
I.J.Modern Education and Computer Science, 2012, 1, 33-39
Published Online February 2012 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijmecs.2012.01.05

Finding Vulnerabilities in Rich Internet
Applications (Flex/AS3) Using Static Techniques

Sreenivasa Rao Basavala

Dept. of Computer Science & Engineering, CMJ University, Shillong, India
Email: basavala@gmail.com

Dr.Narendra Kumar

Dept. of Computer Science & Engineering, Ace college of Technology and Management, Agra, India
Email: narendra.ibs@gmail.com

Dr.Alok Agarrwal

Dept. of Computer Science & Engineering, JIIT University, Noida, India
Email: alok289@yahoo.com

Abstract--- The number and the importance of Rich
Internet Applications (RIA) have increased rapidly
over the last years. At the same time, the quantity
and impact of security vulnerabilities in such rich
internet applications (RIA) have increasing as well.
Since manual code reviews are time consuming,
error prone and costly and it need skilled
developers or programmers to review the manual
source code review, the need for automated
solutions has become evident.

In this paper, we address the problem of
application security vulnerable detection in Adobe
Flex (Rich Internet Applications) platform in web
2.0 applications by means of static source code
analysis. To this end, we present precise analysis
targeted at the unique reference semantics
commonly found in RIA based web applications or
widgets (small applications which will run on fly i.e.
drag and drop) developed in Adobe Flex
Framework or Action Script 3.0. Moreover, we
enhance the quality and quantity of the generated
vulnerability reports.

Index Terms: Applications security Analysis, Static
Analysis, Taint Analysis, Vulnerability Detection in
Flex, Static Techniques, Action Script Security.

I. INTRODUCTION

With Web 2.0 technologies like Adobe Flex/Flash and
web services being all the rage, Rich Internet
Applications (RIAs) are popping up everywhere. More
developers are creating rich apps called widgets in-
house.

Software vulnerabilities provide a way to an attacker
attack or hack the application. Vulnerabilities are the
well-known and well understood software flaws by the
application developers. For example Cross-Site
Scripting vulnerability is most common and well

known of security issue. In order to identify these
kinds of vulnerabilities in a web application a
comprehensive analysis (either dynamic or static) is
required to develop standard solutions against security
vulnerabilities.

As vulnerability or security issue refers to a weakness
in software. Now the question will arises that what is a
weakness of software or an application? The main
reason of vulnerabilities is due to improper
development of a software developer; an attacker can
take advantage from this vulnerability of an
application and execute or run the commands of the
desktop or web application or bypass some access
control list (ACL).

To identify these kinds of security issues (vulnerability)
we may need some techniques and tools to discover
and/ or to remove vulnerabilities in a desktop or web
applications. For example Fortify, Web Inspect,
Rational Appscan, SWF Scan etc.

Vulnerabilities are present at least to some extent in
every web or desktop applications, so it could not be
neglected. Vulnerability can be identified and
prevented and/or removed in application source code
using different techniques.

Basically there are two major approaches to detect or
prevent vulnerabilities such as static (source code) and
dynamic (penetration testing) analysis of an
application. Some tools can directly apply to the
source code so they either solve or at least provide
warn about presence of such vulnerabilities in the
application source code. These tools are called static
tools for example Fortify. The other types of tools
called as dynamic analysis tools that check the
software at runtime against any known vulnerability as
we discussed in section VI.

Copyright © 2012 MECS I.J. Modern Education and Computer Science, 2012, 1, 33-39

mailto:basavala@gmail.com
mailto:narendra.ibs@gmail.com
mailto:alok289@yahoo.com

34 Finding Vulnerabilities in Rich Internet Applications (Flex/AS3) Using Static Techniques

II. ADOBE FLEX

Adobe Flex [15] is basically a software development kit
(SDK) (similar to JDK) released by Adobe Systems
for the development Rich Internet Applications (RIA)
[16] based on the Adobe flash platform. Adobe Flex
applications can be written by using Adobe Flash
Builder [17] called integrated and development
environment (IDE) or by using the freely available flex
compiler.

A Rich Internet Application [18] (RIA) is a normal web
application that has many of the characteristics of web
or desktop applications like drag and drop, rich in feel;
rich in look and very impressive to the end users
(feature from in web 2.0 technologies). In the recent
years RIAs dominate in online gaming as well in the
market.

