
I.J.Modern Education and Computer Science, 2013, 1, 42-55
Published Online January 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2013.01.06

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 1, 42-55

An Ontology-Based Approach for Multi-Agent

Systems Engineering

Souleymane Koussoube

Institut Africain d’Informatique (IAI), Libreville, Gabon

Email: skoussoube@yahoo.fr

Armel Ayimdji

Département de Genie Informatique, Institut Universitaire de Technologie, Université de Douala, Cameroun

Email: ayimdji@gmail.com

Laure Pauline Fotso

Département d’Informatique, University de Yaoundé I, Cameroun

Email: laurepfotso@yahoo.com

Abstract— This paper presents OBAMAS (Ontology-

Based Approach for Multi-Agent Systems engineering),

an ontology-based contribution to Agent Oriented

Software Engineering. We propose a formal process for

agentification, starting with an analysis phase which

consists of the construction of three formal ontologies (a

domain ontology, an ontology of functionalities, and an

ontology of multi-agents systems) and their alignment to

merge in a single one. The second step, which is a

design phase, consists of the operationalization of the

single ontology in order to infer in a more formal way

the agents of the system. A case study is introduced to
illustrate OBAMAS and to show its use and

effectiveness in a real application, a distance learning

system.

Index Terms— Multi-agent system, Ontology, Ontology

alignment, Operationalization, Description logics

I. INTRODUCTION

These last years, progress in software engineering

were realized by the development of more and more

complex, dynamic and often distributed systems. These

progresses sometimes consisted in granting more

autonomy to software in order to gain efficiency and

robustness. These efforts gave birth to multi-agents

systems (MAS) [1] and then, to Agent Oriented

Software Engineering (AOSE) whose ambition is to
provide specific methods for MAS development. Indeed,

although most of MAS development methods are based

on already existing software engineering paradigms such

as object oriented (OO) or knowledge-based systems

(KBS), these paradigms are not really suitable for MAS.

There are fundamental differences between the OO view

and the Agent Oriented (AO) view. For example, to set

up MAS, we have to take into account the autonomy of

agents. Agents embody a stronger notion of autonomy

than objects, and, in particular, they decide for

themselves whether or not to perform an action on

request of another agent. This distinction between

objects and agents has been nicely summarized in the

following slogan: “Objects do it for free; agents do it

because they want to” [1]. AOSE methodologies were

developed to deal with these peculiarities of agents. Our

contribution is in this context. We propose OBAMAS

(Ontology-Based Approach for Multi-Agents Systems

engineering), an approach for MAS development based

on the intensive usage of ontologies.

The state of the art on AOSE methodologies [1, 2, 3, 4,

5, 6, 8] shows that many of them does not provide an

explicit step of agents identification. In practice, the

decomposition of the system into agents is essentially

“intuitive”. Our objective in this work is to define a

more formal approach for the identification of agents

(agentification) that is to provide a complete guide with

a set of formalized rules allowing inferring in an

objective way the agents of MAS. The present work

extends a previous one introduced in [9] by bringing a

better structure of the approach, the deepening of the

various steps, as well as a comparison with some
existing methodologies.

The rest of this article is organized as follows. Section

II recalls the notions of agents and MAS, and then

ontologies and their contributions in MAS. We present

two key concepts in section III: the alignment and the

operationalization of ontologies. In Section IV, we give

a quick presentation of OBAMAS through the

description of its different steps followed by an
illustration of the methodology with a representative

case study (a distance learning system) to show its use

and effectiveness in a real application. In section V, we

compare our methodology to related works in literature.

A summary of the special features of our methodology is

presented in section VI while section VII concludes this

work.

II. AGENTS, MULTI-AGENTS SYSTEMS AND ONTOLOGIES

Agents have been studied and defined in several ways.

We adopt a definition which is very often used in the

MAS community:

 An Ontology-Based Approach for Multi-Agent Systems Engineering 43

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 1, 42-55

“An agent is a computer system that is situated in

some environment, and that is capable of autonomous

action in this environment in order to meet its design

objectives.” [1].

Here we focus on intelligent agents that are capable of

reactive (ability to perceive environmental changes and
respond to these changes), proactive (capacity to take

initiatives to achieve their design objectives) and social

(ability to interact with other agents) behaviours [10].

Therefore, it makes sense to think that an agent is only

meaningful if it is in a system where there are other

agents with which it interacts so that the overall system

performs the functions for which it was designed. The

ability of agents to interact is essential, that's why there

is a popular slogan in the MAS community:

“There's no such thing as a single agent system.” [1]

A MAS differs from a collection of independent

agents by the fact that agents interact together to

achieve a task or to reach a common goal. However,

interoperability between agents is possible if

knowledge is defined unambiguously for each agent.
Ontologies [11] can be used to provide meaning to

symbols in order to enable software agents to share and

reuse knowledge. In the context of MAS, ontologies

have been widely recognized for their outstanding

contributions to interoperability, reusability, activities

for MAS development and for MAS operations [7].

This is why FIPA
1
 has defined a standard for the use of

ontologies in MAS. Ontologies can therefore be used at

all levels in the MAS development process. We believe

that an appropriate description of components of the

system and its functionalities by the use of formal

ontologies can improve the identification and the
structure of the different agents in the MAS.

III. ALIGNMENT AND OPERATIONALIZATION OF

ONTOLOGIES

A. Alignment

In practice, several researchers working in different

contexts develop and use different ontologies. The

alignment is a way to integrate various ontologies and

enable cooperation between them in order to use them

together. The alignment operation consists, in the case of

two ontologies as input, to output correspondences

between elements (concepts and relations) of these

ontologies. These correspondences may be equivalence,
subsumption, disjunction of classes, temporal/spatial

relations, fuzzy relations, etc.

[13] argues that merging two ontologies and then test

each pair of concepts and roles via the subsumption

relationship is good enough to match the terms having

the same interpretation (or a subset of the interpretation

of the other). The illustration is done on some concepts

1
 The Foundation of Intelligent Physical Agents.

http://fipa.org

from two different ontologies formalized in a DL

language.

In the first ontology, a Micro-company is defined as a

company with at most five employees as follows:

Micro-company = Company ⊓ ≤ 5employee

In a second ontology an SME (Small and Medium

sized Enterprise) is defined as a firm with at most ten
associates as follows:

SME = Firm ⊓ ≤10 associate

The following correspondences are then established:

Company ≡ Firm

associate ⊑ employee

These two correspondences are used to infer a third

one:

Micro-company ⊑ SME

All the correspondences found here constitute an

alignment of the two previous ontologies and they could

be used in tasks using the concepts of both ontologies.

