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Abstract— Biggest internet security threat is the rise of 
Botnets having modular and flexible structures. The 
combined power of thousands of remotely controlled 
computers increases the speed and severity of attacks. In 
this paper, we provide a comparative analysis of 
machine-learning based classification of botnet command 
& control(C&C) traffic for proactive detection of Peer-to-
Peer (P2P) botnets. We combine some of selected botnet 
C&C traffic flow features with that of carefully selected 
botnet behavioral characteristic features for better 
classification using machine learning algorithms. Our 
simulation results show that our method is very effective 
having very good test accuracy and very little training 
time. We compare the performances of Decision Tree 
(C4.5), Bayesian Network and Linear Support Vector 
Machines using performance metrics like accuracy, 
sensitivity, positive predictive value(PPV) and F-Measure. 
We also provide a comparative analysis of our predictive 
models using AUC (area under ROC curve).  Finally, we 
propose a rule induction algorithm from original C4.5 
algorithm of Quinlan. Our proposed algorithm produces 
better accuracy than the original decision tree classifier.  
 
Index Terms— Botnet, Peer- to- Peer (P2P), WEKA, 
Linear support vector machine, J48, Bayesnet, ROC 
curve, AUC 
 

I.  INTRODUCTION 

A Bot is a program that once gets installed in to a 
computer leads to establishment of some sort of 
command-and-control (C&C) channel with its C&C 
server and keeps listening to the C&C channel for future 
commands. C&C servers are the control centers from 
where commands from command-set of the botnet are 
issued to perform coordinated tasks and attacks. The 
attackers in internet have included worm like abilities to 
bot by including propagation component to spread 
through different infection vectors. This leads to creation 
of botnets that gives power to the bot-herder to access the 
infected computers and to carry-out different types of 
attacks like stealing of sensitive information, Distributed 
Denial of Service (DDoS) attacks, spam campaign, click 
frauds etc. 

Botnets have evolved through time to imitate different 
topographical structures like IRC, HTTP, P2P etc. IRC 
and HTTP based botnets are centralized in nature and run 
the risk of single point of failure i.e. if C&C head is 
detected and taken down the botnet cripples. However, 
they have their relative merits as well. IRC based botnets 
being simple in setup and maintenance, continue to 
evolve. HTTP based botnets are difficult to detect as its 
C&C traffic can hide behind normal web traffic to evade 
detection mechanisms. P2P based botnets are the newest 
of its kind that mimic Peer-to-Peer (P2P) technologically 
and thus follow a distributed C&C structure. Absence of 
fixed C&C server in P2P botnets makes it very difficult 
to detect and dismantle such structures. Some of the 
known P2P bots are Storm [1], Nugache [2] and Waledac 
[3]. 

In this paper we propose a payload independent 
approach that can detect botnet even in case of encrypted 
C&C traffic. We use machine learning algorithms for 
classification and prediction of large volume of C&C 
traffic flows generated by P2P botnets. A network flow 
provides essential information in a network like who is 
talking to whom i.e. conversation between any two hosts 
in the network in any specific moment of time. The 
algorithms that are used to classify network flows during 
normal C&C operations of botnets are J48, BayesNet and 
Linear Support Vector Machines. Our approach can be 
used for proactive detection of P2P botnets by correlating 
similar bot flows of the same botnet. Our investigation is 
based on following assumptions: (i) P2P botnet 
establishes numerous small sessions, (ii) a P2P bot needs 
to keep communicating for having the malicious network 
alive, (iii) to avoid detection, a P2P bot passes minimal 
amount of information in each session, (iv) in every 
session between a pair of P2P bots, data flow happens in 
both the directions, (v) Every botnet has its own specific 
set of commands  and C&C interactions of  bots are 
preprogrammed to the set of commands they receive, and 
(vi) P2P botnets usually runs each session for a very 
small duration. Some of our assumptions are similar to 
the one used in paper [4][5]. 

Based on the above mentioned characteristic features 
of P2P botnets, we propose a rule generation algorithm 
for botnet traffic classification. We used an indirect 
method of deriving the initial rule set from decision tree 
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generated using C4.5 algorithm. Then, we followed a 
step-by-step approach for optimization of the rule set. 
Our final rule set has a uniform structure providing 
significant insight in to similarities within P2P botnet 
C&C traffic. 

Rest of the paper is organized as follows: Section II 
provides a brief overview of related works. In Section III, 
we discuss the inherent differences between botnet C&C 
flows and normal network flows. In Section IV we 
provide the architectural overview of our classification 
process and the approach we have followed for dataset 
preparation. In Section V, we briefly describe the 
algorithms used in our classification task and also provide 
a detail analysis of the result of our classification models. 
In Section VI, we propose a rule generation algorithm for 
P2P botnet traffic classification and finally we conclude 
in Section VII.  