II. RELATED WORK

Currently, exists only few approaches that deals with
static detection or analysis of web application
vulnerabilities. Huang et al. [11] were the first to
address this issue in the PHP based applications. They
used a lattice-based algorithm derived from type
systems and type state, and compared it to a technique
based on bounded model checking in their follow-up
paper [12]. In this paper we have chosen regex (regular
Expressions) patterns that deals with static detection of
RIA web applications vulnerabilities developed in
Adobe Flex framework with action script 3.0. This
document continues to our effort in the area of rich
internet applications security static analysis.

Figure 1: Security vulnerabilities in Adobe Flex applications

Thus, the analysis provided in this document aimed to
evaluate the regex patterns in static analysis our
original intention was to provide automatic testing
procedures or patterns for the best practices. As far as
we know, our analysis is the first analysis of this kind
in RIA framework. However, there are several
analyses of bug finding static tools for Java but not in
rich internet applications such as Adobe Flex.

III. FLEX API

In Adobe Flex Framework the API which is listed
below leads to security vulnerabilities [7] is as follows:

A. .htmlText property
B. externalInterface.call()/addcallBack()
C. navigateToURL()
D. SharedObject.getLocal()/getRemote()
E. trace() debug statement

Motivating Example: As we listed all vulnerable
methods in the adobe flex framework. Some examples
of how developer uses these APIs while developing
web applications are given below.

A. .htmlText property: data displayed in

the .htmlText property is vulnerable to attacks like
XSS [10] [4] (cross site scripting), etc. To prevent
these attacks, data should be encoded before it is
assigned to the htmlText attribute. The following
component property may leads to XSS attack in
the flex in RIA application:

Functions that display HTML code:

Copyright © 2012 MECS I.J. Modern Education and Computer Science, 2012, 1, 33-39

 Finding Vulnerabilities in Rich Internet Applications (Flex/AS3) Using Static Techniques 35

- TextField.htmltext
- Text.htmltext
- Lable.htmltext
- TextArea.htmltext

Figure 2: Syntax and sample code of .htmlText
property

B. ExternalInterface.call()/addcallBack(): To

communicate between ActionScript and the
container of an application can take either
ActionScript can call code (such as a JavaScript
function) defined in the container, or code in the
container can call an ActionScript function that
has been designated as being callable. In either
case, information can be sent to the code being
called, and results can be returned to the code
making the call.
Functions that communicate with the web browser:
- ExternalInterface.call()
- ExternalInterface.addCallBack()

Here “Sample java script to code” verify for the
word to:
The java script function needs name as input
parameter/argument as follows:

<script type="text/javascript">
 function submitInfo(name) {

 document.write(name);
 }

</script>

Syntax of ExternalInterface.call():

flash.external.ExternalInterface.call(function_name:Str
ing[, arg1, ...]):Object;

By using ExternalInterface.call () method for invoking
java script code as:

Syntax:
<mx:Text htmlText=" your HTML content here">
<mx:Label htmlText=" your HTML content here">
<mx:TextArea htmlText=" your HTML content
here">

Sample code:
<?xml version="1.0" encoding="utf-8"?>
<mx:Application
xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:Script>
 <![CDATA[

 private function myTest():void {
 test1.htmlText = "Hello
<script>alert(document.cookie)</script>;
 }
]]>
</mx:Script>
 <mx:VBox>
 <mx:TextArea id="test1" />
 </mx:VBox>
</mx:Application>

Protected function clickHandler(name:String):void {
 ExternalInterface.call('submitInfo', name);
}

Sample Code:
<?xml version="1.0" encoding="utf-8"?>
<mx:Application
xmlns:mx="http://www.adobe.com/2006/mxml" >
<mx:Script>
 <![CDATA[
protected function clickHandler(name:String): void
 {
ExternalInterface.call('submitInfo', name);
}]]>
</mx:Script>
<mx:FormItem label="First Name: ">
<mx:TextInput id="firstNameTextInput"/>
</mx:FormItem>
mx:Button label="Submit"
click="clickHandler(firstNameTextInput.text)"/>
</mx:Form>
</mx:Application>

Figure 3: Sample code of ExternalInterface.call ()

The code will execute in the browser and the output of
the above code shall be as follows:

Figure 4: Browser view of MXML content with
ExternalInterface.call ()

In the textbox we have entered “<script>alert (‘XSS
ME’) </script>”. Script will execute and display the
popup message as shown below:

