
I.J.Modern Education and Computer Science, 2013, 10, 9-18
Published Online November 2013 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijmecs.2013.10.02

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 10, 9-18

An Efficient Machine Learning Based
Classification Scheme for Detecting Distributed

Command & Control Traffic of P2P Botnets

Pijush Barthakur1, Manoj Dahal2, Mrinal Kanti Ghose1
1Department of Computer Science and Engineering, Sikkim Manipal Institute of Technology, Sikkim, India

2Novell IDC, Bagmane Tech Park, C V Ramannagar, Bangalore, India
pijush.barthakur@gmail.com, mdahal@novell.com, mkghose2000@yahoo.com

Abstract— Biggest internet security threat is the rise of
Botnets having modular and flexible structures. The
combined power of thousands of remotely controlled
computers increases the speed and severity of attacks. In
this paper, we provide a comparative analysis of
machine-learning based classification of botnet command
& control(C&C) traffic for proactive detection of Peer-to-
Peer (P2P) botnets. We combine some of selected botnet
C&C traffic flow features with that of carefully selected
botnet behavioral characteristic features for better
classification using machine learning algorithms. Our
simulation results show that our method is very effective
having very good test accuracy and very little training
time. We compare the performances of Decision Tree
(C4.5), Bayesian Network and Linear Support Vector
Machines using performance metrics like accuracy,
sensitivity, positive predictive value(PPV) and F-Measure.
We also provide a comparative analysis of our predictive
models using AUC (area under ROC curve). Finally, we
propose a rule induction algorithm from original C4.5
algorithm of Quinlan. Our proposed algorithm produces
better accuracy than the original decision tree classifier.

Index Terms— Botnet, Peer- to- Peer (P2P), WEKA,
Linear support vector machine, J48, Bayesnet, ROC
curve, AUC

I. INTRODUCTION

A Bot is a program that once gets installed in to a
computer leads to establishment of some sort of
command-and-control (C&C) channel with its C&C
server and keeps listening to the C&C channel for future
commands. C&C servers are the control centers from
where commands from command-set of the botnet are
issued to perform coordinated tasks and attacks. The
attackers in internet have included worm like abilities to
bot by including propagation component to spread
through different infection vectors. This leads to creation
of botnets that gives power to the bot-herder to access the
infected computers and to carry-out different types of
attacks like stealing of sensitive information, Distributed
Denial of Service (DDoS) attacks, spam campaign, click
frauds etc.

Botnets have evolved through time to imitate different
topographical structures like IRC, HTTP, P2P etc. IRC
and HTTP based botnets are centralized in nature and run
the risk of single point of failure i.e. if C&C head is
detected and taken down the botnet cripples. However,
they have their relative merits as well. IRC based botnets
being simple in setup and maintenance, continue to
evolve. HTTP based botnets are difficult to detect as its
C&C traffic can hide behind normal web traffic to evade
detection mechanisms. P2P based botnets are the newest
of its kind that mimic Peer-to-Peer (P2P) technologically
and thus follow a distributed C&C structure. Absence of
fixed C&C server in P2P botnets makes it very difficult
to detect and dismantle such structures. Some of the
known P2P bots are Storm [1], Nugache [2] and Waledac
[3].

In this paper we propose a payload independent
approach that can detect botnet even in case of encrypted
C&C traffic. We use machine learning algorithms for
classification and prediction of large volume of C&C
traffic flows generated by P2P botnets. A network flow
provides essential information in a network like who is
talking to whom i.e. conversation between any two hosts
in the network in any specific moment of time. The
algorithms that are used to classify network flows during
normal C&C operations of botnets are J48, BayesNet and
Linear Support Vector Machines. Our approach can be
used for proactive detection of P2P botnets by correlating
similar bot flows of the same botnet. Our investigation is
based on following assumptions: (i) P2P botnet
establishes numerous small sessions, (ii) a P2P bot needs
to keep communicating for having the malicious network
alive, (iii) to avoid detection, a P2P bot passes minimal
amount of information in each session, (iv) in every
session between a pair of P2P bots, data flow happens in
both the directions, (v) Every botnet has its own specific
set of commands and C&C interactions of bots are
preprogrammed to the set of commands they receive, and
(vi) P2P botnets usually runs each session for a very
small duration. Some of our assumptions are similar to
the one used in paper [4][5].

Based on the above mentioned characteristic features
of P2P botnets, we propose a rule generation algorithm
for botnet traffic classification. We used an indirect
method of deriving the initial rule set from decision tree

10 An Efficient Machine Learning Based Classification Scheme for Detecting Distributed Command
& Control Traffic of P2P Botnets

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 10, 9-18

generated using C4.5 algorithm. Then, we followed a
step-by-step approach for optimization of the rule set.
Our final rule set has a uniform structure providing
significant insight in to similarities within P2P botnet
C&C traffic.

Rest of the paper is organized as follows: Section II
provides a brief overview of related works. In Section III,
we discuss the inherent differences between botnet C&C
flows and normal network flows. In Section IV we
provide the architectural overview of our classification
process and the approach we have followed for dataset
preparation. In Section V, we briefly describe the
algorithms used in our classification task and also provide
a detail analysis of the result of our classification models.
In Section VI, we propose a rule generation algorithm for
P2P botnet traffic classification and finally we conclude
in Section VII.

