
I.J.Modern Education and Computer Science, 2013, 4, 8-18
Published Online May 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2013.04.02

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 4, 8-18

Steganography on RGB Images Based on a

“Matrix Pattern” using Random Blocks

Amir Farhad Nilizadeh

Department of Computer Engineering, Arak Branch, Islamic Azad University, Arak, Iran

Email: amirfarhad.nilizadeh@gmail.com

Ahmad Reza Naghsh Nilchi

Department of Artificial Intelligence and Multimedia Engineering, University of Isfahan, Iran

Email: nilchi@eng.ui.ac.ir

Abstract—In this paper, we describe a novel spatial

domain method for steganography in RGB images

where a secret message is embedded in the blue layer of

certain blocks. In this algorithm, each block first chooses

a unique t1xt2 matrix of pixels as a “matrix pattern” for

each keyboard character, using the bit difference of

neighbourhood pixels. Next, a secret message is

embedded in the remaining part of the block, those

without any role in the “matrix pattern” selection

procedure. In this procedure, each pattern sums up with

the blue layer of the image. For increasing the security,

blocks are chosen randomly using a random generator.

The results show that this algorithm is highly resistant

against the frequency and spatial domain attacks

including RS, Sample pair, X
2
 and DCT based attacks.

In addition, the proposed algorithm could provide more

than 84.26 times of capacity comparing with a

competitive method. Moreover, the results indicated that

stego-image has almost 1.73 times better transparency

than the competitive algorithm.

Index Terms—Steganography, Stego-image, Matrix

pattern, Stego-matrix.

I. INTRODUCTION

In modern world, the security of information that

transmits in the Internet is one of the most important and

major aspects in digital communication. Two major

techniques that are used to secure information are

cryptography [1] and steganography [2] and could be

used together, as cryptography scrambles the message,

and steganography hides the scrambled message in a

cover, such as an image, video, audio, text, etc., to

enhance the security, even further.

Among the covers, images are the most popular

medium transmitted through the Internet. Images could

provide plenty of space for embedding secret messages.

As a result, many algorithms are proposed using images

as cover medium in steganography.

In this paper we present a new efficient method in

steganography based on “matrix pattern” that has a good

capacity, transparency and security. A steganography

system consists of the following components [3, 4]:

Cover Image: It is an image that secures the secret

message, and is used as a cover for transmitting the

message.

Message: It refers to information that is hidden in a

cover image. Message can be a text, image, audio or any

digital items. In this paper, the message can be a text or

any cipher text that is changed to keyboard characters.

Stego-image: It is an image that contains the secret

message after using the steganography.

Steganography key: It refers to a password/key that

may be used by steganography algorithms for

embedding data in a cover image or extracting data from

stego-image. This element is not an essential part of a

steganography system.

In a steganography system, first, the secret message is

embedded in an image (cover) with an algorithm and

produces a stego-image, and then stego-image may be

sent to the receiver via an unsecure communication

channel, such as Internet. The receiver then could extract

the message from the stego-image.

Image based steganography maybe done in either

spatial domain or frequency domain of the cover image

[5]. In the spatial domain, secret message is embedded

directly in pixels of image; one of the easiest and well

known algorithms in this domain is LSB. In this

algorithm, message is embedded in the least significant

bit of pixels. In the frequency domain algorithms, the

secret message is hidden in the frequency domain

coefficients of the cover image; algorithms in this

domain usually use DCT, FFT or Wavelet transform

methods [6, 7].

Steganography algorithms should have following

some properties [8, 9]:

Security: Hidden information embedded in the stego-

image could not be recognized. Having a high security is

the major aim of any steganography algorithm.

Capacity: the maximum size of that digital space that

could be used to hide messages in an image.

Transparency: measures the lack of visual changes

between cover image and stego-image; thus, the lower

this is, the better the transparency.

Robustness: measures both the message detection

ability by receiver, and the resistance against

conventional attacks including compressing, scaling,

adding noise, etc.

 Steganography on RGB Images Based on a “Matrix Pattern” using Random Blocks 9

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 4, 8-18

Computation Complexity: indicates the process time

that the algorithm requires for embedding and extracting

secret messages.

Between these parameters, capacity and robustness

are usually against each other; if we increase capacity

the robustness decreases and vice a versa [10].

This paper is organized as follows. In the next section,

the proposed algorithm to embed data into an image is

presented. In this section, first a block selection method

is offered and then an algorithm to generate “matrix

patterns” is presented. Then, the methodology to hide

the secret message is discussed. Next, the decoding part

of the algorithm on the receiver side is presented. Later,

the implementation of all parts of the algorithm is

discussed.

The following section includes discussion on the

capacity of the algorithm and its dependency on other

parameters is presented. Then, using statistical results

on different parameters, an ameliorated capacity is

obtained.

Next section the results on different steganalysis

methods are presented and parameters such as Regular

Singular (RS), Sample Pair (SP), Chi Square (X
2
), Pixel

Value Differencing (PVD), and Discrete Cosine

Transform (DCT) attacks are evaluated and the

performance of our algorithm in the presences of these

attacks are reported.

Finally, our algorithm is evaluated and compared with

a similar algorithm in the next section.

II. PROPOSED ALGORITHM

In this paper, a novel data embedding method is

presented. An algorithm for selecting blocks is first

described. Then, an explanation on how “matrix

patterns” are chosen in each block is given. Next, a new

algorithm for embedding and extracting hidden

messages is offered.