Copyright © 2012 MECS I.J. Modern Education and Computer Science, 2012, 1, 33-39

36 Finding Vulnerabilities in Rich Internet Applications (Flex/AS3) Using Static Techniques

Figure 5: popup message or value of vulnerable API
.
C. navigateToURL(): The navigateToURL() method

loads a document from a specific URL into a
window or passes variables to another application
at a defined URL. Also you can use this method to
call JavaScript functions in the HTML page that
encloses an application. These functions may
prone to URL redirection or forward issue.
Functions that make networking calls are:
- navigateToURL()
- sendToURL()

Functions and objects that accept URLs:
- URLRequest()

Figure 6: Syntax and sample code of navigateToURL()

D. SharedObjects: Shared objects, same as browser

cookies in normal web application and stored at
client system. SharedObject class is used to store
data (cookie) on the user's local hard drive in clear
text and will call that data during the same session
or in a later. Web applications can be able to
access only their own SharedObject data or cookie
and only if they are running on the same domain.
Functions for accessing SharedObjects:
- SharedObject.getLocal()
- SharedObject.getRemote()

Figure 7: Syntax and sample code of SharedObject

E. Trace (): Trace function is used for debugging
the application which prints the message on
the console when application runs in
debugging mode. Function to debug the
application

Figure 8: Syntax and sample code of trace()

IV. TECHNIQUES

Basically the techniques used to identifying, detecting
and/or removing vulnerabilities in two categories so
called as static analysis [9] (source code analysis) and
dynamic analysis (penetration testing). In this paper
we will more concentrate about static techniques or
analysis and then we will discuss a brief description of
how these static techniques to identify, detect, and
prevent or remove security vulnerabilities in the web
or desktop applications.

Software program analysis (also called static code
analysis) is the analysis of computer software (web
application) that is running without actually executing
programs built on that software. All most all the times
the analysis is performed on some part of the source
code of an application and in the other part is some
form of the binary code. Finally system will provide
the vulnerable report with lot of false positives. An
application security engineer needs to review the

Syntax:
SharedObject.getLocal("objectName" [, pathname]):
SharedObject

Sample Code:
Var my_so:SharedObject = SharedObject
 .getLocal("superfoo");

var my_so:SharedObject = SharedObject.
 getRemote ("superfoo");

Syntax: trace();

Sample code:

 <mx:Script>
<![CDATA[

import mx.controls.Alert;
public function init():void{
trace("Init started.....");
myText.text = "Button Clicked.";
trace("Init ended.....");
}

Syntax & Sample Code:
navigateToURL (request: URLRequest,
window:String):void

<fx:Script>
 <![CDATA[
 import flash.net.*;
 public function openNewWindow (event:
 MouseEvent):void {
 var url:URLRequest = new URLRequest
 "http://www.website.com/wel");
 navigateToURL(url,"_blank");
 }]]>
</fx:Script>

Copyright © 2012 MECS I.J. Modern Education and Computer Science, 2012, 1, 33-39

 Finding Vulnerabilities in Rich Internet Applications (Flex/AS3) Using Static Techniques 37

report and will identify the actual vulnerabilities in the
computer software or a web or desktop application.

Dynamic analysis is also called black box testing to
analyze computer software programs and applications
without knowing the functionality of applications. To
make dynamic analysis is more effective, the target
application or test program must be executed with
sufficient test data as inputs to produce sufficient
output and behavior of the application as well. Using
different software testing techniques such as code
coverage (static program analysis) helps to ensure that
an application behavior and set of possible behaviors
with respect to security has been observed closely.

A. Static Techniques
In static code technique [9] or analysis basically an
application source code is analyzed in order to find
security vulnerabilities in application. The source code
is scanned against the known vulnerabilities in the
application level and a tool should implement with
static techniques to detect the existing vulnerabilities
in the source code. In the static code analysis there are
two disadvantages of this approach is that someone in
the security team to keep an update and maintain the
database of programming flaws (known vulnerability)
to test for, and since the static tools only detect
vulnerabilities the user should knows how to fix the
problem once a warning has been issued. In static code
analysis source code is scanned before compilation
against known vulnerabilities. The static code analysis
techniques will addresses problems something like
array bound check, uninitialized variables, improper
error handling, sensitive information in the log
messages, unreachable code, syntax problems,
undeclared variables, parameter type mismatch,
uncalled function and procedure, non-usage of
function results etc.

Static source code analysis [9] [14] do not covers all
vulnerabilities within the source code because of tool
implementation depends on pattern and there are blind
to certain types of vulnerabilities and problems that are
only apparent at application runtime. To fill this gap,
dynamic analysis will help us from past few years, as
well as hybrid analysis which combine both static and
dynamic analyses [14].