 

II. RELATED WORKS 

A botnet operator needs to spend a sufficiently long 
interval of time with its newly acquired bot, before it is 
finally deployed for attack. This pre-attack period 
involves a sequence of stages like initial infection of the 
computer with bot code, the process of “rallying” i.e. the 
procedure adopted by a botnet for self identification of 
newly created bots so that it can initiate contact with 
Command & Control (C&C) server, and sequence of 
measures taken for the newly created bot client to make it 
secure. Measures taken to make a bot client secure 
normally involve deployment of anti-antivirus tools and 
Rootkit or similar tools in order to hide itself from 
applications already installed by security agencies. In a 
newly created bot client, the hacker also employs tools to 
retrieve details of the computer (e.g. processor speed, 
memory, network speed etc.) and to search for location of 
any leftover tools by an earlier infection [6]. It is 
imperative to study botnet behavior during these early 
phases of exploitation in order to neutralize a bot before it 
takes part in any attack. We may term such detection 
approaches as “proactive”. However, most detection 
techniques developed till date are reactive in nature. In a 
recently published work [7], the author emphasizes on the 
use of network flows with incident handler for detection 
of network threats. It states that the flow data collected 
from all critical points throughout the network 
infrastructure provides needed visibility that can help to 
identify systems that are infected with malware or 
participating in a botnet. They can also reveal an 
attacker’s targets, systems that are already compromised, 
and even the attackers themselves. A machine learning 
based approach for botnet detection was proposed in 
paper [8] albeit for IRC botnets. It uses classification 
using flow characteristics that can be employed for 
proactive detection of IRC bots.  Zhao et. al. [9] have 
proposed a machine learning based classification scheme 
for detection of P2P botnets based on a set of network 
traffic attributes observed during a selected time window. 
They used Bayesian Network and Decision Tree 
classifiers with 12 selected traffic attributes. However, we 

achieved better accuracy with our selected set of 
attributes.  Wernhuar et. al. [10] have proposed a 
mechanism to quickly identify P2P botnet traffic flows 
during the connection stage. They used Response to 
Intervention (RTI) method to observe the traffic flows of 
normal P2P applications and P2P botnets. Then they used 
decision tree model for classification, and information 
obtained were used for identification of abnormal traffic 
flows and the location of zombie computers. The 
detection technique proposed in our earlier work [11], 
also emphasizes on a similar approach for detection of 
P2P botnet. However, the approach is based solely on 
non-linear Support Vector Machines (SVM) and hence 
takes long time duration to complete the classification 
task.  

Apart from machine learning based approaches, DNS 
based approaches may also be used for proactive 
detection of botnets. Botnet DNS traffic exhibits some 
unique properties like sudden and abnormal increase in 
DNS request rates mainly due to group activities of bots 
within a botnet, use of Dynamic DNS (DDNS) and in 
many cases use of fast-flux service network (FFSN) that 
results in rapidly changing DNS entries [12][13]. 
Moreover, most botnets today uses DNS to find C&C 
server. An approach for detection of algorithmically 
generated domain names of some recent botnets using 
DNS based “domain fluxing” for command-and-control 
has been proposed in the literature [14]. Botnets that rely 
on “domain fluxing”, generate domain names 
algorithmically.  