A. Block selection

For steganography in spatial domain, selecting a

suitable image area is a major task. A usual method is to

embed the message in the least significant bits (LSB) of

image pixels. This is because changing LSBs does not

affect the image’s visualization much; and so, it

provides a good transparency for stego-image. However,

knowing this allows many steganalysis algorithms to

detect or destroy the hidden messages. In this paper, the

secret message is embedded in the four bits of blue layer

-- excluding these LSBs -- namely 3rd through 6th bits

of pixels, albeit mostly in the 3rd and 4th bit locations.

This is because, as we explained later, our algorithm

uses bit difference between neighbour pixels. Since 5th

and 6th bits differences are often the same, algorithm

seldom changes these bit values at these two locations.

This parameter gives the algorithm a good resistance

against the steganalysis attacks targeting the LSBs. In

addition, because of choosing the blue layer of the

images which have the least effect on brightness, stego-

image would still keep its transparency.

For increasing the security and robustness of a stego-

image, a pseudo-random generator is used for choosing

random square blocks out of cover image. These picked

random numbers and the sizes of chosen blocks are

hidden in the cover image while embedding the secret

message as described later.

Fig. 1 shows a sample 60x60 block of baboon in red

square is picked; and Fig. 2 shows the enlarged version

of this block before and after implementing our

steganography algorithm. In this block 540 characters

are hidden.

Figure 1. A red square sample block in the baboon image used to

hide information.

Figure 2. The enlarged version of the red square block shown in

baboon image of Fig. 1 before and after embedment: a) cover block, b)

stego block.

B. “Matrix Pattern” generation algorithm

After randomly selecting the blocks in the image, the

message is translated to a “matrix pattern”. In a previous

work, static “matrix patterns” of the hidden message’s

characters are manually picked and used to hide it in all

parts of the cover image, without considering the pattern

changes of the image textures in different part of the

image [11]. This, however, compromises the security of

the method since “matrix patterns” in different textures

have different visual effects. As a result, an attacker

could easily visualize alterations in the image and so to

decode or destroy the secret message with fewer efforts.

In order to resolve this problem, we propose to

automatically identify and assign 49 unique but random

“matrix patterns” in several blocks in the cover image.

They are generated using the image’s texture

information of each block and so, dynamically changes

from block to block. 48 out of 49 “matrix patterns”

discussed above, are assigned as the keyboard characters

consisting 26 English characters, 10 numbers, and 12

keyboard special characters. We also assign one “matrix

patterns” designated as “the end of the message” sign.

The algorithm is as follows.

10 Steganography on RGB Images Based on a “Matrix Pattern” using Random Blocks

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 4, 8-18

Let’s assume BxB pixels blocks as the building blocks in

the cover image. Let also assume that t1 and t2 are the

size of row and column of each “matrix pattern” inside

the BxB building blocks, respectively. The t1xt2 “matrix

patterns” are located inside the building block starting

from upper left side of each block. That is, the first t1xt2

matrix in the upper left side of the block, which is

established in Fig. 3.1, is assumed to be the first “matrix

pattern”, representing the first character of the hidden

message.

2

1 1 2

(0, 0) (0,)

(, 0) (,)

t

t t t

a a

a a

 
 
 
  

Figure 3.1. The first t1xt2 matrix in a sample block

As the first step in generating “matrix patterns”

process, the RGB image is changed to an intensity image,

then the first three least significant bits of each pixel,

which are usually affected by spatial domain attacks in

most steganalysis, are ignored, as we discussed earlier.

This allows increasing the security and robustness of our

algorithm. Then, all elements of the 1st row of the

matrix are set to zero. Next, the bit difference between

the elements in the 1st row through the t1th row of the

matrix is calculated to generate “matrix pattern”. The

algorithm’s pseudo-code is shown in Table I.

TABLE I. A SUBPROGRAM PSEUDO-CODE FOR

PRODUCING A “MATRIX PATTERN”

for i = 0:t1

 for j = 0: t2

 {

 if (mod(i, t1) == 0)

 a ́(i, j) = 0;

 else

 a ́(i, j) = a (i, j) –a (i- 1, j);

 end if

 }

The result for the subtracting process is defined in the

matrix shown in Fig. 3.2 which produces the first

“matrix pattern” of the block.

2

1 1 2

(0, 0) (0,)

(, 0) (,)

t

t t t

a a

a a

  
 
 
   

Figure 3.2. A sample “matrix pattern” produced by our algorithm

After producing the first “matrix pattern”, the t1xt2

matrix of Fig. 3.1 is shifted one column to the right on

the block as is shown in Fig. 3.3 to find the second

“matrix pattern” to assign the next character. The same

procedure as described for first matrix is applied to find

the “matrix pattern” associated with the second character.

If the generated second “matrix pattern” is equal to

the previous matrix pattern(s), the associated t1xt2 matrix

is ignored; and the algorithm shifts another column,

going through the same process. The similarity check is

performed after generating every new “matrix pattern”.

This shifting process is continued until whether all 49

characters are assigned to 49 “matrix pattern” or the

whole row of the block is exhausted.

If not all characters are assigned in the first row, then

the algorithm shift down t1 rows and returns to the next

t1 rows of the square-pixels block, starting from the left

side (cartridge return of t1 pixel rows). This process

continues until all 49 patterns for keyboard characters

and the “end of the message” have their own designated

unique “matrix patterns”.

2 1

1 1 2 1

(0, 1) (0,)

(, 1) (,)

t

t t t

a a

a a





 
 
 
  

Figure 3.3. The location of the second t1xt2 matrix after shifting one
column to the right in the block

Because of the usual small differences between

neighbor pixels in an image, choosing a “matrix pattern”

for each character in each block increases the

transparency of the stego-image. Moreover choosing a

separate “matrix patterns” for each block increases the

security.