B. Operationalization

An ontology is a conceptual representation of

knowledge, apart from the use that can be made. To

integrate an ontology in a Knowledge base (KB), it is

convenient to transcribe it into a suitable form for the

intended use of the KB, that is to specify the semantics

of the manipulation of axioms; this semantics being

related to the application to be developed but not to the

considered field. Therefore, to describe knowledge in

terms of concepts, relations and their properties is not

usually sufficient to achieve the operational goal of a

Knowledge Based System (KBS). After the
ontologization that leads to a formal ontology, an

operationalization phase will follow to produce an

operational ontology that is a formal representation

suited to a specific application
2
 [14].

The operationalization of an ontology consists:

 To specify the operational semantics that is added to

the ontology to describe the reasoning mechanisms

that will be implemented in the intended system.

However this operational semantics does not change

the formal semantics, but simply complete it by

specifying reasoning mechanisms in the intended

system.

 To translate the conceptual representation of the

ontology in an operational language, this translation

being constrained and directed by the operational

semantics already specified.

The form to give to the ontology in a KBS must be

operational in that the operationalization formalism must

2
 The most content of this section on the

operationalization of ontologies is from [14]

44 An Ontology-Based Approach for Multi-Agent Systems Engineering

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 1, 42-55

provide reasoning mechanisms to handle information in

the KBS. For example, to perform automated reasoning,

the operational formalism must allow the representation

of derivation rules and effective mechanisms for

implementation. To achieve this, we need to choose

among the operations authorized by the formal

semantics of the ontology, the ones that will be

implemented in an operational system. Then, the issue is

to define operationalization mechanisms for this
transcription: usage scenarios [14, 15] can be used to

address the problem.

1. Usage scenarios and contexts of use

According to [15], the operationalization of an

ontology is done for a well-defined operational use,

characterized by a specific usage scenario. The usage

scenario describes the goal of the knowledge specified

in the ontology. Such a scenario should describe how the
elements of the ontology will contribute to the reasoning

in the system. However, only relations and concepts

descriptions (the axiomatic level) of the ontology will be

concerned by the description of the usage scenario.

Indeed, in the terminological level, the representation of

a concept or a relation consists of a term and this

representation doesn't change as a function of the

operational objective of the system. The axiomatic level

of the ontology distinguishes two types of knowledge:

 Axiom schemas. They are used to structure sets of

conceptual primitives at the terminological level.

These axiom schemas involve one or more concepts,

or one or more relations. Among others, relations

include symmetry, transitivity, minimum and

maximum cardinalities of relations. For concepts, we

have subsumption (to organise concepts into a

hierarchy) or disjunction between concepts.

 Axioms. They are present only in heavy ontologies

and represent the intentions of concepts and relations

of the domain and, in general, knowledge not having

a strictly terminological character [16]. They may

not express a property on one or two primitives in

particular, but rather represent properties involving

several primitives. Thus, in MAS for example, the

axiom “Each agent provides at least one service”

can be seen as a property of cardinality for the ability

of an agent to provide a service. However, the axiom

“If two agents A and B want an exclusive access to
the same resource, there must be another agent C to

manage the shared resource” cannot be expressed as

an algebraic property or a cardinality of a particular

conceptual primitive and will be represented in the

ontology of MAS by an axiom. Axioms are

expressions that are always true. Their inclusion in

ontologies can have several objectives: to define the

meaning of components, to set restrictions on the

value of some attributes, to verify the validity of the

specified information or to deduce new ones.

The description of the usage scenario will therefore

consist to specify how the axioms (and axiom schemas)

will serve for reasoning in the intended system. The

context of use of an axiom is the description of the role

this axiom will play in the reasoning mechanisms

implemented in the KBS. So, the operationalization

assumes that a context of use is defined for each axiom.

Contexts of use of axioms and axiom schemas of the

ontology constitute the usage scenario of the ontology

for the intended application.

2. The choice of a usage scenario

The operational form of an ontology combines

inferential mechanisms and validation mechanisms to

automatically manipulate the knowledge. For example, a

computer-based teaching assistant should allow the user

to apply the knowledge of a given field to derive new

information or to validate his work. Such a system

should also provide inferences and automatic

evaluations of students.

We can distinguish two kinds of usage scenario:

 Validation scenarios, where ontological knowledge

is used to validate knowledge with respect to the

semantics of a domain;

 Inferential scenarios, where ontology knowledge is

used to produce new information for a particular

case.

On the other hand, an axiom can be triggered by the

user of the KBS (an explicit use), or can be
automatically applied by the system (implicit use). Then,

to describe the role of an axiom in an ontology-based

KBS, [14] propose four contexts of use:

 Explicit inferential context of use where the user

triggers the axiom to produce new assertions: it is

called an explicit rule.

 Implicit inferential context of use where the axiom is

automatically applied by the system to produce new

assertions: it is called an implicit rule.

 Explicit validation context of use is triggered by the

user to monitor compliance of certain semantic

knowledge with respect to the domain: it is called an
explicit constraint.

 Implicit validation context of use is automatically

applied by the system to test the compliance of a

semantic knowledge base with respect to the domain:

it is called an implicit constraint.

The operationalization of an ontology requires to

choose a language for representing terminological

knowledge and axioms, and to manipulate these

representations for reasoning. The Operationalization

language must be adapted to the domain to allow

manipulating a representation of the axioms of the

domain in agreement with the usage scenario. In this

paper we use the First Order Logic (FOL) to represent

axioms which cannot be represented in DL.

 An Ontology-Based Approach for Multi-Agent Systems Engineering 45

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 1, 42-55

IV. OBAMAS METHODOLOGY

A. The phases of the OBAMAS methodology

Generally, four main phases are concerned in software

engineering: requirements, analysis, design and

implementation. However, the aim of OBAMAS being

to help the MAS developer to formally identify the

agents of the system, its scope is limited to analysis and

design phases (Fig. 1). The advantage being that the

developer can then use his favourite development tools

(platform, programming language, etc.) for the

implementation.

