
I.J.Modern Education and Computer Science, 2013, 4, 19-24
Published Online May 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2013.04.03

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 4, 19-24

Bitwise Operations Related to a Combinatorial

Problem on Binary Matrices

Krasimir Yankov Yordzhev

Faculty of Mathematics and Natural Sciences, South-West University ―N. Rilsky‖, Blagoevgrad, Bulgaria

Email: yordzhev@swu.bg

Abstract— Some techniques for the use of bitwise operations

are described in the article. As an example, an open problem of

isomorphism-free generations of combinatorial objects is

discussed. An equivalence relation on the set of square binary

matrices having the same number of units in each row and

each column is defined. Each binary matrix is represented

using ordered n-tuples of natural numbers. It is shown how by

using the bitwise operations can be implemented an algorithm

that gets canonical representatives which are extremal

elements of equivalence classes relative to a double order on

the set of considered objects.

Index Terms— Programming language, bitwise operations,

isomorphism-free generations of combinatorial objects, binary

matrix, equivalence relation, factor-set, cardinality.

I. INTRODUCTION

The present study is thus especially useful for students

educated to become programmers as well as for their

lecturers. A meaningful example for the advantages of

using bitwise operations for creating effective

algorithms in programming is presented in this article.

We will consider an open combinatorial problem on

binary matrices and its solution using the algorithm for

some values of the integer parameters 𝑛 and 𝑘 . To

implement the algorithm, we will use essentially bitwise

operations.

The use of bitwise operations is a powerful method

used in C/C++ and Java programming languages.

Unfortunately, in the widespread books on this topic

there is incomplete or no description for the work of the

bitwise operations. The aim of this article is to correct

this lapse to a certain extent and present a meaningful

example of a programming task, where the use of

bitwise operations is appropriate in order to facilitate the

work and to increase the effectiveness of the respective

algorithm.

This work is an extension and complement to [1].

A binary (or boolean, or (0,1)-matrix) is a matrix

whose all elements belong to the set ℬ = {0,1}. With ℬ𝑛

we will denote the set of all 𝑛 × 𝑛 binary matrices.

Some algorithms for isomorphism-free generations of

combinatorial objects are discussed in detail in [2]. In

our work we will consider a problem of this type. Its

formulation is as follows: A set of binary matrices

ℒ ⊆ ℬ𝑛 is given. In ℒ is defined an equivalence relation.

An algorithm which did not study every element of the

set ℒ , and which receives one representative of each

equivalence class to be described. For this purpose, we

will use significantly bitwise operations.

In Section II we formulate the problem and we give

some well known results. In Section IV we will describe

in detail an algorithm for computer solution of the

formulated problem. Section III is only for reference.

II. PRELIMINARIES AND PROBLEM FORMULATION

Let 𝑛 and 𝑘 be positive integers. We let Λ𝑛
𝑘 denote the

set of all 𝑛 × 𝑛 binary matrices in each row and each

column of which there are exactly 𝑘 in number 1's. Let

us denote with

𝜆 𝑛, 𝑘 = Λ𝑛
𝑘 (1)

 the number of all elements of Λ𝑛
𝑘 .

There is not any known formula to calculate the

𝜆(𝑛, 𝑘) for all 𝑛 and 𝑘 . There are formulas for the

calculation of the function 𝜆(𝑛, 𝑘) for each 𝑛 for

relatively small values of 𝑘; more specifically, for 𝑘 = 1,

𝑘 = 2 and 𝑘 = 3 . We do not know any formula to

calculate the function 𝜆(𝑛, 𝑘) for 𝑘 > 3 and for all

positive integer 𝑛.

It is easy to prove the following well-known formula

𝜆(𝑛, 1) = 𝑛! (2)

The following formula

𝜆(𝑛, 2) = 2𝑥2+3𝑥3+⋯+𝑛𝑥𝑛 =𝑛
(𝑛 !)2

 𝑛
𝑟=2 𝑥𝑟 !(2𝑟)𝑥𝑟

 (3)

is well known [3].

One of the first recursive formulas for the calculation

of 𝜆(𝑛, 2) appeared in [4] (see also [5, p. 763]).