C. Embedding the Hidden Message

After picking up “matrix patterns” for all the

characters using intensity of the image, we switch back

to RGB mode for embedding stage. At this point, the

row after the last row of the BxB pixels block in the

image picked for character assignment; and so used for

the “matrix pattern” generation, is considered.

Starting from this row, t1xt2 matrix sequences of the

blue layer in the block of the image are used for

inserting the secret message.

For each character of the secret message, the

corresponding “matrix pattern” of the character is added

to the present t1xt2 matrix. Assume that the elements of

the first t1xt2 matrix that is going to utilized for

embedding the first character of the secret message is

shown in Fig. 4.1.

2

1 1 2

(0, 0) (0,)

(, 0) (,)

t

t t t

b b

b b

 
 
 
  

Figure 4.1. The first t1xt2 matrix in the blue layer of block that is

used for inserting the secret message

Table II illustrates the pseudo-code for inserting the

message in the blue layer of the BxB block. In this table,

the “matrix pattern” corresponding to a sample character,

shown in Fig. 3.2, is added with the first t1xt2 matrix in

the blue layer of the block shown in Fig. 4.1.

 Steganography on RGB Images Based on a “Matrix Pattern” using Random Blocks 11

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 4, 8-18

TABLE II. A SUBPROGRAM THAT IS USED FOR

EMBEDDING A “MATRIX PATTERN” IN

ANOTHER T1XT2 MATRIX IN BLUE LAYER

for i = 0: t1

 for j = 0: t2

 {

 if (mod(i, t1) == 0)

 b ́(i, j) = b (i, j);

 else

 b ́(i, j) = b ́(i-1, j) + a ́(i, j);

 end if

 }

That is, Fig. 4.2 shows the elements of a new t1xt2

matrix in the blue layer of the matrix where one

character is hidden in it. We name the resultant matrix a

“stego-matrix”.

2

1 1 2

(0, 0) (0,)

(, 0) (,)

t

t t t

b b

b b

  
 
 
   

Figure 4.2. New elements of a blue layer of a “stego-matrix” which
consists of one embedded character

This process is repeated for each secret message

character until the entire message is hidden in the cover

image.

In order to register the end of message, if the last

character in the secret message is hidden, a special

“matrix patterns”, which was mentioned earlier, were

used.

Note also that the algorithm’s parameters such as

block size, “matrix pattern” size, and the seed values for

the pseudo-random generator, are hidden in a special

48x48 sized block in the image. These parameters are

coded inside this special block using the same

methodology as of the blocks used to hide the secret

message, albeit with pre-defined “matrix pattern” size of

3x3; and seed values of 0 and 255, for its pseudo-

random generator used for locating this special block.

D. On the Decoding Side: Extracting the Message

In order to extract the secret message at the receiver

side, the 48x48 special block used to keep the needed

parameters is first located using 0 and 255 seed values

for pseudo-random generator. 3x3 “matrix patterns”

inside this special block allows extracting and reading

the block size, “matrix patterns” size, and the seed

values used for pseudo-random generator (to locate the

blocks), for the decoder.

Next, similar to the process explained in the “matrix

pattern” generation step, the intensity of stego-image is

produced and the first three bits of LSB part of each

pixel in a block is ignored to generate “matrix patterns”.

This way, the same block locations used for generating

patterns in the embedment steps, is located. Then, the

same algorithm used for embedding side is implemented

on the receiver side for pattern generation. This allows

us to extract the same “matrix patterns” corresponding to

each character.

Next, the algorithm starts from the first t1xt2 “stego-

matrix” location of the hidden message characters. This

location is on the next t1-rows of the blue bytes of the

pixels in the image block where the “matrix patterns”

are completed, as described in the embedding procedure.

To find the characters of the hidden message, the

pseudo-program in Table III is applied to the blue layer

of the “stego-matrix” and the corresponding character

from the “matrix pattern” is identified. The pseudo-code

for detecting the “matrix pattern” is shown in Table III:

TABLE III. A PSEUDO-CODE THAT IS USED FOR

DETECTING THE “MATRIX PATTERN” FROM

STEGO-MATRIX

for i = 0: t1

 for j = 0: t2

 {

 if (mod(i, t1) == 0)

 a〞(i, j) = 0;

 else

 a〞(i, j) = b (́i, j) - b ́(i - 1, j);

 end if

 }

The procedure is applied to all matrices and the

blocks of the stego-image until it reaches the special

character identifying the end of the message.

That is, applying the above subprogram, a matrix

similar to the one shown in Fig. 4.3 results, which is

exactly the same as one of the “matrix patterns”

corresponds to a hidden character.

2

1 1 2

(0, 0) (0,)

(, 0) (,)

t

t t t

a a

a a

  
 
 
   

Figure 4.3. The extracted matrix pointed to the embedment
character

Thus, the hidden character in the block can be

detected by comparing the resulted “matrix pattern” and

collections of “matrix patterns” for characters in that

block.

To show how all the algorithm works, we picked a

cover image as in Fig. 5.1. The algorithm pseudo-

randomly selects the blocks of the cover image for

embedding, as shown in Fig. 5.2, with size of 60x60 for

each block and 3x3 for each “matrix pattern”. A large

size secret image of 5000 characters is chosen to be

hidden in this cover image. The resultant sego-image is

shown in Fig. 5.3.