Figure 1. OBAMAS phases and models

The outline of the OBAMAS process sketches four

(04) main steps covering the analysis and the design of

the MAS:

The Analysis phase covers the three first steps which

consist to :

i. Produce a basic ontology (noted BO) obtained from

the alignment and the merging of three ontologies:

a domain ontology (noted AO), an ontology of

functionalities (noted fO) which formally describes

the functionalities of the system, and a MAS

ontology (noted MASO). We represent this first step

by the following formula:

Align

MASfAB OOOO),,(, where
Align

is the

alignment operation used to merge the three

ontologies.

ii. Derive a complete ontology (noted CO) by the

enrichment of the basic ontology. The enrichment

consists of adding axioms involving concepts

appearing in the three first ontologies. We represent

OBAMAS

Scope

Analysis

Design

Implementation

Requirements

Class diagram Use case

diagram

MAS ontology Domain ontology Ontology of

functionalities

Alignment

Enrichment

Basic ontology

Complete ontology

Operationalization

Operational

ontology

Agent

structure
Interaction

model

Agentification

rules

46 An Ontology-Based Approach for Multi-Agent Systems Engineering

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 1, 42-55

this step by the formula:)(BC OEnrichO ,

where Enrich is the operation of enrichment.

iii. Operationalize the basic ontology by giving a

representation allowing its use according to the

operational objective aimed at defining agents. This
is done by defining a usage scenario as in [14]: we

obtain an Operational Ontology (noted opO). This

step is characterized by the formula:

)(Cop OOperO , where Oper is the operation of

operationalization.

The Design phase covers the last step which consists

to:

iv. Operate the operational ontology to obtain the

structure of the Agents and the interaction model.

To build the first three ontologies, we use some UML

diagrams (class and use case diagrams). UML class

diagrams already represent ontologies but, to be

processed by computers, an ontology must be

represented in an adequate formalism. Here we use the

ALCQI description logics (DL) language in the form of a

TBOX. Let us note that DL structure KB in two levels:

the terminological level (TBOX) and the assertion level

(ABOX). The TBOX contains a set of concepts and

concepts descriptions formulated through the
equivalence (noted ≡), the subsumption (relation of

inclusion between two concepts, noted ⊑) and other

constructors (, , ≤, ≥, etc.) provided by DL languages.
The interested reader can refer to the chapter 1 of [12]

for a good description of DL, TBOXes, and ABOXes.

1. The Analysis phase

a. Construction of the basic ontology

The modelling of MAS goes through the modelling of

concepts, goals, roles and interactions between objects.

The constituents of the basic ontology are intended to

describe these entities.

1) The domain ontology

To build the domain ontology, we suggest the

encoding in ALCQI of a UML class diagram

representing the conceptual model of the field using the

transcription rules proposed in [17].

2) The ontology of functionalities

To build the ontology of functionalities of a system,

we propose a method to translate a UML use case

diagram in a TBOX formalized in ALCQI. UML use

cases model is a good mean of functional modelling of a

system. We propose to take into account actors, use

cases and relations. An actor or a use case is represented

by an atomic concept. The relations participate (between

an actor and a use case), include (between use cases) and

extend (between use cases or actors) are all represented

by atomic roles (a role here is taken in the sense of DL).

Table 1 summarizes our proposal for the ALCQI

formalization of concepts and roles descriptions in the

ontology of functionalities. In this table, A, A1, and A2

are actors, U, U1 and U2 are use cases.

TABLE I. SUMMARY OF THE ALCQI FORMALIZATION OF

THE ONTOLOGY OF FUNCTIONALITIES

Expression Translation in ALCQI

A1 generalizes A2 A2 ⊑ A1
A participate to U A ⊑ participateU

U1 includes U2 U1 ⊑ includeU2
U1 generalizes U2 U1 ⊑ U2

U1 extends U2 U1 ⊑ extendU2

3) The multi-agents systems ontology

The ontology of MAS describes the entities that

should be part of MAS and their relations. This is done

independently of the operational goal of any system,

that's why it is built once and should be used for several

MAS development. We were inspired by the diagram

representing the concepts of the AOSE methodology

called MESSAGE [5] (Fig. 2) and some well known

requirements of MAS [1, 10].

Figure 2. MESSAGE concepts [5]

The following are some partial concepts descriptions

of the MAS ontology.

Agent⊑≥1provideService⊓≥1useResource⊓≥1play

Role⊓≥1executeAction⊓presentBehaviou

r⊓≥1haveBelieve⊓≥1haveCompetence⊓≥1
acquaintance

Service ⊑ ≥1implementedBy Task

Task ⊑Action

Action ≡ DirectAction ⊔ CommunicationAction

DirectAction ⊑ ≥ 1affect Resource

⊤⊑ Acquaintance Agent ⊓acquaintance
-
 Agent

4) The alignment of the three ontologies

To use our three ontologies in the KBS intended to

help in the definition of agents, we have to align them to

 An Ontology-Based Approach for Multi-Agent Systems Engineering 47

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 1, 42-55

establish semantic links between entities in these

ontologies. Once the correspondences are found, we

merge the ontologies by adding these relations. Given

that the obtained ontology is going to serve within the

framework of a particular application, namely the

identification of the agents, a phase of reengineering can

follow to eliminate unwanted parts if any [13]. This step

produces the basic ontology.

b. Construction of the complete ontology

The complete ontology is obtained by the enrichment

of the basic ontology by adding axioms and axiom

schemas.

Axiom schemas are expressed in ALCQI. Adding
axiom schemas consists in decorating concepts and roles

by specifying the types of the involved relations. It

generally concerns reflexivity, anti-reflexivity,

symmetry, anti-symmetry, transitivity, exclusivity, and

incompatibility between relations or concepts,

cardinality of some relations and signature of some

relations. For example, the role “execute”, whose

signature is execute(Agent,Action), is anti-reflexive and

anti-symmetric. This is expressed it by adding in the

basic ontology the axiom schema:

⊤ ⊑executeAction ⊓execute
-Agent

We formalize axioms and agentification rules in the

First Order Logic (FOL) in order to use an inference

engine (JESS for example) to automatically make

logical deductions about knowledge. We add axioms and
some formal rules which will be operationalized for

agentification. In the following, for both axiom and rule,

the term axiom will be used.

