
I.J. Modern Education and Computer Science, 2013, 12, 47-53 
Published Online December 2013 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijmecs.2013.12.07 

Copyright © 2013 MECS                                                  I.J. Modern Education and Computer Science, 2013, 12, 47-53 

Throughput and Delay Analysis of Database 

Replication Algorithm 
 

Sanjay Kumar Yadav 

Dept. of Computer Science & Information Technology, Sam Higginbottom Institute Of Agriculture, Technology & 

Sciences, Allahabad , India 

Email: yadav_sk@rediffmail.com 

 

Gurmit Singh  

Dept. of Computer Science & Information Technology, Sam Higginbottom Institute Of Agriculture, Technology & 

Sciences, Allahabad , India 

Email: gurmitsingh3@rediffmail.com 

 

Divakar Singh Yadav  

Department of Computer Science & Engineering, Institute of Engineering and Technology, Lucknow., India 

Email: divakar_yadav@rediffmail.com 

 

 

Abstract — Recently, (PDDRA) a Pre-fetching based 

dynamic data replication algorithm has been published. 

In our previous work, modifications to the algorithm 

have been suggested to minimize the delay in data 

replication. In this paper a mathematical framework is 

presented to evaluate mean waiting time before data can 

be replicated on the requested site. The idea is further 

investigated and simulation results are presented to 

estimate the throughput and average delay. 

 

Index Terms — database replication, throughput, 

average delay. 
 

I.  INTRODUCTION 

Database management systems are among the most 

important systems that are driving the information 

transfer and storage functionality [1-11]. In Internet 

applications, a large number of users that are 

geographically dispersed all over the world may 

routinely query and update the same database. In this 

environment which generally changes with time, the 

location of the data can have a significant impact on 

application response time and availability. In a 

centralized approach only one copy of the database is 

managed. This approach is simple since contradicting 

views among replicas are not possible. However, the 

centralized replication approach suffers from two major 

drawbacks: 

• High server load or high communication latency for 

remote clients. 

• Sometime server may not be available due to the 

down time or lack of connectivity. Clients in portions of 

the network that are temporarily disconnected from the 

server cannot be serviced. 

The server load and server downtime problems can be 

addressed by replicating the database servers to form a 

cluster of peer servers that coordinate updates. Wide 

area database replication coupled with a mechanism to 

direct the clients to the best available server (network-

wise and load-wise) [12] can greatly enhance both the 

response time and availability. A fundamental challenge 

in database replication is maintaining a low cost of 

updates while assuring global system consistency. The 

problem is magnified for wide area replication due to the 

high latency and the increased likelihood of network 

partitions in wide area settings [13]. 

Therefore, in database replication, the location of 

nodes and their availability is important. In our 

previous work, PDDRA (Pre-fetching Based Dynamic 

Data Replication Algorithm [14]) has been modified to 

reduce the network based latency and a mathematical 

model is presented to evaluate the throughput and 

average delay [15]. This paper further investigates the 

proposed scheme, and simulation results are presented 

to evaluate the throughput and average delay. 

The rest of the paper is organized as follows: In 

section 2, the PDDRA algorithm is described for the 

completeness of the paper. The proposed scheme is 

detailed in section 3. The mathematical model is 

detailed in section 4. The simulation results are 

presented in section 5. The major conclusions of the 

paper are discussed in section 6. 

 

II.  RELATED WORK 

A. PDDRA: Pre-fetching Based Dynamic Data 

Replication Algorithm [14] 

In [14] a pre-fetching based dynamic data replication 

algorithm is presented. In this algorithm the basic idea is 

to increase the throughput and minimize the latency by 

pre-fetching of the some of the required data, these 

replicas will be requested in the near future with a high 

mailto:yadav_sk@rediffmail.com
mailto:gurmitsingh3@rediffmail.com
mailto:divakar_yadav@rediffmail.com


