
I.J.Modern Education and Computer Science, 2013, 11, 57-63 
Published Online November 2013 in MECS (http://www.mecs-press.org/) 
DOI: 10.5815/ijmecs.2013.11.08 

Aspectual Analysis of Legacy Systems: Code 
Smells and Transformations in C 

 
Zeba Khanam, S.A.M Rizvi 

Department of Computer Science, Jamia Millia Islamia. 
Email:zebs_khan@yahoo.co.in 

 
 

Abstract — This paper explores the various code smells 
or the so called bad code symptoms present in 
procedural C software. The code smells are analyzed in 
the light of aspect oriented programming. The intention 
is to handle the code smells with aspect oriented 
constructs as it offers more versatile decomposition 
techniques than the traditional modularization 
techniques, for software evolution and understandability. 
The code smells are described at the function and 
program level. The code smells are followed by the 
aspect oriented transformations that may be required in 
order to improve the code quality. 
 
Index Terms — Code Smells, Aspect Oriented 
Programming, Refactoring, Code Transformations. 
 

I. INTRODUCTION 

The code smells helps to reacquire a better 
understanding of bad design in the code and 
subsequently leads to good design solutions by revealing 
sensible evolutions to those solutions. Code smells do 
not represent an error in the code—they are not 
technically or syntactically incorrect and don't currently 
prevent the program from functioning. Instead, they 
indicate weaknesses in design or code that may hinder 
further code development or modification or increase the 
risk of bugs or failures in the future. Bad smells are 
useful in suggesting undesirable solutions that should be 
removed or corrected. But extraction of the code smells 
from the source code cannot be achieved randomly. 
Though many researchers have worked on exploring the 
code smells [8] [11] [13] [16] in object oriented software, 
the procedural code smells have not been investigated in 
detail. The term code smell was first introduced by 
Fowler and he detected the presence of code smells 
wherever the code was problematic and unmanageable 
and suggested that the code should be transformed. 
Though there are a number of related studies that 
investigates the applicability of aspect-oriented 
techniques to various (domain specific) crosscutting 
concerns have been performed. The work described by 
[10][14] have discussed the advantages of using aspect 
oriented software development (AOSD) such as code 
duplication and improved cohesion and have proposed 
guidelines for preparing the code for isolating concerns 
and performing the necessary transformations. [9] [13] 
also investigated the transformations and refactorings 
required to make the code more efficient and 

understandable. Similarly, [7] have also assessed the 
impact of crosscutting concerns on software quality. He 
developed a new technique called prune dependency 
analysis to locate the source code that implements a 
concern, i.e., concern location. His work also 
contributed to the development of a suite of metrics for 
quantifying crosscutting concerns. The work done by 
[15] explored the refactorings to improve different 
quality attributes of Fortran programs. The refactoring 
and transformations described in their work basically 
targeted the improvement of performance and 
maintainability of the system. 

This paper presents the code smells specific to 
procedural software developed using C, explored from 
the aspect specific perspective. The code smells are 
inspired by the smells presented in [8].  

The paper begins with an introduction to the criteria 
for evaluation of the code smells. Section III discusses 
the automatic analysis and reverse engineering of the 
system for the extraction of the code smells .Two case 
studies are used for the purpose of code analysis. The 
next section presents the code smells along with the 
transformations that would remove the code 
smells. .Finally we present the work related to this area 
and the last section presents the conclusion. 
 

II. CRITERIA FOR EVALUATION OF CODE 
SMELLS  

We present the criteria for evaluating the code smells 
in the procedural code. Code smell is any symptom that 
indicates that something is wrong with the code. It is 
considered generally an indicator that the code should be 
refactored, transformed or the overall design should be 
reexamined. The term appears to have been coined by 
Kent Beck, Smells are defined only in terms of general, 
subjective criteria that are dependant upon the software, 
the intuition of the developer, the type of software 
development methodology used etc, which makes them 
difficult for automatic identification. The criteria 
evaluation is for guiding the legacy maintainer in 
analyzing a legacy system and applying AOSD 
transformations. We have followed the level based 
refactoring for the purpose of organizing the refactorings 
in a sequential manner: The code smells are investigated 
on two levels: Program level and Function level. The 
code smells are characterized by the level-based 
transformations; we classify and organize the code 
smells and their transformation in a sequential approach. 