II. RELATED WORKS

A botnet operator needs to spend a sufficiently long
interval of time with its newly acquired bot, before it is
finally deployed for attack. This pre-attack period
involves a sequence of stages like initial infection of the
computer with bot code, the process of “rallying” i.e. the
procedure adopted by a botnet for self identification of
newly created bots so that it can initiate contact with
Command & Control (C&C) server, and sequence of
measures taken for the newly created bot client to make it
secure. Measures taken to make a bot client secure
normally involve deployment of anti-antivirus tools and
Rootkit or similar tools in order to hide itself from
applications already installed by security agencies. In a
newly created bot client, the hacker also employs tools to
retrieve details of the computer (e.g. processor speed,
memory, network speed etc.) and to search for location of
any leftover tools by an earlier infection [6]. It is
imperative to study botnet behavior during these early
phases of exploitation in order to neutralize a bot before it
takes part in any attack. We may term such detection
approaches as “proactive”. However, most detection
techniques developed till date are reactive in nature. In a
recently published work [7], the author emphasizes on the
use of network flows with incident handler for detection
of network threats. It states that the flow data collected
from all critical points throughout the network
infrastructure provides needed visibility that can help to
identify systems that are infected with malware or
participating in a botnet. They can also reveal an
attacker’s targets, systems that are already compromised,
and even the attackers themselves. A machine learning
based approach for botnet detection was proposed in
paper [8] albeit for IRC botnets. It uses classification
using flow characteristics that can be employed for
proactive detection of IRC bots. Zhao et. al. [9] have
proposed a machine learning based classification scheme
for detection of P2P botnets based on a set of network
traffic attributes observed during a selected time window.
They used Bayesian Network and Decision Tree
classifiers with 12 selected traffic attributes. However, we

achieved better accuracy with our selected set of
attributes. Wernhuar et. al. [10] have proposed a
mechanism to quickly identify P2P botnet traffic flows
during the connection stage. They used Response to
Intervention (RTI) method to observe the traffic flows of
normal P2P applications and P2P botnets. Then they used
decision tree model for classification, and information
obtained were used for identification of abnormal traffic
flows and the location of zombie computers. The
detection technique proposed in our earlier work [11],
also emphasizes on a similar approach for detection of
P2P botnet. However, the approach is based solely on
non-linear Support Vector Machines (SVM) and hence
takes long time duration to complete the classification
task.

Apart from machine learning based approaches, DNS
based approaches may also be used for proactive
detection of botnets. Botnet DNS traffic exhibits some
unique properties like sudden and abnormal increase in
DNS request rates mainly due to group activities of bots
within a botnet, use of Dynamic DNS (DDNS) and in
many cases use of fast-flux service network (FFSN) that
results in rapidly changing DNS entries [12][13].
Moreover, most botnets today uses DNS to find C&C
server. An approach for detection of algorithmically
generated domain names of some recent botnets using
DNS based “domain fluxing” for command-and-control
has been proposed in the literature [14]. Botnets that rely
on “domain fluxing”, generate domain names
algorithmically.

Some other detection approaches are worth mentioning.
Masud et. al. [15] proposed a flow based approach to
classify C&C and normal flow to learn temporal
correlation between an incoming packet and one of the
following logged events: (i) an outgoing packet (ii) a new
outgoing connection and (iii) an application startup. Any
incoming packet correlated with one of these logged
events is considered a possible botnet command packet.
Another approach called BotMiner[16] uses Data Mining
for botnet detection through cross cluster correlation.
BotMiner is based on essential properties of a botnet like
bots within the same botnet exhibits similar
communication pattern and similar malicious activity
patterns. These detection approaches proposed in [15]
and [16] are more of reactive in nature than being pro-
active. Hossein et.al. [17] have proposed a P2P botnet
detection model using a new bio-inspired model like
Artificial Immune System (AIS). The AIS system
provides a multilayered protection mechanism to
discriminate between the malicious and safe activities.
AIS based detection involves two main steps: First, to
train the detector using a training data set that contain
malicious patterns and system’s normal activities. Second,
is to monitor real system’s traffic for malicious activities
using detector sets. Finally, the malicious hosts are
identified through identification of similar
communication patterns and similar malicious activities.
Hang et. al. [18] have proposed Entelecheia, an approach
of P2P botnet detection using graph mining through
exploitation of “social” behavior of the botnet during its

 An Efficient Machine Learning Based Classification Scheme for Detecting Distributed Command 11
& Control Traffic of P2P Botnets

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 10, 9-18

waiting stage. This they have done in two broad steps,
first they created a graph through network-wide
interactions of hosts and then they filtered and clustered
hosts based on flow information. Shishir et. al. [19]
proposed BotGrep that exploits spatial relationship
among P2P botnet’s communication traffic through graph
analysis. This algorithm iteratively partitions the
communication graph into a faster-mixing and a slower-
mixing piece and then narrows it down on to the fast-
mixing component as fast-mixing represents a property of
the P2P botnet C&C graph. However, BotGrep has to be
combined with some other malware detection scheme for
effectively distinguishing botnet communication structure
from other applications using P2P communications.
Babak et. al. [20] have proposed PeerRush, a generic
classification approach that can accurately detect
different types of legitimate and malicious P2P traffic. An
application profile is initially created by learning traffic
samples of known P2P applications. The network traffics
generated by P2P hosts within monitored network are
then matched with the learned application profile for
accurate detection and categorization of P2P applications.
Li et. al. [21] proposed a P2P botnet detection framework
by identifying similar patterns of P2P botnet flows such
as outbound network degree, connection failure rate etc.
that occurs at irregular phased intervals. It is called
irregular phased similarity (IPS) and used it to determine
flow clusters. Then a distance is derived between such
flow clusters and compared it with a threshold value for
the distance to determine the number of flow clusters that
are closer. Finally the ratio of similar clusters is measured
and compared it with a predefined threshold to identify a
suspicious P2P bot. However, this technique is still in
theory only and needs to be practically evaluated.

III. PROBLEM DESCRIPTION AND ASSUMPTIONS

The modern network traffic involves various data types,
such as files, e-mails, Web contents, real-time
audio/video data streams, etc. Each of these data types
either use TCP or UDP as transport layer protocol
depending on the type of transmission needed. For
example, for transfer of files, e-mails, Web contents etc.,
the Transmission Control Protocol (TCP) appears to be
suitable for its reliability. On the other hand, for transfer
of real-time audio/video data streams, which is time-
sensitive, the User Datagram Protocol (UDP) is typically
used. Applications using TCP establishes full-duplex
communication and also flow control i.e. while
establishing connection, the ACK sent back to the sender
by the receiving TCP, indicates to the sender the number
of bytes it can receive beyond the last received TCP
segment, without causing overrun and overflow in its
internal buffers. Most P2P applications use UDP protocol
for communication. Therefore, when we capture data
from various applications in the internet, we find non
uniformity in terms of volume, time etc. and in many
cases are also unidirectional in nature.