48 Throughput and Delay Analysis of Database Replication Algorithm  

Copyright © 2013 MECS                                                  I.J. Modern Education and Computer Science, 2013, 12, 47-53 

probability and it is better to replicate these files to 

requester node so the next time that the grid site needs 

them, it will access them locally, decreasing access 

latency and response time. The architectural layout of 

the algorithm is illustrated in Fig. 1. Here, the grid sites 

are located at the bottom of the architecture, and consist 

of storage and/or computing elements. The collection of 

multiple grid sites constitutes a Virtual Organization 

(VO).  A Local Server (LS) for every Virtual 

Organization (VO) and the Replica Catalog (RC) is 

located at Local Server. It must be remembered that the 

available bandwidth between the sites within a VO is 

higher than bandwidth between Virtual Organizations. 

Hence, accessing a file that is located in the local VO is 

faster in comparison to one that is located in the other 

VO. The upper layer consists of a Regional Server (RS) 

and each RS consists of one or more VOs. These 

regional servers are connected through the internet, so it 

may be possible that the transferring of files between 

them takes a long time. There is also a Replica Catalog 

located at each RS that is a directory of all the files 

stored at that region. Whenever a file that is not stored in 

the current VO is required, the RC of RS is asked for 

determining which VOs have the requested file. Suppose 

that grid site „A‟ requests a file that is not stored locally. 

It asks the RC to determine which sites have the 

requested file. For reducing access latency, bandwidth 

consumption and response time, it is better to pre-fetch 

replicas that are probable to be requested by the 

requester grid site in the near future. When a required 

file is not in the current VO and is stored in the other 

VOs, a request is sent to RS. Then RS searches on its 

Replica Catalog table and determines the locations of the 

requested file in other VOs. In such situations only the 

required file will be replicated and because of low 

bandwidth between VOs, high propagation delay time 

and consequently high replication cost, pre-fetching will 

not be advantageous and will not be done. In addition in 

this paper [14] the authors have assumed that members 

in a VO have similar interests of files, so file access 

patterns of different VOs differ and consequently a file 

from a different VO should not be pre-fetched for the 

requester grid site in other VO, because their 

requirements and access patterns are different. So only 

the required file will be replicated and pre-fetching will 

not be performed.  

The algorithm is constructed on the basis of following 

assumptions:  

1. Members in a VO have similar interest in files.  

2. For predicting the future accesses, past 

sequence of accesses should be stored.  

3. Files that will be accessed in the near future can 

be predicted by mining the past file access 

patterns. PDDRA consists of three phases: 

 

Figure. 1: existing pre-fetching based dynamic data replication 

algorithm (PDDRA) 

 

1) Phase 1: Storing file access patterns 

In phase 1, file access sequences and data access 

patterns are stored in a database. 

2) Phase 2: Requesting a file and performing replication 

and pre fetching 

In the second phase a grid site asks for a file and 

replication is accomplished for it, only if it is beneficial. 

Adjacent files of the requested file are also pre-fetched 

for the requester grid site in this phase. 

3) Phase 3: Replacement 

If there was enough space in storage element for 

storing a new replica, it will be stored; otherwise an 

existing file should be selected for replacement. In the 

replacement old files that are not used for some time are 

replaced. 

B. Limitations of Existing PDDRA  

1) The PDDRA algorithm tries to minimize the access 

time using pre-fetching mechanism. However, due to the 

limited bandwidth of the access network sometimes it 

may not be possible to fetch data as per our will, and 

request will be in queue, this leads to further waiting and 

in turn will increase the replication time. In pre-fetching 

artificial neural network based algorithms are used, 

which are not 100% efficient. 

2) Members of VO may have different interests.



 Throughput and Delay Analysis of Database Replication Algorithm 49 

Copyright © 2013 MECS                                                  I.J. Modern Education and Computer Science, 2013, 12, 47-53 

 

Figure. 2: modified pre-fetching based dynamic data 

replication algorithm (PDDRA) 

 

III.  MODIFIED SCHEME [15] 

1. In the modified scheme the internet cloud will be 

considered as master node as it can be assumed that 

the data is available on the internet for replication 

(Fig. 2). 