12 Steganography on RGB Images Based on a “Matrix Pattern” using Random Blocks

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 4, 8-18

Figure 5.1. An example of cover image

Figure 5.2. Randomly chosen blocks are shown in yellow in the

cover image

Figure 5.3. The stego-image that hides a message with 5000

characters

E. Implementation

The steganography algorithm developed in this

project is implemented using Matlab package. The

inputs to this steganography system are the secret

message, an image to be used as a cover image, and the

user-selected sizes for the building blocks and the

“matrix patterns”. This system output is a stego-image

with embedded secret message and algorithm’s

parameters including used seed values, building block

size, and “matrix patterns” size.

Reversely, in the extraction side, an assumed stego-

image is the input to the system. The output of the

decoder would be a readable secret message, if available,

extracted from the stego-image.

F. Supported Image Formats

Image formats maybe classified as those without any

compression, such as bmp, with some lossless

compression, such as png, and with lossy compression,

such as jpeg [12]. The first and the second file formats

are completely consistent with our algorithm. The third

type image formats could be used as input cover image

to our algorithm; however its output stego-image format

could not be of a lossy one; and its format out to be

changed to one of the first two types, i.e. png.

III. CAPACITY

In the proposed algorithm, the cover images’ capacity

has a direct correlation with the number and size of the

selected blocks as well as the size of the “matrix

patterns”. Generally, if the cover image size becomes

larger, the suitable number of blocks increases without

compromising the transparency of stego-image. Also

capacity of each block depends on the block texture. The

capacity of the block which is available for hiding the

secret message, C, may be calculated as:

block patternC C C 

 (1)

Where refers to the primary capacity of determine

block in the cover image and refers to the area of the

block which is available for selecting the “matrix

patterns”. The total capacity of the cover image, which

is the aggregation of all the selected blocks in the cover

image, is:

()
1

n
total i

i
C C




 (2)

In (2), n is the number of selected building blocks.

Size of each square block and each “matrix pattern” can

be changed, but in this paper we chose a fix size for

them to be able to compare it with the similar algorithm.

For our simulations, we selected 10 images with PNG

format out of the image database at the University of

Wisconsin Madison [13]. At first, three different square

block size consist of 32x32, 64x64 and 128x128 are

chosen. Then longest message that its part or in its

entirety could be hidden in entire images with these

blocks are used. For this purpose 14 different “matrix

pattern” size include; 2x1, 2x2, 3x1, 3x2, 3x3, 4x1, 4x2,

4x3, 4x4, 5x1, 5x2, 5x3, 5x4 and 5x5 are examined.

Notice that the first row of each “matrix pattern” does

not have any rules during embedding algorithm and set

zero, so we did not select a “matrix pattern” which have

more column than row.

Table IV shows the average capacity, PSNR, and

resistance against “Regular singular” (RS) and “Sample

Pair” (SP) attacks for all 10 images with different matrix

patterns when the message is embedded in the entire

images. Table V shows the average capacity, PSNR, and

the resistance against RS and SP attacks for each matrix

pattern size for different block size.

TABLE IV. COMPARE OF DIFFERENT BLOCK

SIZE

 32x32 64x64 128x128

Capacity 15108.8 26615 30338.7

RS 3.02 2.95 2.99

SP 6.57 6.21 6.09

PSNR 47.13 44.73 43.83

 Steganography on RGB Images Based on a “Matrix Pattern” using Random Blocks 13

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 4, 8-18

TABLE V. COMPARE THE DIFFERENT SIZE FOR

“MATRIX PATTERN”

Capacity RS SP PSNR

2x1 0 - - -

2x2 35165.3 3.19 6.69 48.12

3x1 35353.9 3.24 6.92 46.76

3x2 34962.5 2.92 6.54 46.1

3x3 26641.5 2.96 6.29 46.3

4x1 38751.9 2.97 6.22 44.79

4x2 28998.8 2.87 5.95 44.43

4x3 19588.5 2.83 5.89 44.78

4x4 15157.1 2.8 5.83 44.71

5x1 31977.8 2.95 6.49 44.37

5x2 20989.3 2.96 6.29 44.25

5x3 13964 2.94 6.27 44.42

5x4 10768.8 2.93 6.22 44.36

5x5 8203.2 2.87 6.15 44.61

According to the Table IV, all block sizes show

similar and good resistance against RS and SP attacks.

However, the block size 32x32 only can provide about

half of the space that others can provide for the

steganography. Also all of them provide a good PSNR.

Based on Table V, we decided to choose the matrix

pattern sizes that are the providing the best results

including 2x2, 3x1, 3x2, 3x3, 4x1, 4x2 and 5x1. Table

VI shows the results for the experiments where 2000

characters are hidden in each of 10 images that have

different matrix pattern and block sizes.

TABLE VI. COMPARING DIFFERENT BLOCK SIZE

WITH 2000 CHARACTERS

 32x32 64x64 128x128

Capacity 2000 2000 2000

RS 3.68 3.66 3.66

SP 4.6 7.95 8.09

PSNR 57.25 57.33 57.9

As you can see, in Table IV, the images with block

sizes of 64x64 and 128x128 have a better capacity than

images with 32x32 block sizes. Although images with

both block sizes, 64x64 and 128x128, have a high PSNR

and good resistance against attacks, we decided to

choose images with 64x64 block pixels for the further

experiments in this paper because smaller blocks of size

64x64 provide more diffusion.

For choosing the best matrix pattern size, we run a

new experiment and compare those patterns that show

the best results provided in Table V. In this experiment,

the pseudo-random generator is used for choosing some

random blocks in the 10 images that their size of pixel

blocks is 64x64. Then, the maximum possible message

is hidden in these blocks with different sizes of matrix

pattern. It can be seen in Table VII that the matrix

patterns 3x1, 3x2 and 4x1 have the best capacity.