The operation of adding axioms is based on the

functionalities of the system, as well as on the existence

of agents and cooperation between agents. As in [3], use

cases are compared to services (which are carried out by

a set of tasks), links between actors and use cases
represent interactions between agents which perform

tasks. We identify a certain number of axioms using the

concepts already defined in the basic ontology. It's

important to note that these axioms are not specific to a

particular system; they are independent of any system

and then, can be reused for all MAS developed by

OBAMAS. We give here a non exhaustive list of some

of these axioms to add in the basic ontology to obtain

the complete ontology:

For each service of the system, there is an agent

which provides it.

s Service(s) → a Agent(a)provide(a,s) (A1)

If an actor a1 generalizes another actor a2, then

there is acquaintance between the agents representing

these actors (because a1 will query a2 to carry out the
services provided by a2).

 a1, a2, Actor(a1)Actor(a2)generalize(a1,a2))→
acquaintance(a1,a2) (A2)

If an actor corresponds to a concept described in the

domain ontology (e.g. the actor A_Student and the

concept Student) then this actor (seen as an agent),

uses the concept as a resource to achieve its tasks.

a, c, Actor(a)Concept(c)correspond(a,c))→
use(a,c) (A3)

If a use case u1 “includes” a use case u2, then there

is acquaintance between the agents which provide them

(because the agent performing u1 will call the one

providing u2 to realize a part of the service it wants to

achieve).

u1, u2, a1, a2, U(u1)U(u2) Agent(a1)

Agent(a2)include(u1,u2) provide(a1,u1)

provide(a2,u2) → acquaintance(a1,a2) (A4)

If an agent cannot perform a given task related to
some service, it can delegate the task to another agent

with whom it has acquaintance.

a1, t, Agent(a1) Task(t) (competence(a1,t))→

a2,Agent(a2)callable(a2,t)acquaintance(a1,a2)
 (A5)

If two actors take part in the same use case, then the

two agents representing them can collaborate (this will
depends on the semantics of this use case.)

u, a1, a2,

U(u)Agent(a1)Agent(a2)participate(a1,u)

participate(a2,u) → acquaintance(a1,a2) (A6)

If some agents want to have an exclusive access to

the same resource, the presence of another agent to

manage the share is needed.

a1… an

n

i 1
 Agent(ai)Resource(r)

n

i 1
 useai,r)

ag Agent(ag)shareResource (ag, r, a1… an)

 (A7)

If a use case u1 is not directly connected to any actor
but extends another use case u2 which is a service

provided by an agent a2 (for example “to suggest a

rereading of a course” which extends “to make an

evaluation”), then an agent a1 is created to provide the

service u1 and a relation between a1 and a2 is

established to make them collaborate.

u1,u2,a1,a U(u1) U(u2) Agent(a1) Agent(a)

participate(a1, u1)extends(u1,u2) participate(a,

u2) → a2 Agent(a2) participate(a2, u2)

acquaintance(a1,a2) (A8)

If a use case u1 “extends” another one u2, then there

is acquaintance between the two agents providing them

(because the agent a2 can request for a1 during its

execution).

48 An Ontology-Based Approach for Multi-Agent Systems Engineering

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 1, 42-55

u1,u2,a1,a2, U(u1)U(u2) Agent(a1)

Agent(a2)participate(a1, u1)participate(a2, u2)

 extends(u1,u2) → acquaintance(a2,a1) (A9)

If a use case u is not connected to any actor, but is

included (via the relation “include”) in others use cases

u1, …,un, then it is an agent which provides the service

corresponding to u. The agent providing u will be

requested by the agents providing u1,…,un when

necessary (this kind of use case is used only to

factorize a common behaviour to several use cases).

u1,…, un,a, a1,… an, u U(u)
n

i 1
 (U(ui))

Agent(a)
n

i 1
 (Agent(ai))

n

i 1
 (include(ui,u))

n

i 1

(participate(ai,ui)) (participate(a,u)→ ag

Agent(ag) participate(ag,u)
n

i 1
 acquaintance(ai,ag)

 (A10)

These axioms add some links between concepts of

the three first ontologies. The obtained enriched basic

ontology represents what we called the complete

ontology.

c. Construction of the operational ontology

In DL, most of the axiom schemas are already

represented by operational forms, i.e. forms with
operational semantics which define the way in which

these properties are used for reasoning. Precisely, the

operational semantics of certain properties is determined

by principal reasoning mechanisms of DL: subsumption

(to check whether a concept is more general than

another) and instance checking (to check whether an

individual is an instance of a concept). Signature of

relations (to check the domain and the range of relations)

can also be used.

 The subsumption relation is used in an inferential

context since it makes it possible to deduce all the

possible types of an instance starting from its

specified type. For example, if there is a

subsumption relation C ⊑ D in the ontology, then

the system knows that each instance of C is an

instance of D and this could thus be used in the

various reasoning mechanisms.

 Instance checking is used in a validation context,

since the presence of an assertion C(a) (stating that

a is an instance of C) will raise an error if a is not

conform with respect to the definition of C. This

assertion won't be used to infer any information

about a.

 The signature of a relation is also used to validate,

since only a violation of this property will influence

the reasoning: the presence of a relation does not

imply the types of the concepts involved. Thus,

linking an instance of a concept with a relation

whose signature doesn't contain this concept will

raise an error. For example, the presence of the

relation acquaintance(a,b) will not be used to

infer that a and b are agents (since the signature of

this relation is acquaintance(Agent,Agent)

but only to check whether they are agents, if not, an

error must be raised.

The other axioms (such as the symmetry of the

acquaintance relation: a1, a2 Agent(a1) Agent(a2)

acquaintance (a1,a2)→ acquaintance (a2,a1)) must be

operationalized using reasoning primitives which are:

 positive constraints (if the assumption is present,

then the conclusion must also be present)

 negative constraints (if the assumption is present,

then the conclusion must be absent)

 inference rules (if the assumption is present, then the

conclusion must be added).

To operationalize the complete ontology, we identify

three (03) types of axioms. Each type gives place to a

different operationalization form according to the chosen

context of use.

In the following lines, H indicates a conjunction of

concepts or of relations, r and ri, i=1, …,m are relations, R a
conjunction of relations, and Ci, i=1, …,p are concepts, x

and xi, i=1, ...,n are instances of concepts. Let iic (resp. eic)

the implicit (resp. explicit) inferential context, and icv

(resp. ecv) the implicit (resp. explicit) context of

validation.

axioms of type 1 :

x1, …,xnHy1, …,ypC1(y1) …Cp(yp)R

For example, the axiom A1:

s Service(s) → a Agent(a)provide(a,s)

The operationalization is as follow:

 iic (resp. eic): First, we add an implicit (resp. explicit)

rule

x1,…,xnHaction1y1,…,ypC1(y1) …Cp(yp)R

);

action1 checks, as soon as this hypothesis is present,

the existence of instances yi and relations in R; if

they do not exist, it infers these instances.

Furthermore we add p negative implicit constraints:

x1,…,xn H Ci(y)action2Cj(y) where Ci and

Cj are disjoint concepts and action2 prevents the

presence of an instance y belonging to both Ci and Cj.

icv or ecv: the axiom is operationalized in the form

x1,…,xnHaction3y1,…,ypC1(y1)…Cp(yp)R

where action3 checks that instances yi exists, belongs

to concepts Ci, doesn't belong to any instance of

incompatible concepts and finally that the signatures

of relations in the conjunction R are met.