Copyright © 2013 MECS                                                  I.J. Modern Education and Computer Science, 2013, 11, 57-63 



58 Aspectual Analysis of Legacy Systems: Code Smells and Transformations in C  

Each level is investigated to primarily detect three kinds 
of smells 

(1) To identify the crosscutting concerns in C. 
(2) Minimize code duplication that may exist in 

different forms and could be removed through 
different solutions and can also be detected 
automatically. 

(3) To identify the places in code that requires 
improvement and may be accomplished easily 
by AspectC that in general may not be possible 
with the normal C constructs. 

 

III. AUTOMATED ANALYSIS OF CODE SMELLS 

Analysis of a source code to identify bad smells can 
be a typically complicated task if performed manually. 
This necessitates the use of code analysis tool that 
speeds the process of comprehension for programs that 
are large and unfamiliar by automating the browsing and 
analysis of the code. Though tools are significant in 
speeding up the analysis process but the identification of 
bad smells is finally done manually as there aren’t any 
standards set to classify the code as written in good or 
bad style. The quality of the code is very much 
dependant on the perception and the knowledge of the 
developers involved in analyzing the code and also the 
type of environment the project is designed for. 
Therefore, bad smells are identified by analyzing the 
projects manually as well as using automated tools. 

The software is reverse engineered for a detailed 
analysis and the detection of badly written code. For the 
purpose of detecting code smells we analyzed a few case 
studies using reverse engineering tool. In this context, 
five projects have been reverse engineered and analysis 
is performed on a few more to exactly picture the bad 
smell in the code. These systems have been analyzed 
using an automated code analyzer Imagix 4D. Though, 
we don’t claim that the tool would detect all sorts of 
code smells but to great extent it extracts different types 

of code duplication existing in the software and the 
discrepancies in the code that serves as an indicator to 
bad code symptoms. The tool is used basically to reverse 
engineer the software to study and analyze the potential 
problems in the development and maintenance of 
software at any level from the detailed program logic of 
an individual function to its high level architecture. The 
software metrics computed from the tool helps in 
determining the quality of code under consideration and 
also indicates the places in the software where a code 
smell may be detected. 

For the purpose of elaborating the reverse engineering 
process we have shown a few snapshots from the case 
studies that we have analyzed for detecting the code 
smells. 
 

IV. CASE STUDIES 

In this paper we have depicted 2 case studies for the 
purpose of analysis (1) The Student Information System 
and (2) Mobile Store Information System. The Student 
Information System (SIS) is an information system for 
supporting the management of student record keeping. It 
is implemented in C and comprises about 5000 lines of 
code. The SIS performs all the functions related to 
record management such as addition, deletion, updation, 
searching and maintenance of student records. The 
records are maintained in the form of structures and are 
written and read from the files that maintain the records. 

Mobile Store Information System (MSI) is a project 
that is designed for maintaining the customer records of 
the mobile store and comprises approx 9000 lines of 
code. It keeps the basic details of the customer such as 
name, phone number, address, connection type. The 
customer records can be added deleted and also 
manipulated using the software. The record can be 
searched using different keywords. 

The projects are reverse engineered and the snapshots 
are shown in the figures below. 

  

 
 

Figure 1. Highlighting similar functions in the code

Copyright © 2013 MECS                                                  I.J. Modern Education and Computer Science, 2013, 11, 57-63 



 Aspectual Analysis of Legacy Systems: Code Smells and Transformations in C  59 

The reverse engineering of the system reveals a 
number of flaws existing in the system coding. For 
example the snapshot in Fig 1 highlights the similar 
function in the code. Two functions performing similar 
task should be inspected for the relevance of their 
existence. There are a number of functions that are 
actually performing task similar to other functions in the 
project. These functions need to be identified, since if 
there is not much difference in the functions and the 
functionalities could be merged or could be achieved 
with a fewer number of functions then the complexity of 
the code can be reduced. 

