
I.J.Modern Education and Computer Science, 2012, 1, 1-11
Published Online February 2012 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijmecs.2012.01.01

Copyright © 2012 MECS I.J. Modern Education and Computer Science, 2012, 1, 1-11

Element-Based Computational Model
Conrad Mueller

School of Electrical and Information Engineering, The University of the Witwatersrand and School of IT Monash South
Africa, Johannesburg

Email: cmueller@acm.org

Abstract—A variation on the data-flow model is proposed to
use for developing parallel architectures. While the model is
a data driven model it has significant differences to the da-
ta-flow model. The proposed model has an evaluation cycle
of processing elements (encapsulated data) that is similar to
the instruction cycle of the von Neumann model. The ele-
ments contain the information required to process them.
The model is inherently parallel. An emulation of the model
has been implemented. The objective of this paper is to mo-
tivate support for taking the research further. Using matrix
multiplication as a case study, the element/data-flow based
model is compared with the instruction-based model. This
is done using complexity analysis followed by empirical
testing to verify this analysis. The positive results are given
as motivation for the research to be taken to the next stage -
that is, implementing the model using FPGAs.

Index Terms—Computational Model, Data-Flow, Computer
Architecture, Parallel Architecture.

I. INTRODUCTION

The following two quotes are the motivation for the
research.

“For more than 30 years, researchers and designers
have predicted the end of uniprocessors and their do-
minance by multiprocessors. During this time period the
rise of microprocessors and their performance growth
has largely limited the role of multiprocessors to limited
market segments. In 2006, we are clearly at an inflection
point where multiprocessors and thread-level parallelism
will play a greater role...” [1]

“Since real world applications are naturally parallel
and hardware is naturally parallel, what we need is a
programming model, system software, and a supporting
architecture that are naturally parallel. Researchers have
the rare opportunity to re-invent these cornerstones of
computing, provided they simplify the efficient pro-
gramming of highly parallel systems.” [2]

Given the need for parallelism, is it not worth looking
at previous attempts at parallel models? In the 1970s, the
data-flow model was explored with some limited success
[3]. This paper explores how to build on some of the
concepts of the data-flow model. This new data-driven
model has significant differences from the previous da-
ta-flow models, as described below, as well as being in-
herently parallel, which simplifies parallel programming.

Table 1: Comparison between Data-flow and Element

 Data‐flow Element‐based
program cyclic graph acyclic graph
graph finite infinite
edge pointer element
node instruction relation
values memory elements
computation firing instruction processing element

current state values in nodes active elements

result of op a value a new element
selection instructions partial functions

As Hennessy [4] has pointed out, implementing a new
architecture requires considerable resources. These are
unavailable to us. The objective of this paper is to pro-
vide some evidence that it is worthwhile taking this re-
search further, in the hope that others may see some po-
tential in collaborating in this research. The method
chosen to provide this evidence is to experiment with an
example program and assess how the new model is likely
to compare with the predominant instruction-based
model.

The model is built on theory relating to functions and
sets that forms both the basis of the model and a language
to express programs. Developing the language is a re-
search project on its own and its justification depends on
acceptance of the model. For this reason the focus has
been on the model. Understanding programs written in
the language only requires an understanding of simple
algebraic mathematical expressions. That is sufficient for
this paper.

The question is how best to assess the potential of a
model given minimal resources. The approach chosen is
to compare the model with the instruction-based model
in two ways. The first comparison is the cost of data ac-
cesses per instruction versus per element processed. By
studying the execution loops of each, an argument is
made that processing an element is at least as efficient as
executing an instruction. This does not give an indication
of how they compare when doing real computations and
in particular parallel computations. An example is used
to explore this aspect, first by comparing the number of
instructions to the number of elements processed and
then by comparing the instruction-based run-time per-
formance with that of the emulation of an element model.

2 Element-Based Computational Model

Copyright © 2012 MECS I.J. Modern Education and Computer Science, 2012, 1, 1-11

The paper reports experimental results of simulating
some of the behavior of this model. These results suggest
that such an architecture's performance scales well with
increases in processors. An MPI [5] emulation is used to
compute a matrix multiplication with increasing sizes
and increasing numbers of processors. Based on given
assumptions, an argument is made that an architecture
based on this model scales linearly for the example.

The rest of the paper is broken up into three sections.
The first given a brief description of the model and
compares it with other architectures. The next section
describes the research method. The final section eva-
luates the research and considers how to take the research
further.