Axioms of type 2:

x1, …,xn H r1(..) rm(..)

 An Ontology-Based Approach for Multi-Agent Systems Engineering 49

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 1, 42-55

For instance, the symmetry of the acquaintance

relation between agents is formalized in FOL as a1,a2
Agent(a1) Agent(a2) acquaintance(a1,a2)→

acquaintance(a2,a1)

The operationalization is as follow:

 iic: Addition of an implicit rule x1, …,xn

Haction1r1(..) rm(..)). The action verifies in
the KB the existence of the relations ri as soon as the

hypothesis is present. In case there is no relation,

they are inferred and added.

 eic: Addition of an explicit rule x1, …,xn

Haction2r1(..) rm(..)); the action is defined
as in iic and the addition of m implicit negative

constraints:x1,…,xnH(ri(..)i=1..maction3r’j(

..)j=1,...m,ij where r'j are exclusive relations of ri.

Action3 defines constraints as soon as the hypothesis

and the relations ri are present so that no exclusive

relation of ri is present. If no exclusive relation of ri

is present in the ontology, the constraint is replaced

by m' implicit negative constraints: x1,…,xn

H(ri(..)i=1..m,ijaction3r’jk(..)k=1,...m’ where

r’jk are all relations incompatible with ri. These

constraints exclude the presence of the incompatible

relations of ri as soon as the hypothesis and the
relations ri are present.

 icv (resp. ecv): The axiom is operationalized in the

form of m implicit negative constraints:

x1,…,xnH(ri(..)i=1..maction3r’j(..)j=1,...m,i

j where r’j are relations exclusive to ri. If no
exclusive relation of ri is present in the ontology, the

constraint is replaced by m’ negative implicit

constraints:

x1,…,xnH(ri(..))i=1..m,ijaction3r’jk(..))k=1,...m’

where r’jk are all relations incompatible with ri.

Axioms of type 3:

x1, …,xn H (r1(..) rm(..))

For example, the anti-symmetry of the inclusion

between use cases which is formalized as: u1,u2

U(u1) U(u2) include(u1,u2) → include(u2,u1).

The operationalization is as follow:

 iic : The axiom is operationalized in the form of m

implicit rules:

x1,…,xnH(ri(..)i=1..maction3r’j(..)j=1,...m,i

j where r’j are exclusive relations of ri. If no exclusive

relation of ri is present in the ontology, the

corresponding rule is replaced by m’ implicit rules:

x1,…,xnH(ri(..))i=1..m,ijaction3r’jk(..))k=1,...m’

where r’jk are relations which are incompatibles with
ri. Action3 is defined as in eic of axioms of type 2.

 cie : As in the iic, except that the m and m' rules are
explicit. In addition, we add a negative constraint

x1,…,xn H action4r1(..) rm(..)))

 icv or ecv: addition of a negative constraint x1,…,xn

H action4r1(..) rm(..)))

Action4 checks that there is no relation between

some instances of concepts once the hypothesis is

verified.

2. The design phase

The purpose of the design phase is to operate the

operational ontology to derive the structure of the agents
of the system (their nature, their associated services,

their resources, etc.) and the interaction model

(exchange protocols between the agents). The

mechanism for identifying agents, resources and

collaboration relations between agents consists of a

sequence of rules based on the concepts of the

operational ontology. Except for few of them, most of

the axioms will be operationalized in an explicit

inferential context because it's the designer of the MAS

who triggers the rules to infer agents, assign resources,

and find cooperative relations existing between them.

The axiom schemas are already in an operational form

in the complete ontology (in particular, the subsumption

relations from the three first ontologies) and allow

identifying the system functionalities and all the actors

involved. Due to the relations created by the alignment

of the first ontologies, functionalities are assimilated to

services provided by the system, actors becoming agents

providing these services. Then the sequence of rules of

existence such as A1, A5, A7, A8 and A10 identify the
other agents of the system.

The phase of resource allocation follows. According

to the ontology of MAS, each agent must have access to

resources to perform tasks implementing services. These

tasks are in fact actions performed by agents, either to

communicate with other agents or to handle resources.

The concepts defined in the domain ontology are

resources and thus are assigned to each agent, depending
on the role played in the system (i.e. based on the

services it provides). Operating an axiom such as A3,

operationalized in an inferential context, can also

allocate resources to agents.

B. Case study : a distance learning system

To illustrate our approach, we design a “minimum”

multi-agents platform for distance education. Our choice

is motivated by the fact that this is an open and dynamic

system because when deploying the system, we do not

know how many students will enrol, or when they will

do it, yet they interact strongly with other components of

the system and also interact with each other. We first
give some requirements of this platform.

a. Requirements of our distance learning system

The pedagogy of the distance learning system (DLS)

is led by a director and a board that includes the

educational council, site managers, and representatives

of teachers and of students. The DLS allows students to

enrol and attend courses at distance. Among the actors

50 An Ontology-Based Approach for Multi-Agent Systems Engineering

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 1, 42-55

of the DLS there are students seeking courses on the

platform, requesting registration for these courses. Once

registrations are validated, students seek documentation,

participate in forum discussions, take exams …etc.

Tutors monitor students, answer questions, give advices.

Teachers may do any of tutors’ tasks but specifically,

they produce educational materials for courses and

evaluate students. Site managers add new courses in the

list of available courses; manage enrolment and student
courses of study. The list of available courses is

described in a catalogue.

A course is characterized by a unique identification

number, a title, contents, and a fee. A given exercise is

associated to a course. It is characterized by a difficulty

level, a list of concepts pre-requisite, and a solution.

Each course must be structured and follow the

decomposition: Chapter - Paragraph - Notion. For each
course in which a student is enrolled, he may send

questions by email to the teacher responsible for the

course. Each exam takes place in a limited time on the

platform with the presence of the course instructor who

can answer questions for better understanding.

b. Deploying OBAMAS for the case study

Following the OBAMAS methodology, we begin with

the analysis phase. First of all, we build the three first
ontologies to be aligned to constitute the basic ontology.