𝜆(1,2) = 0, 𝜆(2,2) = 1, 𝜆(3,2) = 6; (4)

for 𝑛 ≥ 4,

𝜆 𝑛, 2 =
1

2
𝑛(𝑛 − 1)2 (2𝑛 − 3)𝜆(𝑛 − 2,2) + (𝑛 −

2)2𝜆(𝑛 − 3,2) (5)

20 Bitwise Operations Related to a Combinatorial Problem on Binary Matrices

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 4, 19-24

Another recursive formula for the calculation of

𝜆(𝑛, 2) occurs in [6].

𝜆(1,2) = 0, 𝜆(2,2) = 1; (6)

for 𝑛 ≥ 3

𝜆 𝑛, 2 = (𝑛 − 1)𝑛𝜆(𝑛 − 1,2) +
(𝑛−1)2𝑛

2
𝜆(𝑛 − 2,2)

(7)

The next recursive system is to calculate 𝜆(𝑛, 2):

𝜆(1,2) = 0, 𝜆(2,2) = 1, (8)

for 𝑛 ≥ 2

 𝜆 𝑛 + 1,2 = 𝑛 2𝑛 − 1 𝜆 𝑛, 2 + 𝑛2𝜆 𝑛 − 1,2 −
 𝜋(𝑛 + 1); (9)

𝜋(1) = 𝜋(2) = 𝜋(3) = 0, 𝜋(4) = 9; (10)

for 𝑛 ≥ 4

 𝜋(𝑛 + 1) = (𝑛 − 1)24[8(𝑛 − 2)(𝑛 − 3)𝜆(𝑛 − 2,2 +
 𝑛 − 2)2𝜆 𝑛 − 3,2 − 4𝜋 𝑛 − 1 (11)

where 𝜋(𝑛) identifies the number of a special class of

Λ𝑛
2 -matrices [7].

The following formula is an explicit form for the

calculation of 𝜆(𝑛, 3).

𝜆(𝑛, 3) =
𝑛 !2

6𝑛

(−1)𝛽 (𝛽+3𝛾)!2𝛼 3𝛽

𝛼 !𝛽 !𝛾 !26𝛾 , (12)

where the sum is done as regards all
(𝑛+2)(𝑛+1)

2

solutions in nonnegative integers of the equation

𝛼 + 𝛽 + 𝛾 = 𝑛 [8]. As it is noted in [9], the above

formula does not give us good opportunities to study

behavior of 𝜆(𝑛, 3).

Let 𝐴, 𝐵 ∈ Λ𝑛
𝑘 . We will say that 𝐴: 𝐵, if 𝐴 is obtained

from 𝐵 by moving some rows and/or columns.

Obviously, the relation defined like that is an

equivalence relation. We denote with

𝜇(𝑛, 𝑘) = Λ𝑛
𝑘

/~
 (13)

the number of equivalence classes on the above defined

relation.

Problem 1 Find 𝜇(𝑛, 𝑘) for given integers 𝑛 and 𝑘 ,

1 ≤ 𝑘 < 𝑛.

The task of finding the number of equivalence classes

for all integers 𝑛 and 𝑘, 1 ≤ 𝑘 < 𝑛 is an open scientific

problem. We partially solve this problem by making a

computer program to find this number for some (not

great) values of 𝑛 and 𝑘 . Moreover, using bitwise

operations, our algorithm will receive one representative

from each equivalence class without examining the

whole set Λ𝑛
𝑘 .

III. BITWISE OPERATIONS

Bitwise operations can be applied for integer data type

only, i.e. they cannot be used for float and double types.

For the definition of the bitwise operations and some of

their elementary applications could be seen, for example,

in [10, 11, 12].

We assume, as usual that bits numbering in variables

starts from right to left, and that the number of the very

right one is 0.

Let x,y and z are integer variables or constants of one

type, for which bits are needed. Let x and y are

initialized (if they are variables) and let the assignment z

= x & y; (bitwise AND), or z = x | y; (bitwise inclusive

OR), or z = x ^ y; (bitwise exclusive OR), or z = ~x;

(bitwise NOT) be made. For each 𝑖 = 0,1,2, … , 𝑤 − 1,

the new contents of the 𝑖 -th bit in z will be as it is

presented in the Table I.

TABLE I.