Similarly, the snapshot depicted in Fig 2 taken from 
SIS reports unclear sub expression that is in need of  
refactoring or transformation and represents a bad code 

symptom. The reverse engineering of these case studies 
have lead to the detection of discrepancies in the source 
code, thus this assists in searching for code smells. The 
code smells can be detected with the help of these results 
easily. 

The dangling else if, missing compound statements, 
the similarity of 2 functions of the code, the frequent 
usage of memory allocator functions are traced easily 
using the software and this indicates that at these places 
the code may need  modifications. These discrepancies 
found in the code help us easily target the functions and 
statements in the software that are in need of a change 
and represent a bad code symptom that helps in the 
identification of the code smells. 

 

 
 

Figure 2. Depiction of unclear sub expression (SIS) 
 

 
 

Figure 3. Dangling if else loops in Mobile Information System

Copyright © 2013 MECS                                                  I.J. Modern Education and Computer Science, 2013, 11, 57-63 



60 Aspectual Analysis of Legacy Systems: Code Smells and Transformations in C   

V. CODE SMELLS 

The detection of code smells is done in levels as it 
eases the job of simplifying the code and detecting the 
code smell. This section presents the code smells at 
different levels. The code smells are extracted at 2 levels 
(1) Functional Level and (2) Program Level. 

A. Functional Level Code smells 

The function-level code smells are detected first 
because a function is generally the smallest complete 
unit of any program or software that is assigned an 
independent task .Therefore, it is advised to determine 
the number of code smells in the lower stage of a 
program and then move on to the detection at the 
program level The reverse engineering of the software 
eases the task of code smell detection. 
1. Long methods: Long methods have always been a bad 
code symptom. Therefore whenever a long method is 
encountered efforts are required to decompose it into 
smaller manageable pieces of code [8].The well known 
solution is to use Extract Method by extracting a chunk 
into its own method. A function to be considered too 
long depends on many different factors. For example, it 
may not have too many lines of code but might be 
handling different tasks or concepts, such functions 
could be considered long. It also differs from the 
perception of one programmer to the other. A long 
method is generally reduced by “extract method” 
refactoring, however in certain situations even this 
technique may not work. For instance, a function may 
involve a number of local variables performing different 
task in the function, method extraction may not be 
possible, in this case the local variables could be defined 
as fields of aspect and the their task may be decomposed 
to a function called in the advice. The aspects in aspect 
oriented programming serves as a powerful tool if the 
behavior of the code is to be altered in some way. For 
example if the feature is scattered across several 
functions: If there is a segment of code that is scattered 
throughout the program at different places causing code 
duplication then such fragments if possible should be 
extracted into an advice that could be captured with the 
same pointcut rather than multiple function calls. This 
would result in code reduction and uniform behavior is 
inserted with the help of an advice without bothering to 
place a function call everytime the code is moved to an 
aspect. 
2. Very small functions: As are long methods a major 
reason to refactor so can a very small function be termed 
as a bad code symptom specifically if they are called 
numerous times in the program. These functions should 
be converted into an advice if appropriate joinpoints are 
available. 
3. A function is almost non existent due to insignificant 
task assigned to it: The code symptom is related to the 
above described symptom with a slight difference. The 
case describes a function that handles very less task 
though it is supposed to hold a greater responsibility. 

The extra task assigned to the function can be added 
using an advice. 
4. Function not required in the current context: There 
are certain functions that may not be required in all kind 
of scenarios or in the current context but may be 
required sometimes in future. Thus the call to such 
functions can be skipped in that case. Skipping call to a 
function is not possible through general C constructs but 
if an around advice is used then a function call can be 
skipped. 