Traffic flows captured from P2P bots (in our case
Nugache) mostly uses TCP. A bot is a program and

therefore every command issued by a bot in its normal
C&C operations is followed by a response from either a
server in its hierarchy in the botnet or from some other
bot in its peer group. In other word, C&C interactions in
P2P botnets must follow a strict command-response
pattern. Also, a P2P bot needs to keep communicating to
have their malicious network working. That is, a P2P bot
needs to keep itself updated about other bots that are still
active in its network. In normal C&C operations P2P bot
establishes numerous small sessions. More specifically,
they keep changing communicating ports for normal
C&C interaction or until they lunch attack. Therefore, the
number of packets in each of the bot generated flow
during normal C&C operation is usually small. Finally
we observe that the packets in bot generated flows are
small in size. In our observation, we find all bot packets
have size less than 500 bytes. Moreover, among the few
packets transferred in a bot flow only one or two packets
carry highest bytes, whereas, the normal P2P traffic
carries most of the packets to the size of MTU. All these
observations have led us to formulate our problem which
is subsequently put to classification using machine
learning algorithms.

IV. ARCHITECTURAL OVERVIEW AND DATA SET
PREPARATION

Our classification scheme contains four broad
modules namely, data acquisition, extraction, filtering &

Figure 1: Pipeline diagram for botnet traffic classification

scaling and botnet C&C traffic classification. We show
the pipeline diagram in Fig. 1.

Description of the pipeline diagram:
i) Data Acquisition:Raw packets were collected

using Wireshark[22] from different computers
connected to our campus network. We acquired
the botnet dataset of Nugache bot from
Department of Computer Science, The University
of Texas at Dallas. This is the same dataset which
were used in the botnet related research works of
[23].

Data
Acquisition

Extraction Filtering
& Scaling

Packet
Traces

Training
Set

Testing
Set

BOTNET C&C TRAFFIC
CLASSIFICATION SYSTEM

 Adjusted Parameters for
 Trained results inference

ML Training Algo.

Classification and
optimum model
selection module

12 An Efficient Machine Learning Based Classification Scheme for Detecting Distributed Command
& Control Traffic of P2P Botnets

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 10, 9-18

ii) Extraction:Useful features for classification were
extracted from packet headers. We extracted
different kind of information from packet data like
the size of largest packet transferred in a flow, the
ratio of this packet in a given flow, the difference
in time (calculated in seconds) for last packet
received in either direction for responding flows,
difference in number of packet being sent in either
direction for responding flows and also several
other features extracted from packet headers. For
non-responding flows we include a unique
number(we consider a very large number) to make
it differentiable. We used 999 for difference in
number of packets and 99999 for difference of
time. However, more than 60% of normal traffic
flows in our dataset has responding flows.

iii) Filtering & Scaling: We filtered our datasets
through removal of unwanted flows so that it is
optimized for classification. We removed the
flows having a single packets , since single
packets does not provide any statistically
significant information. Similarly, flows
representing NetBIOS services, broadcasting and
DHCP were removed. We scaled the datasets to
the range of 0 to 1. We created three separate files
containing 18926, 18898 and 18826 instances.
Each file contains flow captured for more than 10
hours for each bot as well as normal web traffic.
Normal network flows comprised 17.83 % of total
flows on an average of the three files.

iv) Botnet C&C traffic classification system: We feed
our optimized datasets to our Botnet C&C traffic
classification using 10 fold croos validation. The
botnet C&C traffic classification system has two
modules – one for training the system using input
training sets and the other to evaluate the optimum
model using testing set.

V. CLASSIFICATION AND ANALYSIS OF
RESULTS

We used three machine learning classification
algorithm for classification of P2P botnet control traffic.
A brief description of the three algorithm is provided first
and then we provide an analysis of results obtained from
classification models.

a. Decision Tree (J48): A Decision Tree (C4.5
decision tree algorithm) [24] is one of the most
popular classification algorithm that uses recursive
partition of instance space based on concept of
information entropy. Training is done on an already
labeled set of instances having a fixed set of
attributes and then splitting it by choosing an
attribute giving maximum normalized information
gain (difference in entropy). The algorithm then
repeats this process recursively for each of the
subparts. A Decision Tree classifier uses pruning
tactics that results in reducing the size of the tree (or
the number of nodes) to avoid unnecessary
complexity, and to avoid over-fitting of the data set

when classifying new data. The overlying principle
of pruning is to compare the amount of error that a
decision tree would suffer before and after each
possible prune, and to then decide accordingly to
maximally avoid error.

b. BayesNet (using Genetic Search) [25]: Given a set
of variables U = {x1,x2,…,xn}, n ≥ 1, a Bayesian
Network B over the set of variable U is a network
structure Bs, which is a directed acyclic graph(DAG)
over U and a set of probability tables

Bp={p(u|pa(u))|u U}

where pa(u) is the set of parents of u in Bs. The
learning task consists of finding an appropriate
Bayesian network given a dataset D over U. We use
Bayes Network learning algorithm [26] that uses
genetic search for finding a well scoring Bayes
network structure. Genetic search works by having a
population of Bayes network structures and allow
them to mutate and apply cross over to get offspring.
The best network structure found during the process
is returned.

c. Linear Support Vector Machine: Linear SVMs are
very powerful classification tools. The software
packages that implements Linear SVM are SVMperf
[27] Pegasos[28] and LIBLINEAR[29]. Given a set
of instance-label pairs (xi, yi), i = 1,..,l, xi Rn, yi
{-1,+1 }, Linear SVM solve the following
unconstrained optimization problem with loss
function ξ(w;xi,yi):

 wTw +C∑ l

i=1ξ(w;xi,yi)

Where, C>0 is a penalty parameter. In Linear SVM,

the two common loss functions are max (1- yiwTxi, 0) and
max (1- yiwTxi, 0)2. The former is referred to as L1-SVM
and the later as L2-SVM.