Dynamic and static analyses [14] to identify
vulnerabilities are complementary technologies with
different strengths and intended for slightly different
audiences.

As we are aware of that static analysis is growing
commercial use in the verification of properties of
software used in safety and critical computer systems

and identifying potentially vulnerable code in the
computer software, web or desktop based applications.

a. Pattern Matching
Pattern matching is technique is used to find out of all
pattern matches of given string to match or identify the
risk. For example .htmlText that displays HTML
(Hyper Text Markup Language) code in the source
code.

A pattern matching is cannot identify partly from
source code and is easily fooled by unexpected white
space. Using this technique we will get more false
positive results. Searches the given input files for lines
containing a match to a given pattern list. When it
finds a match in a line, it copies the line to standard
output or file. Tool that implements this pattern match
technique is security flaw finder which detects or
identifies vulnerability by using pattern matching
technique. Tool analyzes the source code and checks it
to figure out XSS issues, format string or integer
vulnerabilities, insecure cookies etc. by using its
database for Flex functions and produce a list of flaws
sorted by risk level.

b. Lexical Analysis
Lexical analysis creates an identifier stream of the
source code in order to make a difference between
variables of a function and to identify arguments of a
function. These tokens are matched with existing
vulnerabilities. Basically lexical analysis is used to
improve the accuracy and correctness of pattern
matching technique, because a lexer can handle
irregular whitespace and code formatting. Lexical
analysis techniques are fast and simple, but very
limited since they do not take into account of the
syntax or semantic technique of the program. The
benefits of lexical analysis are very less and it’s
reported the more number of false positives by this
technique.

Parsing technique or syntactical analysis is used to
parses or analyzing the source code and it builts an
abstract syntax tree representation of the source code.
The abstract syntax tree allows us to analyze not only
the syntax but also the semantics of a program. The
pattern matching technique can be significantly
improved by matching abstract syntax trees instead of
sequences of matches or characters. This technique
creates a complete and easy to navigate representation
of a program.

c. Regular Expressions
Regular expression is also called as regex or regexps is
special text string for describing a search pattern. A
regular expression may contain search string with
wildcards and special chars. e.g. regex “\b[A-Z0-

Copyright © 2012 MECS I.J. Modern Education and Computer Science, 2012, 1, 33-39

38 Finding Vulnerabilities in Rich Internet Applications (Flex/AS3) Using Static Techniques

9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b” will search
email-id in the source code. Typically a similar regular
expression can be used to check if the user entered a
properly formatted email address or not. One line of
code, whether that program is written in Perl, PHP,
Java, a .NET language or any of other programming
languages. When writing computer software code
regex is used to find/replace text in some code,
computer programs can use regexps to translate code
from one form into another form.

In computing regular expressions to provide a concise
and flexible for identifying search strings of text such
as particular characters, words, or patterns of
characters. Regular expressions are written in a formal
language that can be interpreted by a regular
expression processor, or a program that either serves as
a parser or examines text and identifies parts that
match the provided specification.

A regular expression to detect or identifying the
vulnerable code or security risk during static code
analysis (SCA) of Adobe Flex/Flash or action script
3.0 applications is as follows:

a. htmlText=\\s*\\bhtmlText\\b\\s*=
b. ExternalInterface.call=\\s*\\=\\s*\\bExternalInterfa

ce\\b\\.\\bcall\\b\\s*\\(
c. ExternalInterface.addCallBack=\\s*\\=\\s*\\bExter

nalInterface\\b\\.\\baddCallBack\\b\\s*\\(
d. URLRequest()=\\s*new\\s*\\bURLRequest\\b\\s*\\

(
e. navigateToURL()=\\s*\\bnavigateToURL\\b\\s*\\(
f. URLLoader=\\s*new\\s*\\bURLLoader\\b\\s*\\(
g. SharedObject=*new*\\bSharedObject\\b\\s*\\
h. trace=\\s*\\btrace\\b\\s*\\(

d. Comparison and Evolution
As we deal with static analysis using regular
expressions to detect or identifying security
vulnerabilities in Adobe Flex application. Static code
techniques have several advantages over run-time
techniques. Static techniques find errors by analyzing
the source code and do not require running the
program. They do not incur run-time overhead and
they narrow down the vulnerabilities specific to the
source program being analyzed, yielding a more secure
program before it is deployed. However, a pure static
analysis can produce many false alarms due to the lack
of vulnerabilities related information.