Some other detection approaches are worth mentioning. 
Masud et. al. [15] proposed a flow based approach to 
classify C&C and normal flow to learn temporal 
correlation between an incoming packet and one of the 
following logged events: (i) an outgoing packet (ii) a new 
outgoing connection and (iii) an application startup. Any 
incoming packet correlated with one of these logged 
events is considered a possible botnet command packet. 
Another approach called BotMiner[16] uses Data Mining 
for botnet detection through cross cluster correlation. 
BotMiner is based on essential properties of a botnet like 
bots within the same botnet exhibits similar 
communication pattern and similar malicious activity 
patterns. These detection approaches proposed in [15] 
and [16] are more of reactive in nature than being pro-
active. Hossein et.al. [17] have proposed a P2P botnet 
detection model using a new bio-inspired model like 
Artificial Immune System (AIS). The AIS system 
provides a multilayered protection mechanism to 
discriminate between the malicious and safe activities. 
AIS based detection involves two main steps: First, to 
train the detector using a training data set that contain 
malicious patterns and system’s normal activities. Second, 
is to monitor real system’s traffic for malicious activities 
using detector sets. Finally, the malicious hosts are 
identified through identification of similar 
communication patterns and similar malicious activities. 
Hang et. al. [18] have proposed Entelecheia, an approach 
of P2P botnet detection using graph mining through 
exploitation of “social” behavior of the botnet during its 
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waiting stage. This they have done in two broad steps, 
first they created a graph through network-wide 
interactions of hosts and then they filtered and clustered 
hosts based on flow information. Shishir et. al. [19] 
proposed BotGrep that exploits spatial relationship 
among P2P botnet’s communication traffic through graph 
analysis. This algorithm iteratively partitions the 
communication graph into a faster-mixing and a slower-
mixing piece and then narrows it down on to the fast-
mixing component as fast-mixing represents a property of 
the P2P botnet C&C graph. However, BotGrep has to be 
combined with some other malware detection scheme for 
effectively distinguishing botnet communication structure 
from other applications using P2P communications. 
Babak et. al. [20] have proposed PeerRush, a generic 
classification approach that can accurately detect 
different types of legitimate and malicious P2P traffic. An 
application profile is initially created by learning traffic 
samples of known P2P applications. The network traffics 
generated by P2P hosts within monitored network are 
then matched with the learned application profile for 
accurate detection and categorization of P2P applications. 
Li et. al. [21] proposed a P2P botnet detection framework 
by identifying similar patterns of P2P botnet flows such 
as outbound network degree, connection failure rate etc. 
that occurs at irregular phased intervals. It is called 
irregular phased similarity (IPS) and used it to determine 
flow clusters. Then a distance is derived between such 
flow clusters and compared it with a threshold value for 
the distance to determine the number of flow clusters that 
are closer. Finally the ratio of similar clusters is measured 
and compared it with a predefined threshold to identify a 
suspicious P2P bot. However, this technique is still in 
theory only and needs to be practically evaluated.  

 

III. PROBLEM DESCRIPTION AND ASSUMPTIONS 

The modern network traffic involves various data types, 
such as files, e-mails, Web contents, real-time 
audio/video data streams, etc. Each of these data types 
either use TCP or UDP as transport layer protocol 
depending on the type of transmission needed. For 
example, for transfer of files, e-mails, Web contents etc., 
the Transmission Control Protocol (TCP) appears to be 
suitable for its reliability. On the other hand, for transfer 
of real-time audio/video data streams, which is time-
sensitive, the User Datagram Protocol (UDP) is typically 
used. Applications using  TCP establishes full-duplex 
communication and also flow control i.e. while 
establishing connection, the ACK sent back to the sender 
by the receiving TCP, indicates to the sender the number 
of bytes it can receive beyond the last received TCP 
segment, without causing overrun and overflow in its 
internal buffers. Most P2P applications use UDP protocol 
for communication. Therefore, when we capture data 
from various applications in the internet, we find non 
uniformity in terms of volume, time etc. and in many 
cases are also unidirectional in nature.  

Traffic flows captured from P2P bots (in our case 
Nugache) mostly uses TCP. A bot is a program and 

therefore every command issued by a bot in its normal 
C&C operations is followed by a response from either a 
server in its hierarchy in the botnet or from some other 
bot in its peer group. In other word, C&C interactions in 
P2P botnets must follow a strict command-response 
pattern. Also, a P2P bot needs to keep communicating to 
have their malicious network working. That is, a P2P bot 
needs to keep itself updated about other bots that are still 
active in its network. In normal C&C operations P2P bot 
establishes numerous small sessions. More specifically, 
they keep changing communicating ports for normal 
C&C interaction or until they lunch attack. Therefore, the 
number of packets in each of the bot generated flow 
during normal C&C operation is usually small. Finally 
we observe that the packets in bot generated flows are 
small in size. In our observation, we find all bot packets 
have size less than 500 bytes. Moreover, among the few 
packets transferred in a bot flow only one or two packets 
carry highest bytes, whereas, the normal P2P traffic 
carries most of the packets to the size of MTU. All these 
observations have led us to formulate our problem which 
is subsequently put to classification using machine 
learning algorithms. 

 

IV. ARCHITECTURAL OVERVIEW AND DATA SET 
PREPARATION 

Our classification scheme contains four broad 
modules namely, data acquisition, extraction, filtering &  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Pipeline diagram for botnet traffic classification 

 
scaling and botnet C&C traffic classification. We show 
the pipeline diagram in Fig. 1.  