For example, the functions that are required for the 
purpose of debugging are required only during that time 
to trace the execution of the program but does not 
actually contribute to the working of the system. Thus, 
such functions are required at that time only but may be 
required in future also thus deleting them after that may 
not serve the purpose ,therefore the calls to such 
functions should be skipped when not required and then  
when required the call should be revoked. This is not 
possible with the traditional C constructs but could be 
achieved easily using around advice in AspectC. 
5. The value of function parameters change frequently: 
The function argument needs to be modified differently 
at several places. There may be a scenario where a 
function is called numerous times (around 50-100) in a 
project, then in that case if the argument values passed 
to a function has to be modified differently at different 
calling sites, then manipulating at so many different 
places manually is a tedious job. But this could be 
achieved easily using args() and around() advice .The 
modification of the arguments in the function is 
achieved by defining appropriate join points. 
6. Part of a function is related to a concern that is to be 
moved to an advice and joinpoints need to be combined: 
If a join point is formed by combining many joinpoints 
(for example by using && or || operator) and is used 
with multiple advice then extract it into a pointcut or 
introduce a named pointcut that describes the join point. 
Program level Code Smells 

Since the application size is fixed, therefore after the 
detection of the code smells at the functional level it 
becomes easier to determine and rectify the code smells 
existing in the whole program. A few code smells 
existing on the program level are described as follows: 
7. Duplicated code: If code duplication exists at 
program level i.e across different functions then they are 
suitable candidates for crosscutting concerns and so can 
be captured using a proper advice by defining a suitable 
pointcut. 
8. Crosscutting concerns with no proper join points: 
This code smell results in continuation with the above 
described symptom. At times the crosscutting concerns 
do exist but they exist in different code scenarios where 
they cannot be captured using similar joinpoints.In that 
case a joinpoint needs to be created at all those points so 
that they could be captured with very few joinpoints, 
hence not necessitating the need of extracting the code 
into a function. This could be achieved using a set 
pointcut.

Copyright © 2013 MECS                                                  I.J. Modern Education and Computer Science, 2013, 11, 57-63 



 Aspectual Analysis of Legacy Systems: Code Smells and Transformations in C  61 

9. Complex conditional code: Complex conditional code 
does hamper the readability of the code. As has been 
described in [8] that similar conditional statements are 
duplicated a number of times in different functions. 
Therefore extracting the conditional statements into an 
advice would reduce the code complexity considerably 
and also the code duplication. But this may not be 
possible in all sorts of conditional statements. It is 
necessary to ensure that the conditional statements are 
governed by similar statements (for example a particular 
integer variable or a string).Thus if the conditional 
statements are not in the proper format the code has to 
be refactored in order to bring them into proper shape 
and thereafter the conditional statements can be 
extracted to an advice using the set pointcut. 
10. When a single updation causes changes in several 
functions: As pointed by Beck and Fowler this symptom 
appears when a particular change made to the system 
may cause changes at many different places in the 
system. When the changes are scattered at different 
locations, they are hard to find and it is easy to miss an 
important change. The fragments and members related 
to such concerns can be refactored using The Extract 
Feature into Advice refactoring .But the refactoring 
should only be performed if it simplifies the code not if 
the code becomes more complex and hard to understand. 
11. Presence of cross cutting idiomatic exception 
handling code: Systems developed with procedural 
languages typically resort to popular  return code idioms 
for implementing exception handling, as advocated by 
the usage of the well-known return code technique in 
many C programs and operating systems. The study by 
[2] explores that such idioms are not scalable and 
compromise correctness [3].The crosscutting concerns in 
procedural languages are implemented explicitly using 
more primitive means, such as naming conventions and 
coding idioms [3] when aspects are not involved. Such  