2. If any VO searches for any data first it will search 

in RS and then it will search on internet. If data is 

locally available at any RS then it will be replicated 

and there will not be any need to connect through 

the master node. 

3. There is a possibility that the data may not be 

available at RS, hence, a simultaneous request is 

sent to both RS and master node, if access of 

master node is in queue for let‟s say time qt then 

local search at RS will be done for time  s qt t
. 

4. The three phases of the above PDDRA will be 

implemented as explained above. 

 

IV SIMPLIFIED MATHEMATICAL FRAMEWORK 

The replicated data is either available locally or it is 

available globally i.e., at the internet. Therefore, when 

requests are generated, some of the generated requests 

will be full-filled locally and leftover requests will be 

fetched from internet (master node). In this section a 

mathematical framework is detailed to estimate the 

average response time of all the transactions. 

A. Transaction Processing and Arrival Rates 

The arrival of the updates and query transactions are 

in general random in nature. However, where the arrival 

of updates and query transactions are frequent, then, 

Bernoulli model is used. Here, we assumed that update 

transactions are to be propagated asynchronously to the 

secondary copies. Furthermore, transactions are also 

assumed to be executed at a single site, either the local 

or a remote site. 

Taking locality, update propagation, and relaxed 

coherency into account, the total arrival rate of 

transactions of type , (1 )i i   , at a single site is 

given by [15], and is represented by equation 1. 

 
TABLE 1: List of Parameters 

Parameters Meaning 

n  Number of cites 
  Transaction type 

  Percentage of transactions of 

type i  

  Transaction arrival rate 

i  Mean service time for 
thi  

transaction 

ip  Probability of local 

transaction execution 

sendt  Mean time to send a 

transaction type 

returnt  Mean time to return query 

result 

B Buffer Size (in terms of 

number of requests) 

N Request generating nodes 

M Number of server 

 
1

( 1) 1 .
( 1)

T

i i i i ip n p
n

     


                    (1) 

The first term ip  describe a share of the incoming i  

transactions which can be executed locally, whereas the 

remaining transactions  1 ip  are forwarded to 

nodes where appropriate data is available. The other (n-1) 

nodes also forward  1 ip of their i  transactions, 

which are received by each of the remaining databases 

with equal probability 1

( 1)n 

. The above formula 

simplifies to 
T

i i   

1 1

Tot Tot

i i

i i

 

  
 

                      (2) 

The mean waiting time W at a local database is found to 

be: 

2

1

1

.

1 .

Tot

i i

i

Tot

i i

i

W





 

 












                                            (3) 

The mean waiting time at local database site is the 

time that user or transaction spends in a queue waiting to 

be serviced. Meanwhile, the response time is the total 



50 Throughput and Delay Analysis of Database Replication Algorithm  

Copyright © 2013 MECS                                                  I.J. Modern Education and Computer Science, 2013, 12, 47-53 

time that a job spends in the queuing system. In other 

words, the response time is equal to the summation of 

the waiting time and the service time in the queuing 

system. On average, a transaction needs to wait for 

W seconds at a database node to receive a service of 

i seconds. Additionally, with probability  1 ip  a 

transaction needs to be forwarded to a remote node that 

takes CW seconds to wait for plus the time to be sent and 

returned. Thus, the response time is given by 

(1 ).( )i i

i i i C send returnR W p W t t                  (4) 

And the average response time over all transaction types 

results in 

1

i i

i

R R





                     (5) 

 

V.  RESULTS AND DISCUSSION 

In this section, simulation results are presented, in 

terms of throughput and average delay.  The simulation 

is performed in MATLAB.  

The simulation is based on random discrete event 

generator, and Monte Carlo simulation is done to 

average out the random events. In the simulation 

Bernoulli traffic arrival is considered.  