However, 13 of 30 images with matrix pattern 3x1 and 1

of 3 of images with matrix pattern 4x1 cannot hide

anything. On the other hand, the images with matrix

pattern 3x2 are good in capacity while their failure is

less. Thus, we decided to use images with matrix

patterns of 3x2 for hiding the message in our

experiments. Nevertheless, the user can chose any block

size and “matrix pattern” size.

TABLE VII. COMPARE OF DIFFERENT “MATRIX

PATTERN”

 Capacity RS SP PSNR Fail

2x2 8914.9 3.73 8.29 57.89 12/30

3x1 10932.8 3.93 8.76 55.24 13/30

3x2 10028.2 3.43 7.36 56.54 6/30

3x3 9053.4 3.15 5.57 56.21 5/30

4x1 10887.1 3.38 7.29 54.5 10/30

4x2 9097.8 3.19 6.75 54.92 5/30

5x1 9271.7 3.22 5.66 56.11 6/30

As it has been described above, in our algorithm the

capacity of an image is not static, and it depends on the

number of selected square blocks, size of square blocks,

size of “matrix pattern” and texture of each block. In this

paper, based on the results shown in this section, we will

use blocks with fixed 64x64 sizes and fixed 3x2 for

“matrix pattern”. Thus, each block can hide at most 640

characters.

IV. STEGANALYSIS

Steganalysis algorithms try to find the digital covers

that carry some hidden information. Two kinds of

steganalysis are usually employed on image covers,

signature and statistical [14]. In first type, pattern

repe t i t io n s ignatures tha t a re p roduced wi th

steganography tools are inspected. In statistical class, the

digital (image) cover is statistically analyzed to detect if

the media digital carries a secret message. Statistical

steganalys is is more powerful than s ignature

steganalysis, because statistic values are more sensible

than visual discernment [14, 15]. In other words,

steganalysis try to determine if any information is

hidden in an image by attacking the security of

steganography algorithm. Some of these methods

used in steganalysis include Chi-square (X
2
), Regular

singular and Sample Pair [16, 17, 18]. In addition to

these classic steganalysis methods, there are some image

processing and geometric attacks that instead of

identifying the existence of hidden images, try to destroy

the information that may be hidden in an image by

attacking the robustness of steganography algorithm.

Some of these attacks include resizing, scaling, cropping,

LSB filliping, JPEG compressing, adding different types

of noise, et. al [3, 19].

Our algorithm does not make sensible changes in the

histogram of stego-images. You can see that the

histograms in Fig. 6.1 and Fig. 6.2 are the same while

the Fig. 6.1 shows the histogram of the gray level in

cover image shown in Fig. 5.1 and the Fig. 6.2 indicate

the histogram of gray level for the stego-image shown in

Fig. 5.3 produce with Matlab. The histogram of blue

14 Steganography on RGB Images Based on a “Matrix Pattern” using Random Blocks

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 4, 8-18

layer in cover image and stego-image shown in Fig. 5

are also shown in Fig. 7.1, and Fig. 7.2. By comparing

the histograms in Fig. 6 and Fig. 7, you can see that they

are very similar. Thus, these kinds of attacks cannot be

very successful on our algorithm and our algorithm is

more robust against the steganalysis attacks that get

benefit from statistical or brightness changes in

histogram of stego-image.

Figure 6.1. histogram of gray level for cover image

Figure 6.2. histogram of gray level for stego-image

Figure 7.1. shows the histogram of blue layer for cover image

Figure 7.2. shows the histogram of blue layer in stego-image

To illustrate this, we employed RS and Sample Pair

steganalysis on some stego-images that were generated

by our algorithm applying Steganography_Studio1.0.1

[20]. For example, we applied these attacks, RS and

Sample Pair, on the stego-image shown in Fig. 5.3

where 5000 characters are hidden in the image. The RS

attack could anticipate the existence of hidden image

with the probability of 0.18. It also anticipates this in the

blue layer with probability of 0.08. Applying the Sample

Pair attack, it could have the estimation that the image

and blue layer contain hidden images with probabilities

of about 0.1 and 0.02. You can see that both attacks are

not effective on our algorithm at all The X
2

attack

detects changes in an image by comparing the number of

pair of value in the histogram; because of no sensible

changes in our histogram this attack cannot be

successful. We implemented the X
2
 attack and run it on

the image in Fig. 5.3. This attack assumes that different

percentage of image (1%-100%) has been used for

steganography and identifies the probability that actually

some information is hidden in the image. The

experiment shows that X
2
 always returns zero as the

probability of hiding. Thus, it is not effective on our

algorithm.

Some steganography algorithms such as PVD [21] use

the differences between neighbor pixels. To attack this

kind of steganography, a steganalysis method has been

proposed that uses the “difference histogram” of an

image [22]. We applied this attack on our algorithm. Fig.

8.1 indicates the difference histogram of the cover and

Fig. 8.2 plots the difference histogram of the stego-

image that is shown in Fig. 5. They illustrate that our

algorithm is resistant against this technique. The reason

is that our algorithm does not make any changes on the

symmetric Gaussian format of the difference histogram.

Figure 8.1. difference histogram of gray level of cover image

Figure 8.2. difference histogram of gray level of stego-image

Here is another kind of steganalysis attack that is

usually successful in frequency domain and it benefits

from the statistical model of DCT coefficients of images

[14]. It has been shown that the DCT coefficient

histogram of clear image that does not contain any extra

information has a symmetric and Gaussian format [23].