techniques are preferred as they do not require special-
purpose tools or languages, are easy to use, and allow 
developers to recognize the concerns in the code readily. 
But there are certain drawbacks of such techniques as 
they are prone to errors and they make concern code 
evolution time consuming and often lead to code 
duplication and increases the debugging complexity. 
The idioms-based approach has been turned into a full-
fledged aspect-oriented approach [3] and the results 
show that the adoption of aspect oriented approach can 
lead to significant improvements in source code quality. 
But the try () and catch () pointcuts provided by AspectC 
can be used to explicitly handle the errors as is done in 
object oriented languages. 
12. Structure needs to be modified: If a structure is to be 
modified with new data members then the modifications 
done to the structure can be achieved without modifying 
the original structure in the presence of aspects. The 
modification of a structure causes subsequent 
modifications at different places in the program has to 
be achieved where the new members of the structure are 
to be used. The introduction of additional members and 
then adding their respective functionalities is a complex 
task and once merged with the code it’s not easy to trace 
the new additions in the system. Their are situations 
when a member might be introduced for certain specific 
task and may not be required all the time, in that case it 
would be better to introduce the member separately 
through an intype pointcut using AOP approach. But 
addition of new data members should be done using 
intype() pointcut, only if the functionalities provided  by 
the new  data members could be captured through proper 
joinpoints else it would introduce unnecessary 
complexity. The introduction of intype() pointcut is 
required when manipulation is to be done in a single 
structure or multiple structures.   
 

 
TABLE I. THE CODE SMELLS AND THE TRANSFORMATIONS 

 

Symptoms  Refactorings  

Duplicated code Extract Fragment into advice 

Long methods Extract method into advice 

Feature scattered across several functions Extract Feature into aspect 

Cross cutting concerns with no proper joinpoints Introduce a set pointcut 

Data Clumps (Similar data items are defined at many 
places)  

Extract data members into a structure, Introduce parameter 
structure object 

Very small functions  Add functionality with advice  

When a single updation causes changes in several methods 
(Shotgun surgery)  

Move methods to advice, create around advice  

Copyright © 2013 MECS                                                  I.J. Modern Education and Computer Science, 2013, 11, 57-63 



62 Aspectual Analysis of Legacy Systems: Code Smells and Transformations in C                                 

 

We have discussed the code smells specific to C in 
the light of AspectC. The code smells detected have 
been handled using the AspectC. 

B. RELATED WORK 

Aspect-oriented software development (AOSD) [12] 
aims at improving the modularity of software systems, 
by capturing the scattered crosscutting concerns in a 
well-modularized way. In aspect-oriented programming 
languages this is achieved by adding an extra abstraction 
mechanism, called an aspect, on top of existing 
modularization mechanisms such as functions, classes 
and methods. One of the earliest works was by Coady et. 
al.  [5] in the area of applying aspect orientation to a C 
based system software . AOP was used to refactor 
prefetching code in the FreeBSD OS kernel. The usage 
of AspectC depicted several advantages such as 
independent development of the prefetching modes and 
overall improved comprehensibility. But the work does 
not focus on a general approach for isolating 
crosscutting concerns. 

Other researchers had investigated the utility of 
applying AOP to various crosscutting concerns. [10] 
dealt with exception detection and handling code in a 
large Java framework. Both works discuss advantages of 
using AOSD, such as reduced code duplication and 
improved cohesion, and discuss some particular 
limitations of using AspectJ. One of the earliest studies 
was conducted by [14] for preparing the code for 
isolating concerns and performing the necessary 
restructurings and concluded that the aspect solution 
does reduce the code size. 

Bruntink et al. present their experiences of [1] [2] [4] 
solving crosscutting concerns in embedded C code to 
using aspect oriented programming. [2] developed a 
domain-specific language (DSL) for parameter checking. 
This lead to the development of other aspect oriented 
languages [6]  that worked on the similar line of 
bringing aspect oriented software development to the C 
programming language. 