Here we discuss our simulation results of classification
using three machine learning algorithms namely J48
(Weka implementation of C4.5), Bayesian Network and
Linear SVM. In Table 1, we provide the list of 10 flow
and botnet characteristic features initially considered for
classification. However, after thorough investigation we
used only bottom four features in our final classification
models. This is mainly because of inconsequential nature
of first six features. We use WEKA [30] Data Mining
environment for classification. Weka provides a
collection of Machine Learning (ML) algorithms and
several visualization tools for data analysis and predictive
modeling.

The results show very high True Positive (TP) rate and
very low False Positive (FP) rate for the best models we
obtained. High true positive rate or Hits mean that the
machine learning classifiers worked well in prediction of
actual bot flows. Very low false positive rate or false
alarm shows that very few normal web flows were
confused as bot generated flows. We consider the
following performance metrics to compare our
classification models:

 An Efficient Machine Learning Based Classification Scheme for Detecting Distributed Command 13
& Control Traffic of P2P Botnets

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 10, 9-18

Accuracy=
TP TN

TP TN PP PN
+

+ + +
 (1)

Sensitivity=
TP

TP PN+
 (2)

()Positive Predictive Value PPV =
TP

TP PP+
 (3)

F Measure=
2*TPratePr
TPrate+Pr

ecision
ecision

− (4)

Where TP = True Positives or Hits, TN = True Negatives
or correct rejections, FP = False Positives or false alarms
and FN = False Negatives or misses.

Here Sensitivity or Recall is the proportion of correctly
identified bot flows. Similarly, PPV or Precision is the
proportion of correctly identified bot flows out of total
number of flows classified as bot by our classifier. F-
Measure is a measure of a test’s accuracy. The initial
datasets prepared from three bots connected to the same
botnet and normal web traffic samples, were passed
through Randomize filter available with WEKA’s
unsupervised instance filter category. This was
necessitated because our original datasets were
imbalanced having less normal web flows. While

TABLE 1: Flow and botnet characteristics features

Flow name Description
bytes_lrgst_pkt Total bytes transferred with largest

packets in a flow.
total_bytes Total bytes transferred in a flow.
avg_iat Average inter arrival time between

packets in a flow.
var_iat Variance of inter arrival time between

packets in a flow.
avg_pktl Average size of packets in a flow.
var_of_pktl Variance of packet sizes in a flow.
lrgst_pkt Size of the largest packet in a flow.
ratio_of_lrgst_pkt Ratio of largest packets in a flow.
Rspt_diff Time difference (calculated in seconds)

between last packet received in either
direction for responding flows.

Rsp_pkt_diff Difference in number of packet being
transferred in either direction for
responding flows.

TABLE 2: Weighted average tp rate, fp rate and time taken

Algorithm TP rate FP rate Time taken
 (seconds)

J48 0.997 0.009 0.85
BayesNet 0.996 0.008 10.53
LIBLINEAR 0.961 0.173 7.2

TABLE 3: Computed performance metrics.

Algorithm Accuracy Sensitivity PPV F-
Measure

J48 0.996277 0.997 0.997 0.997
BayesNet 0.996399 0.996 0.996 0.996

LIBLINEAR 0.960953 0.961 0.962 0.959

constructing classifier, we used 10-fold cross validation
so that there is no over-fitting of our training set. Table 2
shows weighted average TP rate and FP rate for best
model obtained for each of the three classification
algorithms along with time taken to build model on
training data (or training time). Similarly, Table 3 shows
results of performance metrics computed. In both Table 2
and Table 3, values are average of results obtained for the
three data sets.

Next, we applied Synthetic Minority Oversampling
Technique (SMOTE) [31] to increase the number of
samples in the minority class. SMOTE generates
synthetic samples by multiplying the differences between
the feature vector (sample) under consideration and its
nearest neighbor with a random number between 0 and 1.
By applying SMOTE our sample count in the minority
class increased from 17.83% to 30.27%. Results obtained
from synthetically increased dataset are shown in Table 4
and Table 5.

Among the three algorithms used for classification of
our datasets J48 and BayesNet shows very promising
results in prediction of suspicious botnet flows. While
Bayesian Network is slightly better in accuracy i.e.
correct prediction of previously unknown data, J48 takes
very little simulation time on training data. We use
weka’s default setting for J48 with C.4.5 pruning
technique. Next we use J48graft algorithm to produce
grafted C4.5 decision tree. Grafting [32] is an algorithm
for adding nodes to the tree to increase the probability of
rightly classifying instances that falls outside the area
covered by the training data. However, we find a very
marginal increase in accuracy (Accuracy: 0.996419 for
the original datasets and 0.996675 for the synthetically
increased datasets). But, it also leads to an enlarged tree
making it more complex and also increase in training
time (Time taken: 1.02 Seconds for the original datasets
and 1.26 seconds for the synthetically increased datasets).
We also evaluated the models generated using
LIBLINEAR algorithm for exponentially growing
sequences of C starting from its default value 1.0. We
find the best performing model at C = 28. However, the
average training time and the number of false negatives
increased with each subsequent increase in C. For
example, in case of C = 1.0, the average training time was
0.58 second and the average number of false negatives
was only 17. For C = 28, the average training time
increased to 7.2 seconds and the average number of false
negatives stood at 29. Moreover, with increase in size of
the datasets using SMOTE, there is a fall in performance
of LIBLINEAR model.