The domain ontology

To build the domain ontology, we proceeded by the

encoding in ALCQI of an UML class diagram
representing the conceptual model of the field, using the

transcription rules proposed in [17]. The following are

some partial concepts descriptions:

Student ⊑ id ⊓ ≤1id ⊓ email ⊓ ≥1registered
-

Registration

Module ⊑ code ⊓ ≤1code ⊓ date ⊓ ≤1date ⊓

≥1concern
-Registration

Registration ⊑ registered ⊓ ≤1registered ⊓ concern

⊓ ≤1concern

⊤ ⊑ contain Subject ⊓ contain
- Module

Subject ⊑ ≥1code ⊓ ≥1contain
-
 ⊓

≥1supportPedagogicDoc

CourseMaterial ⊑ PedagogicDoc ⊓ ≥1contain2

⊤ ⊑ contain2Chapter ⊓ contain2
-
 CourseMaterial

Chapter ⊑ title ⊓ ≤1title ⊓ ≥1contain2
- ⊓ ≥1contain3

Paragraph ⊑ title ⊓ ≤1title ⊓ ≥1contain3
-
 ⊓

≥1describeNotion

⊤ ⊑ contain3Paragraph ⊓ contain3
-Chapter

TutorialsSheet ⊑ PedagogicDoc ⊓ ≥1contain4

Exercise ⊑ number ⊓ ≤1number ≥1contain4
-
 ⊓

≥1dealWithNotion

⊤ ⊑ contain4Exercise ⊓ contain4
-TutorialsSheet

Notion ⊑ keyword ⊓ ≤1keyword ⊓ ≥1prerequisite

⊤ ⊑ prerequisiteNotion

The ontology of functionalities

For the case of the distance education, among others,

we can identify the use cases “Request registration”,

“Attend courses”, “Research of course materials”, “Take

part in Evaluation”, “Monitor students”, “Manage

course”. Some actors are “Student”, “Teacher”, and

“Site manager”. Fig.3 shows a part of the use case

diagram of the system.

 An Ontology-Based Approach for Multi-Agent Systems Engineering 51

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 1, 42-55

Figure 3. The partial use case diagram of the DLS

For readability, let the names of concepts representing

the actors start with the letter A, while those of use cases

begin with the letter U. Some of the obtained concept

descriptions are:

A_Student ⊔ A_Teacher ⊔ A_Webmaster ⊑ Actor

A_Student ⊑

(participateU_RequestRegistration)⊓(

participate U_AttendCourse)⊓

(participate

U_Research)⊓(participateU_TakeEva

luation)

A_Teacher ⊑ (participateU_ManageCourse) ⊓

(participateU_ManageStudent) ⊓

(participateU_Research)

U_Research ⊑ includeU_Authentication

U_AttendCourse ⊑ extendsU_TakeEvaluation

U_TakeExam ⊔ U_MakeExercise ⊑ U_TakeEvaluation

The ontology of MAS

Since this ontology doesn't change as a function of the

MAS to develop, it was already built when exposing the

analysis phase of OBAMAS.

The three ontologies built are then aligned. We tested
pairs of concepts and roles of the three ontologies via

equivalence and subsumption relations. Some of the

correspondences found are the following:

U_RequestRegistration ⊑ Service (1)

Student ⊑ Resource (2)

provide ⊑ participate (3)

Actor ⊑ Agent (4)

(1) Correspondence between a concept of the

ontology of functionalities and a concept of the ontology

of MAS. It was obtained by observing that every use

case is a service provided by the system.

(2) Correspondence between a concept of the domain

ontology and a concept of the ontology of MAS. It was

obtained by observing that any concept can be defined
as a resource, since each concept contains information

needed for future agents to achieve their tasks.

(3) Correspondence between a role of the ontology of

MAS and a role of the ontology of functionalities. It was

obtained by observing that an agent who provides a

service participates in a use case.

(4) This correspondence is deduced from the previous

three. Indeed, each actor plays a role whose

functionalities are realized by the use cases in which it

participates.

Once the matching is done, we merge ontologies by

adding these correspondences as new relations to obtain
the basic ontology.

To enrich the basic ontology, we introduce in the first

ontologies some axiom schema précising the signature

of some relations such as

⊤ ⊑ containSubject ⊓ contain-Module

⊤ ⊑ acquaintanceAgent ⊓ acquaintance-Agent

which formally states that the signatures of the roles

contain and acquaintance are respectively

52 An Ontology-Based Approach for Multi-Agent Systems Engineering

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 1, 42-55

contain(Module,Subject) and acquaintance

(Agent,Agent).

For the enrichment, we also add characteristics of

some relations:

a1, a2 Agent(a1) Agent(a2) acquaintance(a1,a2)
→ acquaintance(a2,a1) (Symmetry of the acquaintance

relation)

DirectAction ⊓ CommunicationAction ⊑ ⊥

(Disjointness of Direct actions and communication

actions performed by agents)

We noticed that the enrichment of the basic ontology

by axioms doesn't depend on the system to build. We

just add those proposed in the section dedicated to the

analysis that is A1, A2, A3 …etc. to have the complete

ontology.

Finally, we just have to design our MAS by operating

the operational ontology. The design phase consists to
define the agent structure and the interaction model.

Agent structure.

For our distance education platform, we start by

identifying the first agents, actors of the system.

StudentAgent plays the role of a Student within the

system. It requests inscriptions, accesses course

materials, carries out information retrieval, sends mails

to teachers, to other students, to webmasters, and then

receives answers. It also takes part in discussion forums

and evaluations online. To request an inscription, it

needs the use of the resource Student (a concept defined

in the domain ontology by attributes such as Name,
LastDegree, email). The axiom A3, operationalized in

an inferential context affects this concept as a resource

for this agent.

TutorAgent plays the role of Tutor for the students. It

ensures the monitoring of students and the answers to

their questions. This agent has specific properties in the

sense that it does not intervene only when a human tutor

is connected to the platform but, it carries out some
automatic tasks such as the suggestion of an order of

reading course materials (the use case

“U_ReadingOrder”), or the suggestion of a second

reading of some specific parts of a course material

according to the marks obtained during evaluations (the

use case “U_RereadingSuggestion”). More than the

other agents, it must be cognitive.

TeacherAgent plays the role of Teacher within the
system. It designs and deposits teaching material (related

to the courses for which it is responsible) on the

platform and evaluates the students.

SiteManagerAgent plays the role of Webmaster. It

publishes the course catalogue, validates the

registrations requested by students, and exchanges mails

with them.

In addition, the implementation of the operational

forms of the axioms introduced at the time of the step of

enrichment will make it possible to deduce the existence

of other agents and the associated resources.

Thus, the operationalization of axiom A7 in iic or eic

permits to infer the agent ResourceCoordinatorAgent

which plays the role of agent coordinator with respect to

the access to the resources in order to avoid conflicts.

The axiom A8 operationalized in iic or eic permits to

infer the agents:

MailerAgent plays the role of mail manager on the
platform. It is charged to deal with mail sending and

reception, to signal the presence of new mails, to

manage the messages on discussion forums …etc.