BITWISE OPERATIONS

 𝑖-th bit of 𝑖-th bit of 𝑖-th bit of 𝑖-th bit of 𝑖-th bit of 𝑖-th bit of

x y z = x & y; z = x | y; z = x ^ y; z = ~x;

 0 0 0 0 0 1

 0 1 0 1 1 1

 1 0 0 1 1 0

 1 1 1 1 0 0

 Bitwise Operations Related to a Combinatorial Problem on Binary Matrices 21

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 4, 19-24

In case that k is a nonnegative integer, then the

statement z = x<<k (bitwise shift left) will write (𝑖 + 𝑘)

in the bit of z the value of the 𝑘 bit of x, where 𝑖 =
0,1, … , 𝑤 − 𝑘 − 1, and the very right 𝑘 bits of x will be

filled by zeroes. This operation is equivalent to a

multiplication of x by 2𝑘 .

The statement z=x>>k (bitwise shift right) works the

similar way. But we must be careful if we use the

programming language C or C++, as in various

programming environments this operation has different

interpretations – somewhere 𝑘 bits of z from the very

left place are compulsory filled by 0 (logical

displacement), and elsewhere the very left 𝑘 bits of z are

filled with the value from the very left (sign) bit; i.e. if

the number is negative, then the filling will be with 1

(arithmetic displacement). Therefore it is recommended

to use unsigned type of variables (if the opposite is not

necessary) while working with bitwise operations. In the

Java programming language, this problem is solved by

introducing the two different operators: z=x>>k and

z=x>>>k [12].

Bitwise operations are left associative.

The priority of operations in descending order is as

follows: ~ (bitwise NOT); the arithmetic operations *

(multiply), / (divide), % (remainder or modulus); the

arithmetic operations + (addition) - (subtraction); the

bitwise operations << and >>; the relational operations

<, >, <=, >=, ==, !=; the bitwise operations &,^ and |;
the logical operations && and ||.

To compute the value of the i -th bit of an integer

variable x we can use the function:

int BitValue(int x, unsigned int i)

{

return ((x & 1<<i) == 0) ? 0 : 1;

}

The next function prints an integer in binary notation.

We don't consider and we don't print the sign of integer.

For this reason we work with || n .

void DecToBin(int n)

{

n = abs(n);

int b;

int d = sizeof(int)*8 - 1;

while (d>0 && (n & 1<<(d-1)) == 0) d--;

while (d>=0)

{

b= 1<<(d-1) & n ? 1 : 0;

cout<<b;

d--;

}

}

The following function calculates the number of 1's in

the binary representation of an integer n. Again we

ignore the sign of the number.

int NumbOf_1(int n)

{

n = abs(n);

int temp=0;

int d = sizeof(int)*8 - 1;

for (int i=0; i<d; i++) if (n & 1<<i) temp++;

return temp;

}

IV. DESCRIPTION AND IMPLEMENTATION OF THE

ALGORITHM

Let ℕ be the set of natural numbers and let

𝒯𝑛 = 〈𝑥1 , 𝑥2 , … , 𝑥𝑛〉 | 𝑥𝑖 ∈ ℕ, 𝑖 = 1,2, … , 𝑛 (14)

An one to one corresponding

𝜑 ∶ ℬ𝑛 →
~

𝒯𝑛 (15)

which is based on the binary presentation of the natural

numbers, is described in [1]. If 𝐴 ∈ ℬ𝑛 and 𝜑(𝐴) =
〈𝑥1 , 𝑥2 , … 𝑥𝑛 〉, then 𝑖-th row of 𝐴 is integer 𝑥𝑖 written in

binary notation.

In [13], it is proved that the representation of the

elements of ℬ𝑛 using ordered 𝑛 -tuples of natural

numbers leads to making a fast and saving memory

algorithms.

Let 𝐴 ∈ ℬ𝑛 and let

 𝐱 = 〈𝑥1 , 𝑥2 , … , 𝑥𝑛 〉 = 𝜑(𝐴). (16)

Then we denote

𝐱𝑡 = 𝜑(𝐴𝑡), (17)

where 𝐴𝑡 ∈ ℬ𝑛 is the transpose of the matrix 𝐴.