In many real world problems where datasets may be
highly imbalanced, the accuracy (the rate of correct
classification) of a classifier may not be a good measure
of performance because the accuracy measure does not
consider the probability of the prediction: as long as the
class with largest probability estimation is the same as the
target, it is regarded as correct. That is, probability
estimations or ‘confidence’ of the class prediction

14 An Efficient Machine Learning Based Classification Scheme for Detecting Distributed Command
& Control Traffic of P2P Botnets

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 10, 9-18

produced by most classifiers is ignored in accuracy [31,
33]. In case of botnets, the number of botnet flows is
bound to be large enough compared to normal web traffic
flows when captured for same time duration. The area
under ROC (Receiver Operating Characteristic)

TABLE 4: Weighted average tp rate, fp rate and time taken for

the synthetically increased datasets.
Algorithm TP rate FP rate Time taken

 (seconds)
J48 0.997 0.005 1.03
BayesNet 0.997 0.004 15.02
LIBLINEAR 0.942 0.129 8.66

TABLE 5: Computed performance metrics for the synthetically

increased datasets.
Algorithm Accuracy Sensitivity PPV F-Measure
J48 0.9966 0.997 0.997 0.997
BayesNet 0.996855 0.997 0.997 0.997
LIBLINEAR 0.942322 0.942 0.946 0.941

curve (AUC) provides a alternative and better measure
for machine learning algorithms. AUC is more sensitive
to Analysis of Variance (ANOVA) tests and is
independent to the decision threshold, as well as it is
invariant to a priori class probability distributions[34].

The ROC curve compares the classifiers’ performance
across the entire range of class distributions and error
costs. The ROC curve is given by TP rate and FP rate.
ROC curve drawing algorithm use decision threshold
values and construct the curve by sweeping it across from
high to low. This gives rise to TP rate and FP rate at each
threshold level which can intern be interpreted as points
on the ROC curve. For more detail on ROC curve
drawing algorithm one can refer to the work done by
Hamel [35]. AUC provides a good measure of comparing
the performances of ROC curves in particular to the cases
where dominance of one curve is not fully established.
More details can be found in Ling et. al. work [33]. In
case of perfect predictions the AUC is 1 and if AUC is
0.5 the prediction is random.

The model performance through ROC curves for our
classification models is shown in Fig. 2, Fig. 3 and Fig. 4.
The X-axis represents False Positive Rate and Y-axis
represents the True Positive Rate. For original
randomized dataset, the average AUC value obtained are
0.995, 0.999 and 0.894 for J48, BayesNet and the
LIBLINEAR classification models respectively. For the
synthetically increased datasets, the corresponding
average AUC values are 0.997, 1 and 0.907. Thus
comparing the results in Table 2, Table 3, Table 4, Table
5 and AUC values, we can say BayesNet using Genetic
search provides the best classifier. Nevertheless, J48
takes very less time in building the training model with a
reasonably good model performance.

VI. A RULE INDUCTION ALGORITHM FOR

BOTNET TRAFFIC CLASSIFICATION

From analysis of results obtained from three classifiers
in Section VI, it is apparent that Decision Tree (J48)

gives both high predictive accuracy and faster model
building time. Therefore, we used the indirect method of
building classification rules i.e. to extract rules from C4.5
classification model discussed in Section V. Rule
induction from Quinlan’s famous C4.5 algorithm [24] is
the conjunction of antecedents to arrive at a consequence.
That is, if A, B and C are the test nodes encountered in
the path from root to leaf node D, then the rule generated
would be in conjunctive form such as “if A and B and C
then D”. The approach for rule generation is as follows:

First we trained the C4.5 tree. Then from it we
extracted initial set of rules by considering test conditions
in each path as conjunctive rule antecedents and
corresponding class labels as rule consequences. We
extracted 21 such rules from the decision tree trained on
our dataset. Then we remove those antecedents which can
trivially be removed. For example, if there are two
antecedents in the same rule, say t>x1 and t>x2 where t is
the attribute and x1, x2 are the numeric attribute values
such that x1>x2, then we accept the antecedent t>x1 and

Figure 2: ROC curve for the BayesNet classification model
(Class: P2Pbot)

Figure 3: ROC curve for the J48 classification model. (Class:
P2Pbot)

False Positive Rate

False Positive Rate

 An Efficient Machine Learning Based Classification Scheme for Detecting Distributed Command 15
& Control Traffic of P2P Botnets

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 10, 9-18

Figure 4: ROC curve for the LIBLINEAR classification model.

(Class: P2Pbot)

discard the other. Similarly, if antecedents were t<x1 and
t<x2, then we accept t<x2 provided x2<x1. This reduced
rule lengths.

We computed Coverage and Accuracy for our initial
set of C4.5 rules. Coverage is the fraction of records that
satisfy antecedents of a rule, given by

Coverage = (|LHS|) / n (5)

And, accuracy is fraction of records covered by the

rule that belong to the class on the RHS. It is given by

Accuracy = (|LHS ∩RHS|) / (|LHS|) (6)

Where n is the number of records in our dataset, |LHS| is
the number of records that satisfies antecedent of a rule
and |LHS ∩ RHS| is the number of records that satisfies
the rule as a whole.

In our trained C4.5 tree, the attribute ‘response packet
difference’ is the root followed by number of splitting on
attributes ‘ratio of largest packet’ and ‘largest packet’.
Only in one case ‘response packet difference’ and
‘response time difference’ is used for splitting dipper in
the tree. The initial set of rule is generalized by removing
antecedents not contributing to accuracy and coverage of
its original rule. To do this, antecedents corresponding to
test nodes higher up in the tree were removed first
(initially the root node). Then the Coverage and accuracy
values for remaining part of the rules containing
antecedents corresponding to test nodes dipper down the
tree were calculated. If the freshly calculated coverage
and accuracy values were not worse than the original, we
replaced the original rule with its new variant. This
process was repeated until further generalization of the
rules was not possible. Rules are then grouped according
to their predicted classes and subjected to further
polishing using Minimum Description Length (MDL)
principle [36] so that rules that do not contribute to the
accuracy of our rule based classifier are removed.

In our newly generated rule set, we are left with ten
rules that predicted normal traffic and four rules for
botnet traffic, down from fourteen and seven respectively

for our initial rule set. One important observation of our
newly generated optimized rule set is that there are seven
rules out of fourteen which have flows classified based on
“proportions of large packets transferred in a flow” and
“packets carrying maximum payload” only. This is
shown in Table 6. This led us to believe that some more
rules of our new rule set can be modified to fall within
mutually exclusive ranges of these two attribute values
without / insignificant degradation of their corresponding
coverage and accuracy values.