Description of the pipeline diagram: 
i) Data Acquisition:Raw packets were collected 

using Wireshark[22] from different computers 
connected to our campus network. We acquired 
the botnet dataset of Nugache bot from 
Department of Computer Science, The University 
of Texas at Dallas. This is the same dataset which 
were used in the botnet related research works of 
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ii) Extraction:Useful features for classification were 
extracted from packet headers. We extracted 
different kind of information from packet data like 
the size of largest packet transferred in a flow, the 
ratio of this packet in a given flow, the difference 
in time (calculated in seconds) for last packet 
received in either direction for responding flows, 
difference in number of packet being sent in either 
direction for responding flows and also several 
other features extracted from packet headers. For 
non-responding flows we include a unique 
number(we consider a very large number) to make 
it differentiable. We used 999 for difference in 
number of packets and 99999 for difference of 
time. However, more than 60% of normal traffic 
flows in our dataset has  responding flows. 

iii) Filtering & Scaling: We filtered our datasets 
through removal of unwanted flows so that it is 
optimized for classification. We removed the 
flows having a single packets , since single 
packets does not provide any statistically 
significant information. Similarly, flows 
representing NetBIOS services, broadcasting and 
DHCP were removed. We scaled the datasets to 
the range of 0 to 1. We created three separate files 
containing 18926, 18898 and 18826 instances. 
Each file contains flow captured for more than 10 
hours for each bot as well as normal web traffic. 
Normal network flows comprised  17.83 % of total 
flows on an average of the three files.  

iv) Botnet C&C traffic classification system: We feed 
our optimized datasets to our Botnet C&C traffic 
classification using 10 fold croos validation. The 
botnet C&C traffic classification system has two 
modules – one for  training the system using input 
training sets and the other to evaluate the optimum 
model using testing set.  

 
 

V.  CLASSIFICATION AND ANALYSIS OF 
RESULTS 

We used three machine learning classification 
algorithm for classification of P2P botnet control traffic. 
A brief description of the three algorithm is provided first 
and then we provide an analysis of results obtained from 
classification models. 

a. Decision Tree (J48): A Decision Tree (C4.5 
decision tree algorithm) [24] is one of the most 
popular classification algorithm that uses recursive 
partition of instance space based on concept of 
information entropy. Training is done on an already 
labeled set of instances having a fixed set of 
attributes and then splitting it by choosing an 
attribute giving maximum normalized information 
gain (difference in entropy). The algorithm then 
repeats this process recursively for each of the 
subparts. A Decision Tree classifier uses pruning 
tactics that results in reducing the size of the tree (or 
the number of nodes) to avoid unnecessary 
complexity, and to avoid over-fitting of the data set 

when classifying new data. The overlying principle 
of pruning is to compare the amount of error that a 
decision tree would suffer before and after each 
possible prune, and to then decide accordingly to 
maximally avoid error. 

b. BayesNet (using Genetic Search) [25]: Given a set 
of variables U = {x1,x2,…,xn}, n ≥ 1, a Bayesian 
Network B over the set of variable U is a network 
structure Bs, which is a directed acyclic graph(DAG) 
over U and a set of probability tables  

 
Bp={p(u|pa(u))|u  U} 

 
where pa(u) is the set of parents of u in Bs. The 
learning task consists of finding an appropriate 
Bayesian network given a dataset D over U. We use 
Bayes Network learning algorithm [26] that uses 
genetic search for finding a well scoring Bayes 
network structure. Genetic search works by having a 
population of Bayes network structures and allow 
them to mutate and apply cross over to get offspring. 
The best network structure found during the process 
is returned.  

c. Linear Support Vector Machine: Linear SVMs are 
very powerful classification tools. The software 
packages that implements Linear SVM are SVMperf 
[27] Pegasos[28] and LIBLINEAR[29]. Given a set 
of instance-label pairs (xi, yi), i = 1,..,l, xi    Rn, yi      
{-1,+1 }, Linear SVM solve the following 
unconstrained optimization problem with loss 
function ξ(w;xi,yi):  

 
   wTw +C∑ l

i=1ξ(w;xi,yi) 
 
Where, C>0 is a penalty parameter. In Linear SVM, 

the two common loss functions are max (1- yiwTxi, 0) and 
max (1- yiwTxi, 0)2. The former is referred to as L1-SVM 
and the later as L2-SVM.  

Here we discuss our simulation results of classification 
using three machine learning algorithms namely J48 
(Weka implementation of C4.5), Bayesian Network and 
Linear SVM. In Table 1, we provide the list of 10 flow 
and botnet characteristic features initially considered for 
classification. However, after thorough investigation we 
used only bottom four features in our final classification 
models. This is mainly because of inconsequential nature 
of first six features. We use WEKA [30] Data Mining 
environment for classification. Weka provides a 
collection of Machine Learning (ML) algorithms and 
several visualization tools for data analysis and predictive 
modeling.  