Let

 𝐱 = 〈𝑥1 , 𝑥2 , … , 𝑥𝑛 〉 (18)

and let

 𝐱𝑡 = 〈𝑦1 , 𝑦2 , … , 𝑦𝑛 〉. (19)

Then we will call 𝐱 a canonical element, if

 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛 (20)

and

 𝑦1 ≤ y2 ≤ ⋯ ≤ 𝑦𝑛 . (21)

22 Bitwise Operations Related to a Combinatorial Problem on Binary Matrices

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 4, 19-24

Proposition 1 There is un unique canonical element

in every equivalence class of factor-set 𝛬𝑛
𝑘

/:
.

The proof of proposition 1 is within the reach of any

student who has successfully studied the properties of

the binary system concept and we will miss it here.

Proposition 1 is the base of our algorithm, which we

describe in brief below. For its implementation, we will

use also the functions shown in Section III.

As it is well known, there are exactly 2𝑛 nonnegative

integers, which are presented with no more than 𝑛 digits

in binary notation. We need to select all of them, which

have exactly 𝑘 1's in binary notation. Their number is

𝑛
𝑘
 ≪ 2𝑛 . We could use the function NumbOf_1(int)

from section 3, but then we have to use it for each

integer from the interval [0, 2𝑛 − 1], i.e. 2𝑛 times. We

will describe an algorithm that directly receives the

necessary elements without checking whether any

integer 𝑚 ∈ [0, 2𝑛 − 1] satisfies the conditions. We will

remember the result in the array p[] of size 𝑐 =
𝑛
𝑘
 .

Moreover, the obtained array is sorted in ascending

order and there are no duplicate elements. The algorithm

is based on the fact that the set of all ordered 𝑚-tuples

ℬ𝑚 = 〈𝑏1 , 𝑏2, … , 𝑏𝑚 〉, 𝑏𝑖 ∈ ℬ = {0,1}, (22)

𝑖 = 1,2, … , 𝑚, 𝑚 = 1,2, … , 𝑛,

is partitioned into two disjoint subsets

ℬ𝑚 = ℳ1 ∪ ℳ2, ℳ1 ∩ ℳ2 = ∅, (23)

where

ℳ1 = {〈𝑏1 , 𝑏2, … , 𝑏𝑚 〉 | 𝑏1 = 0} (24)

and

ℳ2 = {〈𝑏1 , 𝑏2, … , 𝑏𝑚 〉 | 𝑏1 = 1}. (25)

The described recursive algorithm again uses bitwise

operations

void DataNumb(int p[], unsigned int n, int k, int& c)

{

 if (k<=0)

{

c = 1;

p[0] = 0;

}

else if (k==n)

{

c = 1;

p[0] = (1<<n)-1; // p[0]= 12 n

}

else

{

int p1[10000], p2[10000];

int c1, c2;

DataNumb(p1, n-1, k, c1);

DataNumb(p2, n-1, k-1, c2);

c = c1+c2;

for (int i=0; i<c1; i++)

p[i] = p1[i];

for (int i=0; i<c2; i++)

p[c1+i] = p2[i] | 1<<(n-1);

}

}

We also will use bitwise operations in constructing

the next two functions.

The function int n_tuple(int[], int, int, int) gets all

𝑡 =
𝑛 + 𝑘 − 1

𝑘
 (combinations with repetitions)

ordered 𝑛 -tuples 〈𝑥1 , 𝑥2 , … , 𝑥𝑛 〉 , where 0 ≤ 𝑥1 ≤ 𝑥2 ≤
⋯ ≤ 𝑥𝑛 < 𝑐 , 𝑥𝑖 , 𝑖 = 1,2, … , 𝑛 are elements of sorted

array p[] of size c. As a result, the function returns the

number of canonical elements.

