)  

{  
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for (int i=indx+1; i<n; i++)   a[i] = a[indx];  

for (int i=0; i<n; i++)   x[i] = p[a[i]]; 

 if(check(x,n,k)) t++;  

indx = n-1;  

a[indx]++;  

while (indx>=0 && a[indx]==c)  

{  

indx--;  

a[indx]++;  

}  

} return t;  

}  

The description of the main function, we leave to the 

reader. 

 

V.  CONCLUSIONS 

The number of equivalence classes for 1 ≤ 𝑘 < 𝑛 ≤
9 are given in Table II, which is obtained through the 

work of the algorithms described in this paper. 

The ideas described in this article can be used for 

finding the cardinality of other factor-sets of binary 

matrices  
 

TABLE  II 
THE NUMBER OF EQUIVALENCE CLASSES FOR 1≤K<N≤9 

 

𝑛 

𝑘 

2 3 4 5 6 7 8 9 

1  1 1 1 1 1 1 1 1 

2   1 2 5 13 42 155 636 

3    1 3 25 272 4 070 79 221 

4     1 5 161 7 776 626 649 

5      1 8 1 112 287 311 

6       1 13 8 787 

7        1 21 

8        1 
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