V. OTHER VULERABILITIES IN FLEX

In this paper we described only static analysis to detect,
identify security issues in RIA (developed using adobe
flex and action script). But there are other security
issues in web application developed in Flex. These

vulnerabilities we can exploit through the dynamic
analysis (security testing or penetration testing) of an
application at run time. Here is the list other
vulnerabilities which we can identify, detect or exploit
using dynamic analysis as follows:

a) Cross-domain privilege escalation
b) Spoofing
c) Malicious data injection
d) Script injection into the browser
e) Insufficient authorization restrictions
f) Unauthorized access to data in transit
g) Unauthorized local data access
h) Cross-site request forgery
i) DNS rebinding
j) Click jacking

Along with these vulnerabilities in adobe flex or as3
applications there are other PDNF (Potentially
Dangerous Native Function) functions.

V. CONCLUSION

It is very difficult that a static tool completely detect
all the security vulnerabilities without false positives.
As more and more software’s are developing day by
day vulnerabilities are also growing. Although
significant work is done to cope with XSS [4] (cross
site scripting) issue, insecure cookies, invalidated
URLs and other security vulnerabilities but we still
need a satisfactory solution. Security can be improved
if vulnerability detection tools either static or dynamic
analysis is used as a part of software development
lifecycle. We have discussed different static techniques
and tools to detect XSS issues, URL redirection and
forwards, cookies or shared objects and debug
statements. We will explore section V vulnerabilities
in my next paper through the dynamic analysis with
penetration testing.

VI. ACKNOWLEDGEMENT

I owe a great many thanks to great many people who
helped and supported me during writing this paper and
exclusively to my colleague Satya Kumar.

My deepest thanks to my co-author Dr.Alok Agarrwal
and my guide Dr.Narendra Kumar for guiding and
correcting various parts of this document with
attention and at most care. He has taken care to go
through this paper and make necessary correction as
and when needed.

REFERENCES

[1] Gagan Agarwal, Jinqian Li, and Qi Su. Evaluating
a demand driven technique for call graph

Copyright © 2012 MECS I.J. Modern Education and Computer Science, 2012, 1, 33-39

 Finding Vulnerabilities in Rich Internet Applications (Flex/AS3) Using Static Techniques 39

construction. In Proceedings of the International
Conference on Compiler Construction, May 2002.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, Techniques, and Tools.
Addison-Wesley.

[3] Ken Ashcraft and Dawson Engler. Using
programmer-written compiler extensions to catch
security holes. In Proceedings of the Symposium
on Security and Privacy.

[4] Amit Klein. Cross site scripting
explained. http://crypto.stanford.edu/cs155/CSS.p
df

[5] Yao-Wen Huang, Fang Yu, Christian Hang,
Chung-Hung Tsai, Der-Tsai Lee, and Sy-Yen Kuo.
Securing Web application code by static analysis
and runtime protection. In Proceedings of the
Conference on World Wide Web. May 2004.

[6] http://www.adobe.com/devnet/flex/articles/flex_ent
erprise_security.html by Adobe.

[7] Nenad Jovanovic, Christopher Kruegel, and Engin
Kirda. Precise alias analysis for syntactic detection
of Web application vulnerabilities. In Proceedings
of the Workshop on Programming Languages and
Analysis for Security, June 2006.

[8] Brian Chess and Gary McGraw. Static analysis
for security. IEEE Security and Privacy, 2(6):76–
79, 2004.

[9] Jeremiah Grossman. Cross-site tracing (XST): the
new techniques and emerging threats to bypass
current Web security measures using TRACE and
XSS. http://www.cgisecurity.com/whitehat-
mirror/WhitePaper screen.pdf

[10] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T.
Lee, and S.-Y. Kuo. Securing web application
code by static analysis and runtime protection. In
WWW '04: Proceedings of the 13th International
Conference on World Wide Web, 2004.

[11] Ss Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.
T. Lee, and S.-Y. Kuo. Verifying web applications
using bounded model checking. In DSN, 2004.