The function bool check(int[], int) refers to the use of

each received 𝑛 -tuples. It examines whether this is a

canonical element and prints it.

bool check(int x[], int n, int k)

{

int yj; // the integer representing column (n-j)

int y0=0; // integer preceding column j

int b;

for (int j=n-1; j>=0; j--)

{

yj=0;

for (int i=0; i<n; i++)

{

b = 1<<j & x[i] ? 1 : 0;

yj |= b << (n-1-i);

}

if (yj<y0 || (NumbOf_1(yj) != k)) return false;

y0 = yj;

}

// We have received a canonical element. Print it:

for (int i=0; i<n; i++) cout<<x[i]<<" ";

cout<<'\n';

return true;

}

int n_tuple(int p[], int n, int k, int c)

{

int t=0;

int a[n], x[n];

int indx = n-1;

for (int i=0; i<n; i++) a[i]=0;

while (indx >= 0)

{

 Bitwise Operations Related to a Combinatorial Problem on Binary Matrices 23

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 4, 19-24

for (int i=indx+1; i<n; i++) a[i] = a[indx];

for (int i=0; i<n; i++) x[i] = p[a[i]];

 if(check(x,n,k)) t++;

indx = n-1;

a[indx]++;

while (indx>=0 && a[indx]==c)

{

indx--;

a[indx]++;

}

} return t;

}

The description of the main function, we leave to the

reader.

V. CONCLUSIONS

The number of equivalence classes for 1 ≤ 𝑘 < 𝑛 ≤
9 are given in Table II, which is obtained through the

work of the algorithms described in this paper.

The ideas described in this article can be used for

finding the cardinality of other factor-sets of binary

matrices

TABLE II
THE NUMBER OF EQUIVALENCE CLASSES FOR 1≤K<N≤9

𝑛

𝑘

2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1

2 1 2 5 13 42 155 636

3 1 3 25 272 4 070 79 221

4 1 5 161 7 776 626 649

5 1 8 1 112 287 311

6 1 13 8 787

7 1 21

8 1

REFERENCES

[1] K. Yordzhev, An example for the use of bitwise

operations in programming: Mathematics and

education in mathematics, 38 (2009), 196-202.

[2] I. Bouyukliev, About Algorithms for Isomorphism-

free generations of Combinatorial objects:

Mathematics and education in mathematics, 38

(2009), 51-60.

[3] V. E. Tarakanov, Combinatorial problems on binary

matrices: Combinatorial Analysis, Moscow,

Moscow State University, 5 (1980), 4-15 (in

Russian).

[4] H. Anand, V. C. Dumir and H. Gupta, A

combinatorial distribution problem: Duke Math. J.

33 (1966), 757-769.

[5] H. Gupta and G. L. Nath, Enumeration of stochastic

cubes: Notices of the Amer. Math. Soc. 19 (1972) A-

568.

[6] I. Good and J. Grook, The enumeration of arrays

and generalization related to contingency tables:

Discrete Math, 19 (1977), 23-45.

[7] K. Yordzhev, Combinatorial problems on binary

matrices: Mathematics and education in

mathematics, 24 (1995), 288-296.

[8] M. L. Stein and P. R. Stein, Enumeration of

stochastic matrices with integer elements: Los

24 Bitwise Operations Related to a Combinatorial Problem on Binary Matrices

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 4, 19-24

Alamos Scientific Laboratory Report LA-4434,

1970.

[9] R. P. Stanley, Enumerative combinatorics. V.1,

Wadword & Brooks, California, 1986.

[10] S.R. Davis, C++ for dummies. IDG Books

Worldwide, 2000.

[11] B.W. Kernigan, D.M. Ritchie, The C programming

Language. AT&T Bell Laboratories, 1998.

[12] H. Schildt, Java 2 A Beginner’s Guide. McGraw-

Hill, 2001.

[13] H. Kostadinova and K. Yordzhev, A Representation

of Binary Matrices: Mathematics and education in

mathematics, 39 (2010), 198-206.

Prof. Dr. Krasimir Yordzhev is a

lecturer in computer science,

programming and discrete

mathematics at the Department of

Computer Science, Faculty of

Mathematics and Natural Sciences, South-West

University, Blagoevgrad, Bulgaria. In research, his

current interests include theoretical computer science

and in particular the study of algorithms and their

complexity using analytical, combinatorial or

probabilistic methods. Dr. Yordzhev received his PhD

degree in the Faculty of Cybernetics, Kiev State

University, Ukraine. He is a member of Editorial Board

of International Journal of Modern Education and

Computer Science (IJMECS) and Associate Editor of

International Journal of Education and Management

Engineering (IJEME).