Fig. 9 and Fig. 10 illustrate that our algorithm does not

change the Gaussian format of DCT histogram of the

 Steganography on RGB Images Based on a “Matrix Pattern” using Random Blocks 15

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 4, 8-18

stego-image shown in Fig. 5. The reason is that the DCT

coefficients of cover image do not change during any of

the steganography steps. Therefore, these kinds of

attacks are also not effective on our algorithm.

Figure 9.1. DCT coefficients of cover image in gray level

Figure 9.2. DCT coefficients of stego-image in gray level

Figure 10.1. DCT coefficients of cover image in blue layer

Figure 10.2. DCT coefficients of stego-image in blue layer

Fridrich et al. [24] proposed another reliably

steganalysis attack that can detect modifications in

digital images only when the cover image is stored in the

JPEG format. Since our algorithm accepts a variety of

input formats for cover image, user can choose any

format except JPEG for confronting this attack.

Results indicate that our algorithm is resistance

against the well-known steganalysis attacks that try to

identify whether an image contains any additional

information. However, this algorithm similar to other

steganography methods that use spatial domain is not

resistance enough against image processing and

geometric attacks. As it was mentioned earlier, these

attacks change images without detecting the stego-image;

thus, because the attackers never discover if any hidden

image exists, they do not threat the security of our

algorithm. Nevertheless, our method is resistance against

different sorts of geometric attacks that use LSBs part of

the image like LSB flipping.

V. METHOD’S COMPARISON

We evaluate our algorithm by comparing it with a

similar algorithm described by Fatemi et. al. [11].

Before discussing the results, we briefly describe their

algorithm.

In their method, sender and receiver need to share an

image database with a limited number of images.

Transmitting this image database is a key security

problem that is assumed to be done offline. In their

algorithm, for each image programmer chooses an area

with a fine or uniform texture manually. Then,

depending on the texture of chosen area, the

programmer needs to choose some masks manually as a

pattern for each character in each image. All these

manually chosen images along with their masks and

their selected areas are needed to be saved in the

database and will be used for embedment. In the

embedding step, the masks for each image are replaced

with the part of area that is previously chosen.

In our algorithm however, there is no such limitation

and no need for saving images, their masks or areas in a

database. As a result, neither manual pre-processing nor

transmitting of data is needed before running the

steganography algorithm. Moreover, in our algorithm,

blocks in an image are chosen randomly and for each

character in each block, separate “matrix patterns” are

defined automatically which all increase the security of

our algorithm. Notice that in their method some masks

are chosen manually for each character in an image;

however our method for each block chooses some

specific “matrix patterns”.

Simulation results show our method has a better

transparency than their method, because of two reasons:

firstly, “matrix patterns” are chosen from a difference of

neighbor pixels in a block to be used only on that block,

whereas in their method, they choose some masks for

the whole image. Secondly blue layer of image is used

in our algorithm, while in their method all the three

layers are used as a mask and it is replaced in different

parts of image. Moreover, performing RS and Sample

Pair attacks on our algorithm by applying

Steganography_Studio1.0.1, it demonstrates more

resistance.

In their method, they peruse 11 images with BMP

format in the database. To compare these algorithms, we

used these 11 images but in PNG format which is more

common in Internet. We compared their max capacity,

and their transparency. We also performed several

attacks including RS and Sample Pair. The comparison

results are shown in Table VIII and Table X.

For calculating PSNR initially should achieve the

brightness. To reach the brightness of any image, first of

all green, red and blue layers of image are separated.

Secondly, using (3), the brightness is calculated [25, 26].

This equation indicates that the blue layer has less effect

16 Steganography on RGB Images Based on a “Matrix Pattern” using Random Blocks

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 4, 8-18

on image brightness than other layers. Thus, to increase

the transparency of the stego-image, the blue layer is

used in this paper. Equation (4) can be use for

comparing the brightness of cover image, and stego-

image where n and m show the column size and row size

of an image and “I” refers to the cover image and “S”

refers to the stego-image [28].

((, ,)) (0.2126*) (0.7152*) (0.0722*)Brightness P r g b r g b  

(3)

 
2

1 1

1
(((,)) (,))

n m

i j
MSE Brightness I i j Brightness S i j

mn  
    

 (4)

PSNR is a measure for transparency in an image. If it

becomes more than 30, it shows that the changes in the

image cannot be recognized by eye [27], and thus it has

a better transparency. PSNR can be calculated with (5).

In this equation, “I” refers to the cover image and “S”

refers to the stego-image.

MSE is the different brightness that can be calculated

using (4).

10
255

(,) 20.log
(,)

PSNR I S
MSE I S

 
   

 

 (5)

TABLE VIII. RESULTS OF OUR ALGORITHM

 Capacity RS SP PSNR

Baboon 33138 2.87 28.76 40.52

Face 152192 0.37 0.47 50.08

Meadow 140411 2 2.71 41.9

Paper 17415 2.17 1.88 45.03

Shrine 113318 2.53 3.68 44.41

Sky 50963 1.61 1.4 49.18

Snow 102493 0.16 0.27 50.95

Spring 163830 3.53 3.32 44.68

Springhead 120974 0.07 0.36 46.53

Stone 132134 0.45 0.78 44.64

Wall 96514 0.2 0.34 45.74

Average 102125.6 1.45 4 45.79

TABLE X. RESULTS OF PREVIOUS ALGORITHM

 Capacity RS SP PSNR

Baboon 119 4.12 4 38.29

Face 2233 1.72 1.42 39.64

Meadow 2785 11.36 13.04 29.48

Paper 2293 5.07 4.28 51.6

Shrine 145 2.52 3.7 43.16

Sky 1066 2.23 1.77 25.45

Snow 1881 0.71 0.98 39.74

Spring 738 4.8 4.25 37.87

Springhead 313 0.87 0.85 55.47

Stone 119 0.63 0.87 54.38

Wall 1640 0.96 0.77 32.67

Average 1212 3.18 3.26 40.7

These tables show that our algorithm could hide

102125.6 characters in each image of this database,

whereas their algorithm could only hide 1212 characters.