The code smells have been investigated by other 
researchers such as [8] [11] [16] in which they focused 
on code smells related to object oriented software. The 
object oriented code smells, C transformations and 
refactorings have also been investigated by [9]. In her 
PhD thesis she had developed a refactoring tool for C 
programs that allow refactoring on Cpp directives, 
though most of the refactoring tools do not support the 
preprocessor directives. But the work focuses on 
extending the refactorings to preprocessor directives and 
focuses on refactorings like “Extract File”, “Rename 
Macro”, “Inline File” etc.   

C. CONCLUSIONS 

In this paper we highlighted a few code smells in 
systems implemented using C. The code smells are 
specifically related to the crosscutting concerns in the 
system and their maintenance using aspect oriented 
approach. The kinds of code smells that are meaningful 
for C is very different than those existing in object 
oriented systems. Most of the literature about code 
smells and the corresponding transformations and 
refactoring is concentrated in object-oriented languages, 
and transformations in the inheritance hierarchy. 
Various attempts have been made by different 
researchers in the area of C transformations and code 
smells. A number of other researchers have also worked 
on systems developed with imperative style of 
programming but only in parts. The kinds of 
refactorings described by Garrido are very different too, 
as none of the refactorings focus on crosscutting 
concern. Existing legacy procedural software 
maintenance approaches do not explicitly consider 
maintenance of crosscutting concerns, that increases the 
complexity of a system as a result the addition or 
updation of crosscutting concerns causes degradation in 
the structure of the system, reduces the quality factors 
such as maintainability and understandability of the 
system. 

Function not required in the current context Skip calls to function using around advice 

Part of a function is related to a concern that is to be moved 
to an advice and joinpoints need to be combined. 

Create a named pointcut, combine pointcut (depending upon the 
situation)  

The value of function parameters change frequently  Modify the function arguments with around advice ,args and 
proceed()  

A function  performs very less task  Assign task to Lazy function 

Values to a specific function call is changed frequently in 
the control flow of another function  

Introduce dynamic crosscutting using cflow() pointcut  

Gotos elimination Eliminate with proper advice using a set pointcut. 

Presence of cross cutting idiomatic exception handling code                     Extract the code using try() and catch() pointcuts  

Complex conditional code  Extract conditional to advice  

Copyright © 2013 MECS                                                  I.J. Modern Education and Computer Science, 2013, 11, 57-63 



 Aspectual Analysis of Legacy Systems: Code Smells and Transformations in C                               63  

We have presented several bad code symptoms that 
could be dealt with aspect orientation with a much lesser 
effort than is required by the traditional c constructs. In 
order to assist and ease up the process of code smell 
detection we have done automatic analysis of the system 
by reverse engineering the software that helps in 
locating the sources where a badly written code may be 
found. Therefore the code smells described in this paper 
highlights the scenario that might be difficult to 
maintain with the traditional C constructs and so aspect 
oriented constructs (AspectC) serves as a tool to handle 
the code smells and the poorly written code with greater 
ease and efficiency that may not be possible otherwise. 
Regardless of the actual programming model these new 
code smells will be of great help for the maintainers in 
the extraction of aspects and their implementation in 
improving the code understandability and efficiency.  
 

REFERENCES 

[1] M. Bruntink, A. van Deursen, and T. Tourw´e. “An 
initial experiment in reverse engineering aspects 
from existing applications”, Proceedings of the 
Working Conference on Reverse Engineering 
(WCRE), pages 306–307. IEEE Computer Society, 
2004. 

[2] M. Bruntink, A. van Deursen, and T. Tourw´e. 
“Isolating Idiomatic Crosscutting Concerns”, 
Proceedings of the 21ST International Conference 
on Software Maintenance (ICSM). IEEE Computer 
Society, 2005. 

[3] M. Bruntink, A. van Deursen, and T. Tourw´e. 
“Discovering Faults in Idiom based Exception 
Handling”, Proceedings of the 28th international 
conference on Software engineering Pages 242-
251, 2006. 