In the simulation, it is assumed that all the generated 

requests cannot be fulfilled locally. Moreover, generated 

requests will surely be served at the network. In the 

network it may be possible that more than one request 

can arrive at any servicing node. If that particular 

servicing node can store some of the requests, then they 

will be served on priority (FCFS: First Come first 

Service) basis. If number of requests crosses the storage 

capacity of that particular node, then rest of the requests 

will be dropped. Hence, it may possible that, all of the 

requests may not be served due to the limited storage 

capacity of the node. Under these assumptions the 

equation 4, will be simplified to  

( )i i

i C send returnR W t t                                  (6) 

In the further assumption we can also assume that 
i

sendt and 
i

returnt are the propagation delays and 

independent of queuing delay. 

( )i CR W                                  (7) 

In the simulation, we have assumed that the local 

delay is very less in comparison to the network delay. 

The main parameters for simulation are: 

Network Throughput: It refers to the volume of data 

that can flow through a network, or in other words, the 

fraction of the generated requests which can be served.  

Network Load: In networking, load refers to the 

amount of data (traffic) being carried by the network.  

Network Delay: It is an important design and 

performance characteristic of a data network. The delay 

of a network specifies how long it takes for a request to 

travel across the network from one node or endpoint to 

another. Delay may differ slightly, depending on the 

location of the specific pair of communicating nodes. In 

the results load represents the fraction of requests 

generated by the node and throughput is the fraction of 

the generated requests which are successfully served. 

Average delay is the amount of average time required to 

serve a request which is stored in buffer of a server node. 

 

 

Figure. 3: throughput vs. load with varying buffering capacity, 

considering number of request generating nodes (N) are 4 

 

In Fig.3, the throughput vs. average load is plotted 

with varying storage capacity, while considering that the 

request generating nodes are four and server nodes are 

also four. It is evident from the Fig., to get at least 90% 

throughput, we need buffering capacity of 4. It is also 

noticeable that as the storage capacity is increased, the 

throughput increases. It is observed from the Fig. 3 that 

throughput of up to 98% can be achieved, with buffering 

capacity of 16 requests. 

 

 

Figure.4: average delay vs. load with varying buffering 

capacity while considering number of request generating nodes 

(N) are 4



 Throughput and Delay Analysis of Database Replication Algorithm 51 

Copyright © 2013 MECS                                                  I.J. Modern Education and Computer Science, 2013, 12, 47-53 

In Fig. 4, the average delay vs. average load is plotted 

with varying number of storage capacities. As expected 

as the storage capacity increases, more number of 

requests can be stored and thus average delay increases. 

In broad-sense throughput and average delay are 

inversely related. 

 

 

Figure.5: throughput vs. load with varying number of inputs (N, 

the number of request generating nodes) while considering 

storage capacity (B) of 16 

 

In Fig. 5, throughput vs. load with varying number of 

inputs while considering storage capacity of each node 

i.e. B=16, is plotted. It is observed from Fig. 5, that as 

the numbers of generated requests are increasing, while 

keeping storage capacity fixed, throughput is decreasing.  

 

 

Figure.6: average delay vs. load with varying number of inputs 

(N, the number of request generating nodes) while considering 

storage capacity (B) of 16 

 

In Fig. 6, Average delay vs. load with varying number 

of inputs while considering storage capacity, B=16, is 

plotted. It is observed from Fig. 6, that as the number of 

generated requests are increasing, while keeping storage 

capacity is fixed, the average delay is increasing. 

In Fig. 7, throughput vs. load with request generating 

nodes 4 in number and server nodes 1 and 2 in number, 

while considering storage capacity (B=0) is nil, is 

plotted. It is observed from the Fig., that as the server 

nodes decrease, the throughput also decreases. 
 

 

Figure.7: throughput vs. load with varying number of inputs 

while considering storage capacity (B) of 0 

 

 

Figure.8: throughput vs. load with request generating nodes are 

4 and server node are as 1 and 2 while considering storage 

capacity (B) of 0 

 

Comparing this Fig. with Fig. 3, it is clearly observed 

that on the overall throughput, buffering has deep impact. 

As in Fig. 7, with buffering capacity nil and with only 

one server, the throughput value is below 0.3. In the 

above cases, there is no need to calculate average delay 

as buffering capacity is zero; the average delay will be 

zero. 