So our algorithm can hide near 84.26 times more

characters. Notice that their cover images is BMP and

has near 2.5 times more image capacity, however our

algorithm’s hiding capacity is 84.26 times more. In

addition, Table VIII and Table X show that in the worst

case, when they hide maximum information, both

algorithms have a good resistance against the RS and

Sample Pair attacks. However, still our algorithm shows

2.19 times more resistance to RS and a quite better

transparency while their algorithm is 1.23 times more

resistance to Sample Pair. Notice that our algorithm has

a quite equal resistance while it hides 84.26 times more

information in images with PNG format.

The simulation results indicate that both of these

algorithms have a good transparency for stego-image

when they hide the maximum number of characters, and

both have noticeable difference from tolerable PSNR.

However, for comparing the transparency of these two

algorithms, we decided to hide equal characters with the

maximum capacity of previous algorithm. Results are

illustrated in Table XI.

TABLE XI. RESULTS OF THE PROPOSED

ALGORITHM WHEN THE IMAGES ARE

EMBEDDED SIMILAR TO MAX CAPACITY OF

PREVIOUS ALGORITHM

 Capacity RS SP PSNR

Baboon 119 3.04 3.56 61.53

Face 2233 0.43 0.7 69.51

Meadow 2785 4.78 7.32 67.81

Paper 2293 2.86 2.45 53.13

Shrine 145 2.57 3.73 81.61

Sky 1066 1.78 1.52 68.17

Snow 1881 0.19 0.35 69.76

Spring 738 4.64 4.2 74.36

Springhead 313 0.09 0.4 79.64

Stone 119 0.62 0.96 79.67

Wall 1640 0.18 0.22 70.24

Average 1212 1.93 2.31 70.49

This shows that with the same number of hidden

characters, our algorithm increases the PSNR 1.73 times

more.

VI. CONCLUSION

In this paper, we presented a novel steganography

method base on “matrix patterns” in the image spatial

domain for hiding a text message on a given cover

image.

In this algorithm the blue layer of RGB images are

used for hiding secret message. For this purpose BxB

blocks of cover image are picked randomly with a

pseudo-random generator and then some t1xt2 “matrix

patterns” representing 48 English characters, numerals,

 Steganography on RGB Images Based on a “Matrix Pattern” using Random Blocks 17

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 4, 8-18

special characters and one “matrix pattern” to be

identified as the end of secret message.

REFERENCES

[1] W. Stallings, “Cryptography and Network

Security—Principles and Practices”, fourth ed.,

Dorling Kindersley (Pearson Education, Pvt. Ltd.),

India, 2004.

[2] M. M. Amin, M. Salleh, S. Lbrahim and et al,

“Information hiding using steganography”,

Telecommunication Technology, 2003. NCTT 2003

Proceedings. 4th National Conference on. IEEE,

2003. DOI:10.1109/NCTT.2003.1188294

[3] A. Cheddad, J. Condell and P. Mc Kevitt, “Digital

image steganography: Survey and analysis of

current methods”, Signal Processing 90.3 (2010):

727-752. DOI:10.1016/j.sigpro.2009.08.010

[4] M. Hussain, “Pixel intensity based high capacity

data embedding method”, Information and

Emerging Technologies (ICIET), 2010 International

Conference on. IEEE, 2010.

DOI:10.1109/ICIET.2010.5625723

[5] S, Bhattacharyya, and G. Sanyal, “A Robust Image

Steganography using DWT Difference Modulation

(DWTDM)”, International Journal of Computer

Network and Information Security (IJCNIS) 4.7

(2012): 27. DOI: 10.5815/ijcnis.2012.07.04

[6] M. Kharrazi, H. T. Sencar and N. Memon, “Image

steganography: Concepts and practice”, Lecture

Note Series, Institute for Mathematical Sciences,

National University of Singapore (2004).

DOI:10.1007/978-3-540-24624-4_3

[7] P. C. Su, and C. C. Kuo, “Steganography in

JPEG2000 compressed images”, Consumer

Electronics, IEEE Transactions on 49.4 (2003):

824-832. DOI:10.1109/TCE.2003.1261161

[8] E. T. Lin and J. D. Edward, “A review of data

hiding in digital images”, IS AND TS PICS

CONFERENCE. SOCIETY FOR IMAGING

SCIENCE & TECHNOLOGY, 1999.

DOI:10.1.1.29.5002

[9] B. Chen, and G. W. Wornell, “Quantization index

modulation: A class of provably good methods for

digital watermarking and information embedding”,

Information Theory, IEEE Transactions on 47.4

(2001): 1423-1443. DOI:10.1109/18.923725

[10] A. Gutub, M. Ankeer, M. Abu-Ghalioun, A.

Shaheen and et al, “Pixel indicator high capacity

technique for RGB image based

Steganography”, WoSPA 2008-5th IEEE

International Workshop on Signal Processing and

its Applications. 2008.

[11] A. S. Fatemi , A. R. Naghsh-Nilchi and N.