SearcherAgent provides the search service on the

platform. This agent will be called for information

retrieval.

It is necessary to note that if the agent TutorAgent did

not exist yet (i.e. if there were not any human actor

being able to play the role of Tutor); he would have been

created by A8. In which case it would have been a

purely virtual agent using only ontology-based reasoning

mechanisms to render his services.

The axiom A10 operationalized in iic or eic permits to

infer the agent:

AuthenticationAgent which ensures the role of service

authentication on the platform. It is used every time

another agent requests authentication in order to take

actions.

The axiom A1 which is of type 1 is operationalized,

according to the contexts, in the following way:

iic (resp. eic): addition of an implicit (resp. explicit)

rule

sService(s)→action1(aAgent(a) provide(a,s)).
The action checks for any service the existence of at

least an agent which provides it, if no agent exists, it

infers it.

cvi or cve: Addition of a constraint s Service(s)

→ action3(a Agent(a) provide(a,s)). Action3
checks that agent a exists and that it renders the

services.

The interaction model

The interaction model describes the relations between

agents i.e. the allowed sequences of messages between

agents. In OBAMAS, the interaction model is generated

by operating operational axioms such as A2, A4, A5, A6,

A8, A9 and A10. These axioms operationalized in an

inferential context allow inferring collaboration relations

between the agents.

For our DLS, the axiom A5 for example, allows to

create between SiteManagerAgent and Authentication

Agent, a relation of collaboration, the first having to call

the second when it needs to be authenticated for the

execution of certain Tasks. Fig. 4 shows the collaboration

relation existing between the agents of the DLS.

 An Ontology-Based Approach for Multi-Agent Systems Engineering 53

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 1, 42-55

Figure 4. The interaction diagram

In Fig. 4, StA = StudentAgent, TtA = TutorAgent,

TrA = TeacherAgent, SmA = SiteManagerAgent, CdA =

CoordinatorAgent, MrA = MailerAgent, SrA =

SearcherAgent, AuA = AuthenticationAgent.

The design step is made quasi automatically by

triggering rules. However, the designer can refine the

produced structures and make implementation choices.

V. RELATED WORKS

Last decades witnessed a growing interest in MAS

development techniques. In this section, we briefly

present the main features of some works related to our

approach to develop MAS from ontologies. We
identified and investigated some AOSE methodologies

which have been well cited in the literature and which

integrate the use of ontologies: MAS-CommonKADS

[6], MESSAGE [5], MASE [4,8] and PASSI [2]. Here,

we restrict our presentation to their use of ontologies.

 MAS-CommonKADS (Multi-Agent System -

Knowledge Analysis and Development System) [6]

is based on the knowledge engineering methodology
CommonKADS. This approach makes use of

ontologies to model the application domain and the

knowledge manipulated by each agent. However

aspects of reusability and interoperability are

neglected because MAS-CommonKADS does not

refer to ontologies in terms of inter-agent

communication. Finally, it is difficult to clearly

justify the use of ontologies in this approach.

 MESSAGE (Methodology for Engineering Systems

of Software Agent) [5] is a methodology that uses

Rational Unified Process (RUP) and considers UML

as a starting point at which it adds some concepts

(such as role, goal, task …etc.) suitable for MAS

modeling. It aims to gather the good features of

existing AOSE. MESSAGE uses an ontology to

model the application domain and to base the

reasoning mechanisms for agents. However, as

MAS-CommonKADS, it doesn't make any reference

to the ontology in the communication between

agents.

 MASE (Multi-Agent System Engineering) in the first

version [8] makes no reference to the use of

ontologies. In its extended version [4], ontologies are

introduced to specify the application domain. The

main goal here is to allow developers specify the

information flow between agents, using the concepts

defined in the ontology, to ensure that each agent has

the information needed to accomplish its tasks. The

main use of ontologies in MASE is made for

communication. This means that tasks performed by

other agents (such as reasoning processes) are not
based on the ontology. This also shows a partial

exploitation of the potential of ontologies.

 PASSI (a Process for Agent Societies Specification

and Implementation) [2] is based on object oriented

modeling techniques and artificial intelligence, and

uses UML notations. PASSI models the application

domain by an ontology which also serves in

communication and reasoning processes for agents
that are themselves identified by use cases of the

system. PASSI In this sense goes beyond the first

three in the use of ontologies.

OBAMAS (Ontology-Based Approach for Multi-

Agent System Engineering) differs from these methods

by the fact that it is entirely based on the use of formal

ontologies. Indeed, OBAMAS advocates the use of

ontologies from the modelling of the application domain,
the functionalities of the future system and the field of

MAS, to their operationalization to identify agents,

resources and interactions between agents. Then, as in

some of the methods described above, the complete

ontology also serves as a common basis for

communications to ensure that there is no ambiguity in

the terminology. The reasoning mechanisms are also

based on this ontology.

VI. FEATURES AND CONTRIBUTIONS OF OBAMAS

OBAMAS includes the following features:

 Flexibility: OBAMAS advocates the use of UML

class and use cases diagrams to build ontologies for

the domain and functionalities. However this

approach is not required, the developer is free to use

any other methodology for building ontologies. In

addition the method only covers the analysis and the
design, leaving the developer free for

implementation choices.

 Reusability: Components of the MAS uses the same

ontology (the operational one) for interactions and

reasoning processes. Moreover, the ontology of the

MAS does not vary regardless of the application to

set up, it is totally reusable. The only effort in

another area will be to build the other two
constituting the basic ontology. In addition, the

proposed axioms are not dependent on any domain

or any particular application. Once these rules are

validated, they remain valid and usable for the

development of MAS in the frameworks of several

other applications.

54 An Ontology-Based Approach for Multi-Agent Systems Engineering

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 1, 42-55

 iterative and incremental: OBAMAS is defined so

that we can start with the specifications of a

minimum initial requirements, build a partial domain

ontology describing only the relevant concepts, a

corresponding ontology of functionalities and

proceed to the identification of agents involved. We

can then add new requirements and restart the cycle.

 The process can be automated: Due to the use of

formal ontologies in the analysis phase, OBAMAS

allows automatic identification of agents via a

trigger mechanism for deduction rules. In this first

application, the operationalization of our ontology in

order to deduce the complete structure of agents and

the interaction model is done by hand to check

carefully and partially validate the proposed

mechanism. In a more practical way, OBAMAS can

be automated by integrating JADE (a java-based
MAS development platform), JENA (a java API to

manipulate ontologies) and JESS (a Java

programming environment for systems based on

logical rules). JESS and JENA will be integrated to

work simultaneously as the rules used by JESS may

sometimes involve concepts and relations defined in

the operational ontology.