In Fig. 8, throughput vs. load with request generating 

nodes 4 in number and server nodes  as 1 and 2 in 

number, while considering storage capacity (B=0) is nil 

and 20% of the generated requests can be served locally 

is plotted. It is observed that, that as the server nodes 

decrease, the throughput also decreases. Comparing the 

Fig. 8 with Fig. 7, it is clearly observed that on the 

overall throughput, with one server does not change 

much, but with two servers, the throughput improves 

slightly. 



52 Throughput and Delay Analysis of Database Replication Algorithm  

Copyright © 2013 MECS                                                  I.J. Modern Education and Computer Science, 2013, 12, 47-53 

VI.  CONCLUSIONS 

In this paper, simulation results are presented to 

obtain the mean waiting time and throughput for a 

database replication algorithm. It is found form the 

paper, that storage capacity has deep impact on the 

throughput and average delay. In the future work, the 

network propagation delay and local database serving 

delay will also be considered in the results. 

 

REFERENCES 

[1] R.Elmasri and S. B. Navathe. Fundamentals of 

Database Systems [B]. The Benjamin/Cummings 

Publishing Company, Inc., 1994. 

[2] Fredrik Nilsson, Patrik Olsson. A survey on 

reliable communication and replication techniques 

for distributed databases [B]. 

[3] A. Dogan, A study on performance of dynamic file 

replication algorithms for real-time file access in 

data grids, [J] Future Generation Computer 

Systems 2009, 25 (8): 829–839  

[4] R. S. Chang, P. H. Chen, Complete and fragmented 

selection and retrieval in data grids, [J] Future 

Generation Computer Systems, 2007, 23 : 536–546. 

[5] Marius Cristian MAZILU, "Database Replication", 

[J] Database Systems Journal 2010, 1(2), 33-38. 

[6] I. Foster, K. Ranganathan, Design and evaluation 

of dynamic replication strategies a high 

performance Data Grid, [C] in: Proceedings of 

International Conference on Computing in High 

Energy and Nuclear Physics, China, September 

2001. 

[7] M. Tang, B.S. Lee, C.K. Yao, X.Y Tang, Dynamic 

replication algorithm for the multi-tier data grid, [J] 

Future Generation Computer Systems 2005, 21 (5) : 

775–790. 

[8] M. Shorfuzzaman, P. Graham, R. Eskicioglu, 

Popularity-driven dynamic replica placement in 

hierarchical data grids, [C] in: Proceedings of 

Ninth International Conference on Parallel and 

Distributed Computing, Applications and 

Technologies, 2008, 524–531. 

[9] R.-S. Chang, H.-P. Chang, Y.-T. Wang, A dynamic 

weighted data replication strategy in data grids, [J] 

The Journal of Supercomputing, 2008, 45 (3) : 

277–295. 

[10] A.R. Abdurrab, T. Xie, FIRE: a file reunion data 

replication strategy for data grids, [C] in: 10th 

IEEE/ACM International Conference on Cluster, 

Cloud and Grid Computing, 2010, 215–223. 

[11] K. Sashi, A.S. Thanamani, Dynamic replication in 

a data grid using a modified BHR region based 

algorithm, [J] Future Generation Computer 

Systems 2010, 27: 202–210. 

[12] Yair Amir, Claudiu Danilov, Michal Miskin-Amir, 

Jonathan Stanton and Ciprian Tutu. Practical Wide-

Area Database Replication [R]. Technical Report 

CNDS-2002-1 Johns Hopkins University, 

http://www.cnds.jhu.edu/publications. 

[13] Y. Amir. Replication Using Group Communication 

Over a Partitioned Network. Ph.D. thesis, The 

Hebrew University of Jerusalem, Israel 1995. 

www.cs.jhu.edu/~yairamir. 

[14] N.Saadat and A.M. Rahmani. PDDRA: A new pre-

fetching based dynamic data replication algorithm 

in data grids. [J] Springer: Future Generation 

Computer Systems, 2012, 28:666-681. 