Nematbakhsh, “Image Data Hiding based on

Graphical Synthesis”, (in Persian), 6
th

 Machine

Vision and Image Processing Conference, 29 July

2010.

[12] R. H. Wiggins, H. C. Davidson, H. R. Harnsberger,

J. R. Lauman and et al, “Image File Formats: Past,

Present, and Future1”, Radiographics 21.3 (2001):

789-798.

[13] http://homepages.cae.wisc.edu/~ece533/images Last

visited 2012/11/29

[14] A. Nissar, and A. H. Mir, “Classification of

steganalysis techniques: A study”, Digital Signal

Processing 20.6 (2010): 1758-1770.

DOI:10.1016/j.dsp.2010.02.003.

[15] R. A. Lerski, K. Schad, L. R. Boyce and et al, “VIII.

MR image texture analysis—An approach to tissue

characterization”, Magnetic resonance

imaging 11.6 (1993): 873-887. DOI:10.1016/0730-

25X(93)90205-R

[16] A. Westfeld, and A. Pfitzmann, “Attacks on

steganographic systems”, Information Hiding.

Springer Berlin/Heidelberg, 2000.

DOI:10.1007/10719724_5

[17] J. Fridrich, M. Goljan and R. Du, “Detecting LSB

steganography in color, and gray-scale

images”, Multimedia, IEEE 8.4 (2001): 22-28.

DOI:10.1109/93.959097

[18] S. Dumitrescu, X. Wu and Z. Wang, “Detection of

LSB steganography via sample pair

analysis”, Information Hiding. Springer

Berlin/Heidelberg, 2003. DOI:10.1007/3-540-

36415-3_23

[19] V. Licks and R. Jordan, “Geometric attacks on

image watermarking systems”, Multimedia,

IEEE 12.3 (2005): 68-78.

DOI:10.1109/MMUL.2005.46

[20] http://sourceforge.net/projects/stegstudio/files/ Last

visited 2012/4/7

[21] X. Zhang and S. Wang, “Vulnerability of pixel-

value differencing steganography to histogram

analysis and modification for enhanced security”,

Pattern Recognition Letters 25.3 (2004): 331-339.

DOI:10.1016/j.patrec.2003.10.014

[22] V. Sabeti, S. Samavi, M. Mahdavi and et al,

“Steganalysis of pixel-value differencing

steganographic method”, Communications,

Computers and Signal Processing, 2007. PacRim

2007. IEEE Pacific Rim Conference on. IEEE, 2007.

DOI:10.1109/PACRIM.2007.4313232

[23] T. Zhang and X. Ping, “A fast and effective

steganalytic technique against JSteg-like

algorithms”, Symposium on Applied Computing:

Proceedings of the 2003 ACM symposium on

Applied computing. Vol. 9. No. 12. 2003.

DOI:10.1145/952532.952595

[24] J. Fridrich, M. Goljan and R. Du, “Steganalysis

based on JPEG compatibility”, ITCom 2001:

International Symposium on the Convergence of IT

and Communications. International Society for

Optics and Photonics, 2001.

DOI:10.1117/12.448213

[25] I. Jackson and S. Sirois, “Infant cognition: going

full factorial with pupil dilation”, Developmental

science 12.4 (2009): 670-679. DOI:10.1111/j.1467-

7687.2008.00805.x

http://homepages.cae.wisc.edu/~ece533/images
http://sourceforge.net/projects/stegstudio/files/

18 Steganography on RGB Images Based on a “Matrix Pattern” using Random Blocks

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 4, 8-18

[26] T. S. Sazzad, M. Z. Hasan and F. Mohammed,

“Gamma encoding on image processing considering

human visualization, analysis and

comparison”, International Journal 4 (2012).

[27] J. Lee, S. Choe and S. Lee, “Compression of 3D

Mesh Geometry and Vertex Attributes for Mobile

Graphics”, Journal of Computing Science and

Engineering 4.3 (2010): 207-224.

[28] P. Nithyanandam, T, Ravichandran, N. M. Santron

and et al, “A Spatial Domain Image Steganography

Technique Based on Matrix Embedding and

Huffman Encoding”, International Journal of

Computer Science and Security (IJCSS) 5.5 (2011):

456.

Mr. Amir Farhad Nilizadeh
received his B.Sc. degree in

Computer Hardware Engineering

from Islamic Azad University,

Najafabad Branch in 2009 and his

M.Sc. degree in Computer System

Architecture Engineering from

Islamic Azad University, Arak

Branch in 2013. His area of research includes data

hiding, image processing, HDL languages and FPGA.

Ahmad R. Naghsh Nilchi, PhD,

received his B.S. and M.S., and

PhD degrees from Electrical and

Computer Engineering

Department in 1988, 1989, and

1996, respectively, all from the

University of Utah, Salt Lake City,

Utah, USA. He is an Associate

Professor of Computer Engineering with the University

of Isfahan, Iran, and was the Chairman of the Computer

Engineering department for three terms and now is the

Chairman of the Artificial Intelligence and Multimedia

Engineering at the same institution. He has been

awarded several research grants from distinguished

research institutions including U.S. National Science

Foundation and has completed a number of research

projects for Iranian industries. He is the author and co-

author of several journal articles and conference papers.

In addition, he has collaborated with internationally

known institutions and peers, and was a Research

Scholar with the National University of Ireland,

Mynooth, Ireland, in 2011, and with the University of

California, Irvine, in 2012. He also is the chief editor of

the Journal of Computing and Security. His research

interests include medical image and signal processing,

data hiding, as well as intensive computing. He was

listed in Who’s Who in the World in 2011.