We applied heuristic method to create a variant of
some of the existing rules of the remaining rule set. The
procedure adopted to modify remaining part of the rule
set is as follows: We created a list of test conditions that
belongs to remaining rules in the rule-set. Then we
weighted each test condition according to summation of
coverage values of their participated rules. We grouped
them according to attribute name and arranged it in
decreasing order of their weight-age values in each group
separately. Then we considered one rule at a time from
the remaining pool and used heuristic to replace one of its
antecedents For example, in case of the following rule
that predicts Normal flow,

“If (Response packet difference ≤ 0.003) And (Ratio of
largest packet ≤ 0.504274) And (Largest packet ≤ 0.0115)
And (Largest packet > 0.0063) Then Class = Normal” we
replaced the antecedent (Response packet difference ≤
0.003) with (Ratio of largest packet > 0.142857). The
new rule generated with this replacement has an accuracy
and coverage of 100% and 1.68 % respectively. The
corresponding figures for the rule before replacement
were 99% and 1.15%. Table 7 shows new variant of four
such rules. However, in three rules we need to retain
antecedents on other two attributes for correct prediction.
Those three rules are shown in Table 8.

Finding the best decision tree is NP-hard and all
current decision tree algorithms are heuristic algorithms.
Therefore, the decision tree structures would be different
for different training sets. However, using our approach
most of the rules can be converted in to ranges of packet
carrying maximum payload and its proportions in a flow.

We have generated the rules from decision tree created
on one data set and tested it on all the three data sets. We
found that rules in Table 6 has a coverage of
approximately 24%, rules in Table 7 has a coverage of
approximately 76% and rules in Table 8 has a very
negligible coverage. We also found that the rule based
approach has produced better accuracy (Average
Accuracy = 99.63 %) than the original decision trees in
all the three test cases.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a methodology for
detecting P2P botnets using Machine Learning techniques.
We used

False Positive Rate

16 An Efficient Machine Learning Based Classification Scheme for Detecting Distributed Command
& Control Traffic of P2P Botnets

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 10, 9-18

TABLE 6: Rules based on “ratio of largest packet” and “largest packet” only
Rule antecedents Rule

Consequence
Accuracy (%)

Ratio of Largest Packets Largest Packet

> 0.504274 - Normal 99.8

<= 0.142857 > 0.0457 Normal 99.3

<= 0.142857 <= 0.0083 Normal 100

<= 0.142857 > 0.0095 AND <= 0.0117 Normal 100

<= 0.142857 > 0.0118 AND <= 0.0365 Normal 97.7

> 0.00831 AND <= 0.142857 > 0.0365 AND <= 0.457 Normal 100

<= 0.142857 > 0.0117 AND <= 0.0118 P2Pbot 100

TABLE 7: Replaced antecedents in the new rules

Rule Antecedents Rule
Consequence

Accuracy
(%) before
replacement

Accuracy (%)

after
replacement

Replaced Antecedents Replaced With Unchanged Antecedents

(Response Packet
Difference ≤ 0.003)

(Ratio of Largest
Packet > 0.142857),

(Ratio of Largest
Packet <= 0.504274)

(Largest Packet >
0.0118)

Normal 99.5 99.7

(Response Packet
Difference ≤ 0.003)

(Ratio of Largest
Packet > 0.142857)

(Ratio of Largest
Packet <= 0.504274),

(Largest Packet >
0.0063), (Largest Packet

<= 0.0115)

Normal 99 100

(Response Packet
Difference ≤ 0.003)

(Ratio of Largest
Packet > 0.142857)

(Ratio of Largest
Packet <= 0.504274),

(Largest Packet <=
0.0063)

P2Pbot 99.8 99.8

(Response Packet
Difference ≤ 0.003)

(Ratio of Largest
Packet > 0.142857)

(Ratio of Largest
Packet <= 0.504274),

(Largest Packet >
0.0115), (Largest Packet

<= 0.0118)

P2Pbot 100 99.9

TABLE8: Unchanged rules

Rule Antecedents Rule Consequence Accuracy (%)

(Response Packet Difference > 0.003), (Ratio of Largest Packet <=
0.00831), (Largest Packet > 0.0365), (Largest Packet <= 0.0457),
(Response Time Difference <= 0.01261)

Normal 100

(Response Packet Difference <= 0.003), (Ratio of Largest Packet <=
0.142857), (Largest Packet > 0.0083), (Largest Packet <= 0.0095),
(Response Time Difference <= 0.01261)

Normal 100

(Response Packet Difference > 0.003), (Ratio of Largest Packet <=
0.142857), (Largest Packet > 0.0083), (Largest Packet <= 0.0095)

P2Pbot 100

ML classification algorithms to classify P2P botnet

Command & Control(C&C) traffic based on combined
power of selected flow features and botnet behavioral
characteristic features. From our experiments, we found
that the BayesNet classifier created using Genetic search
produces very promising result with an accuracy rate as
high as 0.996399 and AUC value of 0.999. These are

good indicators to justify efficacy of our classification
techniques.

Other classification algorithms such as J48 and
LIBLINEAR are very fast. For example J48 took only
0.85 second to build model on our training data having a
reasonably good predictive accuracy. Therefore, a
noteworthy contribution of this research work is that we
proposed a machine learning based framework for quick

 An Efficient Machine Learning Based Classification Scheme for Detecting Distributed Command 17
& Control Traffic of P2P Botnets

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 10, 9-18

detection of P2P botnet traffic that has a high predictive
accuracy. Our ROC curve analysis points to predictive
accuracy of our classification models. However, we need
to test our classification techniques in large-scale network
set-ups.