The results show very high True Positive (TP) rate and 
very low False Positive (FP) rate for the best models we 
obtained.  High true positive rate or Hits mean that the 
machine learning classifiers worked well in prediction of 
actual bot flows. Very low false positive rate or false 
alarm shows that very few normal web flows were 
confused as bot generated flows. We consider the 
following performance metrics to compare our 
classification models: 
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Accuracy=
TP TN

TP TN PP PN
+

+ + +
                 (1) 

 

Sensitivity=
TP

TP PN+
                  (2) 

 

( )Positive Predictive Value PPV =
TP

TP PP+
 (3) 

 

F Measure=
2*TPratePr
TPrate+Pr

ecision
ecision

−                       (4) 

 
Where TP = True Positives or Hits, TN = True Negatives 
or correct rejections, FP = False Positives or false alarms 
and FN = False Negatives or misses. 

Here Sensitivity or Recall is the proportion of correctly 
identified bot flows. Similarly, PPV or Precision is the 
proportion of correctly identified bot flows out of total 
number of flows classified as bot by our classifier.  F-
Measure is a measure of a test’s accuracy. The initial 
datasets prepared from three bots connected to the same 
botnet and normal web traffic samples, were passed 
through Randomize filter available with WEKA’s 
unsupervised instance filter category. This was 
necessitated because our original datasets were 
imbalanced having less normal web flows. While  

 
TABLE 1: Flow and botnet characteristics features 

Flow name Description 
bytes_lrgst_pkt Total bytes transferred with largest 

packets in a flow. 
total_bytes Total bytes transferred in a flow. 
avg_iat Average inter arrival time between 

packets in a flow. 
var_iat Variance of inter arrival time between 

packets in a flow. 
avg_pktl Average size of packets in a flow. 
var_of_pktl Variance of  packet sizes in a flow. 
lrgst_pkt Size of the largest packet in a flow. 
ratio_of_lrgst_pkt Ratio of largest packets in a flow. 
Rspt_diff Time difference (calculated in seconds) 

between last packet received in either 
direction for responding flows. 

Rsp_pkt_diff Difference in number of packet being 
transferred in either direction for 
responding flows. 

 
TABLE 2: Weighted average tp rate, fp rate and time taken 

Algorithm TP rate FP rate Time taken 
 ( seconds) 

J48 0.997 0.009 0.85 
BayesNet 0.996 0.008 10.53 
LIBLINEAR 0.961 0.173 7.2 

 
TABLE 3: Computed performance metrics. 

Algorithm Accuracy Sensitivity PPV F-
Measure 

J48 0.996277 0.997 0.997 0.997 
BayesNet 0.996399 0.996 0.996 0.996 

LIBLINEAR 0.960953 0.961 0.962 0.959 
 
constructing classifier, we used 10-fold cross validation 
so that there is no over-fitting of our training set.  Table 2 
shows weighted average TP rate and FP rate for best 
model obtained for each of the three classification 
algorithms along with time taken to build model on 
training data (or training time). Similarly, Table 3 shows 
results of performance metrics computed. In both Table 2 
and Table 3, values are average of results obtained for the 
three data sets. 

Next, we applied Synthetic Minority Oversampling 
Technique (SMOTE) [31] to increase the number of 
samples in the minority class. SMOTE generates 
synthetic samples by multiplying the differences between 
the feature vector (sample) under consideration and its 
nearest neighbor with a random number between 0 and 1. 
By applying SMOTE our sample count in the minority 
class increased from 17.83% to 30.27%. Results obtained 
from synthetically increased dataset are shown in Table 4 
and Table 5. 

Among the three algorithms used for classification of 
our datasets J48 and BayesNet shows very promising 
results in prediction of suspicious botnet flows. While 
Bayesian Network is slightly better in accuracy i.e. 
correct prediction of previously unknown data, J48 takes 
very little simulation time on training data. We use 
weka’s default setting for J48 with C.4.5 pruning 
technique. Next we use J48graft algorithm to produce 
grafted C4.5 decision tree. Grafting [32] is an algorithm 
for adding nodes to the tree to increase the probability of 
rightly classifying instances that falls outside the area 
covered by the training data. However, we find a very 
marginal increase in accuracy (Accuracy: 0.996419 for 
the original datasets and 0.996675 for the synthetically 
increased datasets). But, it also leads to an enlarged tree 
making it more complex and also increase in training 
time (Time taken: 1.02 Seconds for the original datasets 
and 1.26 seconds for the synthetically increased datasets). 
We also evaluated the models generated using 
LIBLINEAR algorithm for exponentially growing 
sequences of C starting from its default value 1.0. We 
find the best performing model at C = 28. However, the 
average training time and the number of false negatives 
increased with each subsequent increase in C. For 
example, in case of C = 1.0, the average training time was 
0.58 second and the average number of false negatives 
was only 17. For C = 28, the average training time 
increased to 7.2 seconds and the average number of false 
negatives stood at 29. Moreover, with increase in size of 
the datasets using SMOTE, there is a fall in performance 
of LIBLINEAR model. 