[15] Sanjay Kumar Yadav, Gurmit Singh, Divakar  

Singh Yadav, “Mathematical Framework for A 

Novel Database Replication Algorithm”,[J] 

International Journal of Modern Education and 

Computer Science (IJMECS), vol. 5, no. 9, pp. 1-

10, 2013, DOI:10.5815. 

 

 
 

Authors’Profiles  

 

Sanjay Kumar Yadav: is Assistant 

Professor of Computer Science in 

Dept. of Computer Science & 

Information Technology at Sam 

Higginbottom Institute Of Agriculture, 

Technology & Sciences” (Formerly 

Allahabad Agricultural Institute), (Deemed-to-be-

University) Allahabad.  He obtained batchelor degree in 

B.Sc.(Maths) from University of Allahabad, MCA 

degree from Institute of Engineering and Technology, 

Lucknow. M.Tech. in Software Engineering from 

Motilal Nehru National Institute of Technology 

Allahabad and pursuing his Ph.D. in Computer Science 

& IT at Sam Higginbottom Institute Of Agriculture, 

Technology & Sciences” (Formerly Allahabad 

Agricultural Institute), (Deemed-to-be-University) 

Allahabad. His research interest includes distributed 

system and mobile ad-hoc network. 

 

Prof. Gurmit Singh: is Emeritus  

Professor of Computer Science in 

Dept. of Computer Science & 

Information Technology at Sam 

Higginbottom Institute Of Agriculture, 

Technology & Sciences” (Formerly 

Allahabad Agricultural Institute), (Deemed-to-be-

University) Allahabad. He served the department as 

professor and Head for several years and retired in year 

2012. He was also served the University as Dean, 

Shepherd School of Engineering & 

http://www.cnds.jhu.edu/publications
http://www.cs.jhu.edu/~yairamir
http://shiatsmail.edu.in/webwapp/faculty/Colleges/coll_EnggTech.asp


 Throughput and Delay Analysis of Database Replication Algorithm 53 

Copyright © 2013 MECS                                                  I.J. Modern Education and Computer Science, 2013, 12, 47-53 

Technology and is on the program committees of the 

University. He is the author/co-author of several 

publications in technical journals and conferences. 

Presently he is serving in the Dept. of Computer Science 

& Information Technology as Emeritus Professor; his 

research interest includes distributed system and mobile 

ad-hoc network, wireless sensor network and 

evolutionary computing. 

 

Prof. Divakar Singh Yadav: is 

Professor of Computer Science 

at Institute of Engineering and 

Technology, Lucknow. He 

obtained B.Tech in Computer 

Science& Engineering, M.Tech 

in Computer Science from IIT, 

Kharagpur and Ph.D from University of Southampton, 

U.K. Before joining Gautam Buddh Technical 

University, Lucknow as Pro-Vice Chancellor, he was at 

South Asian University, New Delhi, an international 

university established by South Asian Association for 

Regional Cooperation (SAARC) nations, where he was 

Chairperson of Department of Computer Science at 

Faculty of Mathematics and Computer Science.  

Dr. Yadav possesses more than 20 years of experience in 

academics/research in India and Abroad. He has long 

standing academic interests in database systems and 

distributed computing. His primary research interests are 

in formal methods, refinement of distributed systems 

using Event-B, verification of critical properties of 

business critical systems and reasoning about distributed 

database systems. He has also participated in prestigious 

Daghtuhl seminar at Schloss Dagstuhl-Leibniz Center 

for Informatics, Germany in 2006, in addition to 

invitation at Commonwealth Scholarship Commission, 

U.K. seminar held at the University of the West England, 

Bristol in 2007. Dr. Yadav is author of four (04) books 

in the area of computers and information technology 

including best seller „Foundations of Information 

Technology‟ published in 2001. His research 

contributions in the area of computer science and 

information technologies appeared in the international 

journals and refereed conference proceedings published 

by Springer-Verlag, Elsevier and IEEE. 

http://shiatsmail.edu.in/webwapp/faculty/Colleges/coll_EnggTech.asp