Finally, we proposed a rule induction algorithm for
P2P botnet traffic classification. We achieved better
classification accuracy than decision tree classifier. We
generated rules from traffic samples collected from
Nugache botnet. However, same procedure can be
adopted to generate rules for other P2P botnet traffic
samples as well. Furthermore, our rule based approach
can be a stepping stone for development of an
unsupervised detection technique. Large number of
botnet flows tends to exist within short intervals of
proportions at which largest packets are transferred and
also the size of the largest packet. Only when these two
characteristic features failed to provide high predictive
accuracy for a particular range of its values, the other two
features were used.

ACKNOWLEDGMENT

We would like to thank Mohammad M. Masud,
Department of Computer Science, University of Texas at
Dallas for providing us the botnet dataset to carry out this
research work.

REFERENCES

[1] E. Florio and M. Ciubotariu, Peerbot: Catch me if you
can, Symantec Security Response,Tech. Rep., April
2007.

[2] S Stover, D Dittrich, J Hernandez, S Dietrich,
“Analysis of the Storm and Nugache Trojans: P2P is
here ”, in USENIX December 2007, Volume 32, Number
6.

[3]G. Sinclair, C. Nunnery, B. Byung and H. Kang, “The
Waledac Protocol: The How and Why” Proc. 4th
International Conference on Malicious and Unwanted
Software(MALWARE 09), IEEE Press, Feb. 2010.

[4] Wen-Hwa Liao, Chia-Ching Chang, ”Peer to Peer
Botnet Detection Using Data Mining Scheme”,
International Conference on Internet Technology and
Applications, 2010.

[5] Guofei Gu, Vinod Yegneswaran, Phillip Porras,
Jennifer Stoll, and Wenke Lee, “Active Botnet
Probing to Identify Obscure Command and Control
Channels” in Annual Computer Security Applications
Conference,2009.

[6] Craig A. Schiller, Jim Binkley, David Harley, Gadi
Evron, Tony Bradley, Carsten Willems, Michael
Cross, “BOTNETS THE KILLER WEB APP”,
Syngress Publishing Inc.,2007.

[7] Kevin Gennuso Shedding Light on Security Incidents
Using Network Flows, The SANS Institute 2012.

[8] Carl Livadas, Robert Walsh, David Lapsley, W.
Timothy Strayer, “Using Machine Learning

Techniques to Identify Botnet Traffic” in 2nd IEEE
LCN Workshop on Network Security (WoNS'2006).

[9] David Zhao, Issa Traoré, Ali A. Ghorbani, Bassam
Sayed, Sherif Saad, Wei Lu: Peer to Peer Botnet Detection
Based on Flow Intervals. SEC 2012, pp. 87-102, 2012.

[10] Wernhuar Tarng, Li-Zhong Den, Kuo-Liang Ou,
Mingteh Chen, “The Analysis and Identification of
P2P Botnet’s Traffic Flows”, International Journal of
Communication Network and Information
Security(IJCNIS), Vo. 3, No. 2, August 2011.

[11] Pijush Barthakur, Manoj Dahal, Mrinal Kanti
Ghose,”A Framework for P2P Botnet Detection using
SVM”, in the 4th International conference on Cyber-
Enabled Distributed Computing and Knowledge
Discovery(CyberC), 2012.

[12] H. Choi, H. Lee, H. Lee, and H. Kim, “Botnet
Detection by Monitoring Group Activities in DNS
Traffic,” in Proc. 7th IEEE International Conference
on Computer and Information Technology (CIT 2007),
2007, pp.715-720.

[13] Ricardo Villamarín-Salomón, José Carlos Brustoloni,
“Identifying Botnets Using Anomaly Detection
Techniques Applied to DNS Traffic”, in IEEE CCNC
proceedings,2008.

[14] Sandeep Yadav, Ashwath Kumar Krishna Reddy,
A.L. Narasimha Reddy, Supranamaya
Ranjan ,”Detecting Algorithmically Generated
Domain-Flux Attacks with DNS Traffic Analysis.”,
2012.

[15] Mohammad M. Masud, Tahseen Al-khateeb, Latifur
Khan, Bhavani Thuraisingham, Kevin W. Hamlen.
Flow Based Identification of Botnets Traffic by
Mining Multiple Log Files. In Distributed Framework
and Applications, 2008. DFmA 2008.

[16]Guofei Gu, Roberto Perdisci, Junjie Zhang, and
Wenke Lee. BotMiner: Clustering Analysis of
Network Traffic for Protocol- and Structure-
Independent Botnet Detection. In 17th USENIX
Security Symposium,2008.

[17]Hossein Rouhani Zeidanloo, Farhoud Hosseinpour,
Farhood Farid Etemad,“New Approach for Detection
of IRC and P2P Botnets”, International Journal of
Computer and Electrical Engineering, Vol. 2, No. 6,
December 2010.

[18]Huy Hang, Xuetao Wei, Michalis Faloutsos, Tina
Eliassi-Rad, “Entelecheia: Detecting P2P P2P bots
with Structured Graph Analysis”, 19th USENIX
conference Botnets in their Waiting Stage”, IFIP
Networking 2013.

[19] Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong,
Matthew Caesar, Nikita Borisov, “BotGrep: Finding
on Security, 2010.

[20] Babak Rahbarinia, Roberto Perdisci, Andrea Lanzi,
Kang Li, “PeerRush: Mining for Unwanted P2P
Traffic”, in proceedings of 10th Conference on
Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA 2013), July, 2013.

[21] Huabo Li, Guyu Hu, Jian Yuan, Haiguang Lai. “P2P
Botnet Detection based on Irregular Phased
Similarity”, in Second International Conference on

https://www.usenix.org/publications/login/december-2007-volume-32-number-6�
https://www.usenix.org/publications/login/december-2007-volume-32-number-6�
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Traor=eacute=:Issa.html�
http://www.informatik.uni-trier.de/~ley/pers/hd/g/Ghorbani:Ali_A=.html�
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Sayed:Bassam.html�
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Sayed:Bassam.html�
http://www.informatik.uni-trier.de/~ley/pers/hd/l/Lu:Wei.html�
http://www.informatik.uni-trier.de/~ley/db/conf/sec/sec2012.html#ZhaoTGSSL12�

18 An Efficient Machine Learning Based Classification Scheme for Detecting Distributed Command
& Control Traffic of P2P Botnets

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 10, 9-18

Instrumentation, Measurement, Computer,
Communication and Control(IMCCC), 2012.