In many real world problems where datasets may be 
highly imbalanced, the accuracy (the rate of correct 
classification) of a classifier may not be a good measure 
of performance because the accuracy measure does not 
consider the probability of the prediction: as long as the 
class with largest probability estimation is the same as the 
target, it is regarded as correct. That is, probability 
estimations or ‘confidence’ of the class prediction 
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produced by most classifiers is ignored in accuracy [31, 
33]. In case of botnets, the number of botnet flows is 
bound to be large enough compared to normal web traffic 
flows when captured for same time duration. The area 
under ROC (Receiver Operating Characteristic) 

 
TABLE 4: Weighted average tp rate, fp rate and time taken for 

the synthetically increased datasets. 
Algorithm TP rate FP rate Time taken 

 ( seconds) 
J48 0.997 0.005 1.03 
BayesNet 0.997 0.004 15.02 
LIBLINEAR 0.942 0.129 8.66 

 
TABLE 5: Computed performance metrics for the synthetically 

increased datasets. 
Algorithm Accuracy Sensitivity PPV F-Measure 
J48 0.9966 0.997 0.997 0.997 
BayesNet 0.996855 0.997 0.997 0.997 
LIBLINEAR 0.942322 0.942 0.946 0.941 

 
curve (AUC)  provides a alternative and better measure 
for machine learning algorithms. AUC is more sensitive 
to Analysis of Variance (ANOVA) tests and is 
independent to the decision threshold, as well as it is 
invariant to a priori class probability distributions[34]. 

The ROC curve compares the classifiers’ performance 
across the entire range of class distributions and error 
costs. The ROC curve is given by TP rate and FP rate. 
ROC curve drawing algorithm use decision threshold 
values and construct the curve by sweeping it across from 
high to low. This gives rise to TP rate and FP rate at each 
threshold level which can intern be interpreted as points 
on the ROC curve. For more detail on ROC curve 
drawing algorithm one can refer to the work done by 
Hamel [35]. AUC provides a good measure of comparing 
the performances of ROC curves in particular to the cases 
where dominance of one curve is not fully established. 
More details can be found in Ling et. al. work [33]. In 
case of perfect predictions the AUC is 1 and if AUC is 
0.5 the prediction is random.   

The model performance through ROC curves for our 
classification models is shown in Fig. 2, Fig. 3 and Fig. 4. 
The X-axis represents False Positive Rate and Y-axis 
represents the True Positive Rate.  For original 
randomized dataset, the average AUC value obtained are 
0.995, 0.999 and 0.894 for J48, BayesNet and the 
LIBLINEAR classification models respectively.  For the 
synthetically increased datasets, the corresponding 
average AUC values are 0.997, 1 and 0.907. Thus 
comparing the results in Table 2, Table 3, Table 4, Table 
5 and AUC values, we can say BayesNet using Genetic 
search provides the best classifier. Nevertheless, J48 
takes very less time in building the training model with a 
reasonably good model performance. 

 
 
VI. A RULE INDUCTION ALGORITHM FOR 

BOTNET TRAFFIC CLASSIFICATION 

From analysis of results obtained from three classifiers 
in Section VI, it is apparent that Decision Tree (J48) 

gives both high predictive accuracy and faster model 
building time. Therefore, we used the indirect method of 
building classification rules i.e. to extract rules from C4.5 
classification model discussed in Section V. Rule 
induction from Quinlan’s famous C4.5 algorithm [24] is 
the conjunction of antecedents to arrive at a consequence. 
That is, if A, B and C are the test nodes encountered in 
the path from root to leaf node D, then the rule generated 
would be in conjunctive form such as “if A and B and C 
then D”. The approach for rule generation is as follows: 

First we trained the C4.5 tree. Then from it we 
extracted initial set of rules by considering test conditions 
in each path as conjunctive rule antecedents and 
corresponding class labels as rule consequences. We 
extracted 21 such rules from the decision tree trained on 
our dataset. Then we remove those antecedents which can 
trivially be removed. For example, if there are two 
antecedents in the same rule, say t>x1 and t>x2 where t is 
the attribute and x1, x2 are the numeric attribute values 
such that x1>x2, then we accept the antecedent t>x1 and 

 

 
 

Figure 2:  ROC curve for the BayesNet classification model 
(Class: P2Pbot) 

 

 
 

Figure 3:  ROC curve for the J48 classification model. (Class: 
P2Pbot) 
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Figure 4:  ROC curve for the LIBLINEAR classification model. 