VII. CONCLUSIONS

The development of a MAS (distance learning system)

entirely based on the use of ontologies shows that the

approach is interesting and promising because it

formalizes MAS development process, especially the

identification of agents and their interactions. Ontologies

are initially used for agents identification, and then they

are used by agents to realize their various tasks, and for

communication. OBAMAS has the merit of benefiting

all the advantages of the use of ontologies in the context

of MAS, namely interactions, reusability, activities of

MAS development and MAS operations.

Other applications of OBAMAS remain necessary for

its enrichment and its validation. In addition, the

complete ontology could be enriched by the use of UML

sequence and collaboration diagrams in order to better

describe functionalities and the interaction protocols

between agents i.e., the allowed sequences of messages

between agents and the constraints on the contents of

these messages. Moreover, it would be quite interesting

to see whether OBAMAS can be coupled with another
well-known method such as MASE in order to share the

advantages of each of them.

REFERENCES

[1] M. Wooldridge, An Introduction to MultiAgent

Systems, Chichester: John Wiley & Sons Ltd, 2002.

ISBN 0-471-49691-X

[2] P. Burrafato, M. Cossentino, “Designing a multi-

agent solution for a bookstore with the PASSI

methodology”, in Proceedings of the 4th

International Bi-Conference Workshop on Agent-

Oriented Information Systems (AOIS-2002),

Toronto, Canada, 2002.

[3] A. Chella, M. Cossentino, U. Lo Faso, “Applying

UML Use Case Diagrams to Agents

Representation”, Convegno AI*IA 2000, Milano,

2000.

[4] J. DiLeo, T. Jacobs, S. DeLoach. “Integrating

Ontologies into Multiagent Systems Engineering”,

In Proceedings of the 4th International Bi-

Conference Workshop on Agent-Oriented

Information Systems (AOIS-2002), Bologna, Italy,

2002.

[5] Eurescom, “MESSAGE: Methodology for

Engineering Systems of Software Agents”,

Technical information, Broadcom Eireann Research

Ltd., September 2001.

[6] C.A. Iglesias, M. Garijo, J.C. Gonzalès, J.R.
Velasco, “Analysis and Design of Multi-Agent

Systems using MAS-CommonKADS”, In

Intelligent Agents IV (LNAI Volume 1365), ed. M.P.

Singh, A. Rao, and M. Wooldridge, 313-326. Berlin:

Springer-Verlag, 1998.

[7] Falasconi, S., G. Lanzola, and M. Stefanelli. Using

Ontologies in Multi-Agent Systems. In Proceedings

of the 10th Knowledge Acquisition for Knowledge-
Based Systems Workshop (KAW’96), Banff,

Canada, 1996.

[8] M. Wood, S.A. DeLoach, “An Overview of the

Multiagent Systems Engineering Methodology”, in

Proceedings of the 1st International Workshop on

Agent-Oriented Software Engineering (AOSE-2000),

Limerick, Ireland, 207-221, 2000.

[9] A. Ayimdji, S. Koussoubé, L.P. Fotso,

Développement de systèmes multi agents à partir

d'ontologies, In Proceedings of

Colloque Africain sur

la Recherche en Informatique et Mathématiques app

liquées (CARI'10), pp. 575-

582, Yamoussoukro, Côte d'Ivoire, Octobre 2010.

[10] M. Wooldridge, N. R. Jennings, Intelligent agents:

theory and practice, The knowledge Engineering

Review, vol. 10(2), pp. 115-152, 1995.

[11] M. Uschold, M. Grüninger. Ontologies: Principles,

methods and applications. Knowledge Engineering

Review, Volume 11 Number 2, pp. 93-155, 1996.

[12] F. Baader et al., The description logic handbook:

Theory, implementation and applications,

Cambridge University Press, Cambridge, UK, 2003.

ISBN 0-521-78176-0

[13] J. Euzenat, P. Shvaiko, Ontology matching,

Heidelberg, DE, Springer-Verlag, 2007. ISBN 978-

3-540-49611-3

[14] F. Fürst, “Contribution à l’ingénierie des ontologies :

une méthode et un outil d’opérationnalisation”,

 An Ontology-Based Approach for Multi-Agent Systems Engineering 55

Copyright © 2013 MECS I.J. Modern Education and Computer Science, 2013, 1, 42-55

thèse de Doctorat d’Informatique, Ecole

Polytechnique de l’Université de Nantes (EPUN),

2004.

[15] M. Gruninger, M. S. Fox, “Methodology for the

Design and Evaluation of Ontologies”, Proc. of

Workshop on Basic Ontological Issues in
Knowledge Sharing in IJCAI 95, Montreal, Canada,

1995.

[16] S. Staab, A. Maedche, “Axioms are objects too:

Ontology engineering beyond the modelling of

concepts and relations”, Research report 399,

Institute AIFB, Karlsruhe, 2000.

[17] D. Berardi, D. Calvanese, G. De Giacomo,

“Reasoning on UML class diagrams using

description logics based systems”, In proceedings of

KI’2001 Workshop on applications of description

logics, Vienna, Septembre 18, 2001.

Dr. Souleymane KOUSSOUBE, holds a Ph.D in

Artificial Intelligence from the University Paul Sabatier
of Toulouse (France) with a Master of science Degree in

Database and System integration from the University of

Nice/CERAM (France). He is a Lecturer and the

Director General of Institut Africain d’Informatique of

Libreville (Gabon) and his research directions include:

knowledge representation, ontologies, Business

intelligence, Dataming, Machine learning,

computational intelligence and multi-agents systems.

Armel AYIMDJI is a Lecturer at the department of

computer engineering of the Douala University Institute

of Technology (Cameroon). He will defend his Ph.D.
thesis in Artificial Intelligence in few months at the

University of Yaoundé I (Cameroon). His research

directions include: knowledge representation, ontologies,

computational intelligence, multi-agents systems, and

software engineering.

Prof. FOTSO Laure Pauline holds a PhD in Operation

Research & Statistics with Minor in Computer Science

from the Rensselaer Polytechnic Institute of Troy New

York with a Master of Science Degree in Computer

Science from SUNY at Albany. Vice-Rector at the

University of Dschang in Cameroon, her main research
interests include: Combinatorial Optimization

Algorithms, Multi-Agents System modeling, Multi-

criteria Optimization, Scheduling, Markov Process

Applications, Database Development and

Implementation and Knowledge base system.