[22] http://www.wireshark.org/.
[23] M. M. Masud, J. Gao, L. Khan, J. Han and

B.Thuraisingham,” Mining Concept-Drifting Data
Stream to Detect Peer to Peer Botnet Traffic”, Univ.
of Texas at Dallas, Tech. Report# UTDCS-05-
08(2008).

[24] J. R. Quinlan, “C4.5: Programs for Machine
Learning”, San Mateo CA:Morgan Kaufman, 1993.

[25] Remco R. Bouckaert, “Bayesian Network Classifiers
in Weka for Version 3-5-7 ”, The University of
Waikato, 2008.

[26]http://www.androidadb.com/source/weka-3-7-4/weka-
src/src/main/java/weka/classifiers/bayes/net/search/local/Ge
neticSearch.java.html.

[27] T. Joachims, "A Support Vector Method for
Multivariate Performance Measures",Proceedings of
the International Conference on Machine Learning
(ICML), 2005.

[28] Shai Shalev-Shwartz, Yoram Singer, and Nathan
Srebro. Pegasos: Primal estimated sub-gradient solver
for svm. In ICML, pages 807–814, Corvalis,
Oregon,2007.

[29]Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh,
Xiang-Rui Wang, Chih-Jen Lin, ”LIBLINEAR: A
Library for Large Linear Classification”, Journal of
Machine Learning Research 9(2008).

[30] http://www.cs.waikato.ac.nz/ml/weka/
[31] Nitesh V. Chawla, Kevin W.Bowyer, Lawrence O.

Hall, W. Philip Kegelmeyer, ”SMOTE: Synthetic
Minority Over-sampling TEchnique” in Journal of
Artificial Intelligence Research, Volume 16, 321-
357,2002.

[32] Emil Brissman, Kajsa Eriksson,”Classification:
Grafted Decision Trees”, Linkoping University, 2011.

[33] Ling, C., Huang, J., & Zhang, H. Auc: a better
measure than accuracy in comparing learning
algorithms. Proceedings of Canadian Artificial
Intelligence Conference. (2003).

[34] Bradley, A.P, ”The use of the area under the ROC
curve in the evaluation of machine learning
algorithms”, Pattern Recognition 30(1997), 1145-
1159.

[35] Lutz Hamel,”Model Assessment with ROC curves”,
The Encyclopedia of Data Warehousing and Mining,
2nd Edition, Idea Group Publishers, 2008.

[36] J. R. Quinlan and R. L. Rivest, “Inferring decision
trees using the minimum description length
principle,” Information and computation, vol.80, no.3,
pp.227-248, 1989.

Pijush Barthakur received the Master of Computer
Application (M.C.A) degree from Dibrugarh University,
India in 2001. Currently he is working as associate
professor at Department of Computer Science &
Engineering, Sikkim Manipal Institute of Technology,
Sikkim, India. He is also pursuing his doctoral degree at
Sikkim Manipal University. His research interests lie in

the area of Network Security and Data Mining. He is
currently a member of Technical Program Committee at
5th International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery,
Beijing, China, 2013.

Dr. Manoj Dahal is currently working at Novell, India
and his professional works mostly lie on File Access
Protocol areas. He received the Ph.D degree on
Networking from Tezpur University, India in 2008 for his
thesis on Addressing Transport Layer Congestion Control
Issues. He is also associated with research on Detection
of Botnets using Machine Learning at Sikkim Manipal
Institute of Technology, Sikkim, India. He has around 15
years experience in Software Industry. He was a Post-
Doctoral Fellow for about a year with INRIA, France at
LIP Labs, ENS de Lyon, where he has worked on Traffic
Engineering for Optical Networks before working as a
Professor for a short period with Sikkim Manipal Institute
of Technology, Sikkim. Manoj also worked with Nokia
(via Satyam) on routing devices and National Informatics
Centre on e-Governance Projects in India before joining
Novell.

Prof. (Dr.) M.K.Ghose is currently the Dean (R &
D), SMIT and Professor and Head of the Department
of Computer Science & Engineering at Sikkim
Manipal Institute of Technology, Majitar, Sikkim,
India since June, 2006. During June 2008 to June 2010,
he had also carried out additional responsibilities of Head,
SMU-IT. Prior to this, Dr. Ghose worked in the
internationally reputed R & D organization ISRO –
during 1981 to 1994 at Vikram Sarabhai Space Centre,
ISRO, Trivandrum in the areas of Mission simulation and
Quality & Reliability Analysis of ISRO Launch vehicles
and Satellite systems and during 1995 to 2006 at
Regional Remote Sensing Service Centre, ISRO, IIT
Campus, Kharagpur in the areas of RS & GIS techniques
for the natural resources management. His areas of
research interest are Data Mining, Simulation &
Modeling, Network, Sensor Network, Information
Security, Optimization & Genetic Algorithm, Digital
Image processing, Remote Sensing & GIS and Software
Engineering and published 221 research papers in various
national and international journals. Till date, he has
produced 8 Ph.Ds and research assistance given for 2
Ph.Ds. Presently 11 scholars are pursuing Ph.D work
under his guidance.

http://www.wireshark.org/�
http://www.androidadb.com/source/weka-3-7-4/weka-src/src/main/java/weka/classifiers/bayes/net/search/local/GeneticSearch.java.html�
http://www.androidadb.com/source/weka-3-7-4/weka-src/src/main/java/weka/classifiers/bayes/net/search/local/GeneticSearch.java.html�
http://www.androidadb.com/source/weka-3-7-4/weka-src/src/main/java/weka/classifiers/bayes/net/search/local/GeneticSearch.java.html�
http://www.cs.waikato.ac.nz/ml/weka/�

	I. Introduction
	II. Related works
	III. PROBLEM DESCRIPTION AND ASSUMPTIONS
	Acknowledgment
	References