(Class: P2Pbot) 
 
discard the other. Similarly, if antecedents were t<x1 and 
t<x2, then we accept t<x2 provided x2<x1. This reduced 
rule lengths.  

We computed Coverage and Accuracy for our initial 
set of C4.5 rules. Coverage is the fraction of records that 
satisfy antecedents of a rule, given by 

 
Coverage = (|LHS|) / n                 (5) 

  
And, accuracy is fraction of records covered by the 

rule that belong to the class on the RHS. It is given by 
 

Accuracy = (|LHS ∩RHS|) / (|LHS|)              (6) 
 
Where n is the number of records in our dataset, |LHS| is 
the number of records that satisfies  antecedent of a rule 
and |LHS ∩ RHS| is the number of records that satisfies 
the rule as a whole.   

In our trained C4.5 tree, the attribute ‘response packet 
difference’ is the root followed by number of splitting on 
attributes ‘ratio of largest packet’ and ‘largest packet’. 
Only in one case ‘response packet difference’ and 
‘response time difference’ is used for splitting dipper in 
the tree. The initial set of rule is generalized by removing 
antecedents not contributing to accuracy and coverage of 
its original rule. To do this, antecedents corresponding to 
test nodes higher up in the tree were removed first 
(initially the root node). Then the Coverage and accuracy 
values for remaining part of the rules containing 
antecedents corresponding to test nodes dipper down the 
tree were calculated. If the freshly calculated coverage 
and accuracy values were not worse than the original, we 
replaced the original rule with its new variant. This 
process was repeated until further generalization of the 
rules was not possible. Rules are then grouped according 
to their predicted classes and subjected to further 
polishing using Minimum Description Length (MDL) 
principle [36] so that rules that do not contribute to the 
accuracy of our rule based classifier are removed. 

In our newly generated rule set, we are left with ten 
rules that predicted normal traffic and four rules for 
botnet traffic, down from fourteen and seven respectively 

for our initial rule set. One important observation of our 
newly generated optimized rule set is that there are seven 
rules out of fourteen which have flows classified based on 
“proportions of large packets transferred in a flow” and 
“packets carrying maximum payload” only. This is 
shown in Table 6. This led us to believe that some more 
rules of our new rule set can be modified to fall within 
mutually exclusive ranges of these two attribute values 
without / insignificant degradation of their corresponding 
coverage and accuracy values. 

We applied heuristic method to create a variant of 
some of the existing rules of the remaining rule set. The 
procedure adopted to modify remaining part of the rule 
set is as follows: We created a list of test conditions that 
belongs to remaining rules in the rule-set. Then we 
weighted each test condition according to summation of 
coverage values of their participated rules. We grouped 
them according to attribute name and arranged it in 
decreasing order of their weight-age values in each group 
separately. Then we considered one rule at a time from 
the remaining pool and used heuristic to replace one of its 
antecedents For example, in case of the following rule 
that predicts Normal flow,  

“If (Response packet difference ≤ 0.003) And (Ratio of 
largest packet ≤ 0.504274) And (Largest packet ≤ 0.0115) 
And (Largest packet > 0.0063) Then Class = Normal” we 
replaced the antecedent (Response packet difference  ≤ 
0.003) with (Ratio of largest packet > 0.142857). The 
new rule generated with this replacement has an accuracy 
and coverage of 100% and 1.68 % respectively. The 
corresponding figures for the rule before replacement 
were 99% and 1.15%. Table 7 shows new variant of four 
such rules. However, in three rules we need to retain 
antecedents on other two attributes for correct prediction. 
Those three rules are shown in Table 8.  

Finding the best decision tree is NP-hard and all 
current decision tree algorithms are heuristic algorithms. 
Therefore, the decision tree structures would be different 
for different training sets. However, using our approach 
most of the rules can be converted in to ranges of packet 
carrying maximum payload and its proportions in a flow. 

We have generated the rules from decision tree created 
on one data set and tested it on all the three data sets. We 
found that rules in Table 6 has a coverage of 
approximately 24%, rules in Table 7 has a coverage of 
approximately 76% and rules in Table 8 has a very 
negligible coverage. We also found that the rule based 
approach has produced better accuracy (Average 
Accuracy = 99.63 %) than the original decision trees in 
all the three test cases. 