[12] Industrial Perspective on Static Analysis. Software
Engineering Journal Mar. 1995: 69-75Wichmann,
B. A., A. A. Canning, D. L. Clutterbuck, L. A.
Winsbarrow, N. J. Ward, and D. W. R.
Marsh. http://www.ida.liu.se/~TDDC90/papers/in
dustrial95.pdf

[13] http://www.slideshare.net/eladnyc/top-security-
threats-to-flashflex-applications-and-how-to-
avoid-them-4873308

[14] http://www.cc.gatech.edu/~orso/papers/halfond.ch
oudhary.orso.STVR11.pdf

[15] http://en.wikipedia.org/wiki/Adobe_Flex
[16] http://en.wikipedia.org/wiki/Rich_Internet_applica

tion
[17] http://en.wikipedia.org/wiki/Adobe_Flash_Builder

[18] Rich Internet Applications: The Next Frontier of
Corporate Development" by Larry Seltzer. 2010-
08-25.
eWeek.http://www.eweek.com/c/a/Security/Rich-
Internet-Applications-The-Next-Frontier-of-
Corporate-Development-732651

[19] Laszlo: An Open Source Framework for Rich
Internet Applications

Mr. Sreenivasa Rao Basavala, M.Sc., M.Phil.
M.Tech. SCJP, SCWCD, IBM-ACSE is a
Sr.Application Security Engineer in Department of
Yodlee Security Office. He has over 11 years of
experience in IT industry and Academic. His areas of
interests are Web Application Security, Software
Engineering, Computer Networks, Cryptography,
Mobile Application Security, Information Security,
Database Security, DBMS and RDBMS. His area of
research interest is Web Application Security, Mobile
Application Security, Security code reviews and
penetration (security) testing in various domains.
Currently he is researching in Web Application
Security under guidance of Dr.Narendra Kumar from
CMJ University, Shillong, India.

Dr. Narendra Kumar, M.Tech., Ph.D., is former
professor and Head, Department of Computer Science
and Engineering. He has over 18 years of teaching
experience. His areas of interests are Theory of
Computation, Wireless Communication, Cryptography,
Computer Graphics, Securities and Applied
Mathematics. He has good number of research
publications in international/ national journals. He is
member editorial board and referee for various
journals. He is associated with reviewing books of
international publications. His area of research interest
is Wireless Communication, Security in various
domains and Mathematical modeling. He is research
supervisor for more than a dozen students in various
universities. He worked as visiting faculty for various
engineering colleges/ universities.

Dr. Alok Aggarwal, received his graduation and post
graduation degrees in Computer Science and Engineering
in 1995 and 2001 respectively. He received Ph.D. degree
in Mobile Computing discipline in 2010 from IIT
Roorkee. Currently he is with Computer Science and
Engineering/Information Technology Dept. of JIIT
University, Noida. He has edited three books and about
50 research papers published in various
International/National journals, conference proceedings.
He has a mix experience of Industry, Research and
Teaching of about 15 years. His area of interest is Mobile
Computing and Object Oriented Programming.

Copyright © 2012 MECS I.J. Modern Education and Computer Science, 2012, 1, 33-39

http://crypto.stanford.edu/cs155/CSS.pdf
http://crypto.stanford.edu/cs155/CSS.pdf
http://www.adobe.com/devnet/flex/articles/flex_enterprise_security.html
http://www.adobe.com/devnet/flex/articles/flex_enterprise_security.html
http://www.cgisecurity.com/whitehat-mirror/WhitePaper%20screen.pdf
http://www.cgisecurity.com/whitehat-mirror/WhitePaper%20screen.pdf
http://www.ida.liu.se/%7ETDDC90/papers/industrial95.pdf
http://www.ida.liu.se/%7ETDDC90/papers/industrial95.pdf
http://www.slideshare.net/eladnyc/top-security-threats-to-flashflex-applications-and-how-to-avoid-them-4873308
http://www.slideshare.net/eladnyc/top-security-threats-to-flashflex-applications-and-how-to-avoid-them-4873308
http://www.slideshare.net/eladnyc/top-security-threats-to-flashflex-applications-and-how-to-avoid-them-4873308
http://www.cc.gatech.edu/%7Eorso/papers/halfond.choudhary.orso.STVR11.pdf
http://www.cc.gatech.edu/%7Eorso/papers/halfond.choudhary.orso.STVR11.pdf
http://en.wikipedia.org/wiki/Adobe_Flex
http://en.wikipedia.org/wiki/Rich_Internet_application
http://en.wikipedia.org/wiki/Rich_Internet_application
http://en.wikipedia.org/wiki/Adobe_Flash_Builder
http://www.eweek.com/c/a/Security/Rich-Internet-Applications-The-Next-Frontier-of-Corporate-Development-732651
http://www.eweek.com/c/a/Security/Rich-Internet-Applications-The-Next-Frontier-of-Corporate-Development-732651
http://www.eweek.com/c/a/Security/Rich-Internet-Applications-The-Next-Frontier-of-Corporate-Development-732651

	I. Introduction