[4] M. Bruntink, A. van Deursen, R. van Engelen, and 
T. Tourw´e. “An Evaluation of Clone Detection 
Techniques for Identifying Crosscutting Concerns”, 
Proceedings of the International Conference on 
Software Maintenance (ICSM), pages 200–209. 
IEEE Computer Society, 2004. 

[5] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn 
“Using AspectC to Improve the Modularity of 
Path-Specific Customization in Operating System 
Code”, Proceedings of the Joint European 
Software Engineering Conference (ESEC)and 9th 
ACM SIGSOFT International Symposium on the 
Foundations of Software Engineering (FSE-9), 
pages 88–98. ACM Press, 2001. 

[6] B. Adams and T. Tourw´e. “Aspect-Orientation in 
C: Express Yourself”, Proceedings of the AOSD 
Workshop on Software-engineering Properties of 
Languages for Aspect Technologies (SPLAT). 
Aarhus University, March 2005. 

[7] Marc Eaddy An Empirical Assessment of the 
Crosscutting Concern Problem PhD 
thesis.Columbia University.2008. 

[8] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. 
Roberts. Refactoring: Improving the Design of 
Existing Code. Addison-Wesley, 1st edition, 1999.  

[9] Garrido, A.: Program Refactoring in the Presence 
of Preprocessor Directives. PhD thesis, University 
of Illinois at Urbana-Champaign. 2005. 

[10] M. Lippert and C. V. Lopes.  “A study on 
exception detecton and handling using aspect-
oriented programming”, Proceedings of the 22th 
international conference on Software engineering 
(ICSE), pages 418 – 427. IEEE Computer Society, 
2000. 

[11] Kerievsky J. Refactoring to Patterns, Addison-
Wesley, 2004. 

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. 
Maeda,C. Lopes, J.-M. Loingtier, and J. Irwin. 
“Aspect-oriented programming”, In Proceedings of 
the Europeen Conference on Object-Oriented 
Programming (ECOOP), volume 1241 of Lecture 
Notes in Computer Science, pages 220–242. 
Springer-Verlag, 1997. 

[13] Monteiro, M.P. Refactorings to Evolve Object -
Oriented Systems with Aspect-Oriented Concepts. 
PhD thesis, Universidade do Minho, Portugal 2005. 

[14] G. C. Murphy, A. Lai, R. J. Walker, and M. P. 
Robillard. “Separating Features in Source Code: 
Exploratory Study”, Proceedings of the 
International Conference on Software Engineering 
(ICSE), pages 275–284. IEEE Computer Society, 
2001. 

[15] Méndez,M. Fortran Refactoring for Legacy 
Systems, MSc Thesis, Computer Science School, 
Universidad Nacional de La Plata. Available at 
http://hpclinalg.webs.com/FRLS.pdf 2011. 

[16] Wake W, Refactoring Workbook, Addison Wesley, 
2004. 

 
 
Dr. S.A.M Rizvi is an Associate Professor and former 
Head, Department of Computer Science, Jamia Millia 
Islamia (Central University).His area of specialization is 
Software Engineering and MIS. He is a senior life 
member of Computer Society of India (CSI), IEEE, 
ISCA, and IEA. He has authored 6 books and a number 
of articles in refreed journals and conference 
proceedings. Some of his recent publications include 
articles in Ubiquitous computing and Communication 
Journal, Journal of Opt. Communication, ACM, IROCS, 
IJSE, IJCA, IEEE Xplore. 
 
Ms. Zeba Khanam is a doctoral candidate in Jamia 
Millia Islamia (Central University), New Delhi. She is 
also a faculty member at the department of Computer 
Science JSS Academy, Noida and is also working on 
software development projects. Her research interests 
are Software Re engineering and Reverse Engineering 
and are teaching and also working in projects of .NET 
framework. Her recent publications include articles in 
IEEE Xplore, International Journal of Computer 
Applications, LNCS proceedings, JSCSE. 

Copyright © 2013 MECS                                                  I.J. Modern Education and Computer Science, 2013, 11, 57-63 