 

VII. CONCLUSION AND FUTURE WORK 

In this paper, we have proposed a methodology for 
detecting P2P botnets using Machine Learning techniques. 
We used  
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TABLE 6: Rules based on  “ratio of largest packet” and  “largest packet” only 
Rule  antecedents Rule 

Consequence 
Accuracy (%) 

Ratio of Largest Packets Largest Packet 

>   0.504274 - Normal 99.8 

<=  0.142857 > 0.0457 Normal 99.3 

<=  0.142857 <= 0.0083 Normal 100 

<=  0.142857 >  0.0095 AND <= 0.0117 Normal 100 

<=  0.142857 >  0.0118 AND <= 0.0365 Normal 97.7 

>  0.00831 AND  <=  0.142857 >  0.0365 AND <= 0.457 Normal 100 

<=  0.142857 >  0.0117 AND <= 0.0118 P2Pbot 100 

 
TABLE 7: Replaced antecedents in the new rules 

Rule Antecedents Rule 
Consequence 

Accuracy 
(%) before 
replacement 

Accuracy (%) 

after 
replacement 

Replaced Antecedents  Replaced With Unchanged Antecedents 

(Response Packet 
Difference  ≤ 0.003) 

(Ratio of Largest 
Packet  > 0.142857), 

(Ratio of Largest 
Packet  <= 0.504274) 

(Largest Packet  >  
0.0118) 

Normal 99.5 99.7 

(Response Packet 
Difference  ≤ 0.003) 

(Ratio of Largest 
Packet  > 0.142857) 

(Ratio of Largest 
Packet  <= 0.504274), 

(Largest Packet  >  
0.0063), (Largest Packet 

<= 0.0115) 

Normal 99 100 

(Response Packet 
Difference  ≤ 0.003) 

(Ratio of Largest 
Packet  > 0.142857) 

(Ratio of Largest 
Packet  <= 0.504274), 

(Largest Packet  <=  
0.0063) 

P2Pbot 99.8 99.8 

(Response Packet 
Difference  ≤ 0.003) 

(Ratio of Largest 
Packet  > 0.142857) 

(Ratio of Largest 
Packet  <= 0.504274), 

(Largest Packet  >  
0.0115), (Largest Packet  

<=  0.0118) 

P2Pbot 100 99.9 

 
TABLE8:  Unchanged rules 

Rule  Antecedents Rule Consequence Accuracy (%) 

(Response Packet Difference  >  0.003), (Ratio of Largest Packet  <= 
0.00831), (Largest Packet  >  0.0365), (Largest Packet  <=  0.0457), 
(Response Time Difference  <=  0.01261) 

Normal 100 

(Response Packet Difference  <=  0.003), (Ratio of Largest Packet  <= 
0.142857), (Largest Packet  >  0.0083), (Largest Packet  <=  0.0095), 
(Response Time Difference  <=  0.01261) 

Normal 100 

(Response Packet Difference  >  0.003), (Ratio of Largest Packet  <= 
0.142857), (Largest Packet  >  0.0083), (Largest Packet  <=  0.0095) 

P2Pbot 100 

 
ML classification algorithms to classify P2P botnet 

Command & Control(C&C) traffic based on combined 
power of selected flow features and botnet behavioral 
characteristic features. From our experiments, we found 
that  the BayesNet classifier created using Genetic search 
produces very promising result with an accuracy rate as 
high as 0.996399 and AUC value of 0.999. These are 

good indicators to justify efficacy of our classification 
techniques. 

Other classification algorithms such as J48 and 
LIBLINEAR are very fast. For example J48 took only 
0.85 second to build model on our training data having a  
reasonably good predictive accuracy. Therefore, a 
noteworthy contribution of this research work is that we 
proposed a machine learning based framework for quick 
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detection of P2P botnet traffic that has a high predictive 
accuracy. Our ROC curve analysis points to predictive 
accuracy of our classification models. However, we need 
to test our classification techniques in large-scale network 
set-ups.  

Finally, we proposed a rule induction algorithm for 
P2P botnet traffic classification. We achieved better 
classification accuracy than decision tree classifier. We 
generated rules from traffic samples collected from 
Nugache botnet. However, same procedure can be 
adopted to generate rules for other P2P botnet traffic 
samples as well. Furthermore, our rule based approach 
can be a stepping stone for development of an 
unsupervised detection technique. Large number of 
botnet flows tends to exist within short intervals of 
proportions at which largest packets are transferred and 
also the size of the largest packet. Only when these two 
characteristic features failed to provide high predictive 
accuracy for a particular range of its values, the other two 
features were used.  
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