II. MODEL OF COMPUTATION

A. Basics

In many ways our model is similar to the von Neu-
mann model; however, instead of processing instructions,
it processes elements. The elements consist of informa-
tion that uniquely conveys the meaning of the data as
well as a value. This information is used to determine
how the element is processed. Processing an element
results in zero or more elements being created. The pro-
gram execution completes when there are no more ele-
ments to process. A comparison between the instruction
model and element model execution cycle is given below
in Table 2.

Table 2: Comparison of Execution Cycles

Instruction‐model Element‐model
get instruction get element
get data get relation
perform instruction apply relation
store result in memory push element(s) on queue

Without going into too much detail, given an element
b=5, a relation a=-b and the steps above the result is the
element a=-5 being created. The question arises as to
how one deals with an expression of the form a=b+c as
the model only processes elements. This relation can be
viewed as the operation + being applied to an element
that is a tuple, i.e. (b,c). The way around this is that the
elements b and c are used to create an element, say t, to
which plus can be applied to create a. Thus the expres-
sion a=b+c is broken up into:

 (1)
where the operation is to create the zeroth part of
the tuple and is to create the first part of the tuple.
Alternatively it may be expressed as:

 (2)

Table 3 illustrates the computation given for c=3, b=5.

Table 3:Evaluation of a=b+c

A similar process allows one to decompose any

number of binary or unary operations into a number of
expressions consisting of one unary operation.

Describing any meaningful computation requires se-
lection. The if operation is used to express selection. Here
is an example of how it is used.

 (3)
The trick used here is to treat if as an operation. As in

the C programming language, ? is used to denote if. We
can express the first line as a graph, illustrated in Figure 1
and as a sequence of expressions and relations in Table 4.
The evaluation of these relations for x=3 and y=10 is
shown in Table 5. Computing the expression z = x if x ≤ y
results in the creation of the element z = 3.

Finally to provide a complete computational model,
repetition needs to be addressed. The following example
of summation illustrates how to achieve this.

 (4)

 Element-Based Computational Model 3

Copyright © 2012 MECS I.J. Modern Education and Computer Science, 2012, 1, 1-11

Figure 1:Graph of the expression z = x-y if x>y

Table 4: Primitive Expressions for z =x-y if x>y

Table 5: Evaluation of z =x-y if x>y

Table 6: Primitive expressions for

where [+1]0 indicates add one to index ze-
ro.1

The expression is used to describe
how iteration is achieved. Indices are introduced that
do not have bounds. This expression is an infinite
graph as shown in Figure 2.

1 For simplicity we have not gone into the detail of how any
number of indices is handled. Note that the index operation is
explicitly specified and thus the index does not need to be cap-
tured as part of a relation.

Figure 2: Graph of the expression

An evaluation of these relations for s0=0, n0=3, n1=7

and n2=13 is shown in Table 7.

Table 7: Evaluation of Summation

The Figure 3 shows the structure of a simple imple-
mentation of the model consisting of one processor. This
implementation consists of: a queue of unprocessed ele-
ments that are waiting to be processed, the table relations
and hash table. Elements are popped off the queue,
processed using the relations – where the relation has a
tuple operation the tuple is formed using the hash table,
and finally the newly created elements are added to the
queue.

Figure 3: Structure of Element Model

The processor takes elements off the queue and loops
through the relations indexed by the element name. The
processor applies the operation in each relation to the
values of the element. If the operation is defined, a new
element is created with the range element name in the

4 Element-Based Computational Model

Copyright © 2012 MECS I.J. Modern Education and Computer Science, 2012, 1, 1-11

relation and the values or indices resulting from applying
the operation. The newly created element is pushed onto
the stack. The process continues until there are no more
elements to process.

There are three classes of operations: those that result
in a new value being computed; those that result in a new
index being computed and those that compute a tuple.
The paper does not go into the detail of all these opera-
tions. The only one requiring a little more detail are the
operations that create tuples. The two elements used to
create a tuple can come in any order. The first to arrive of
the two elements that form a tuple is inserted in the hash
table. The second element to arrive is then matched and
the tuple is formed. The element name and the indices are
used to match the two elements that form the tuple.

The model is inherently parallel as any processor that
has the relations to process that element can process any
element2. Thus the element in the unprocessed queue can
be distributed across any number of processors.

B. Comparison with other architectures

The element-based architecture has no instructions.
The only other models that do not use instructions are
theoretical models like the Turing Machine. Data-flow
architectures do not have instructions executed in a se-
quential order like the von Neumann. However, the
nodes are typically referred to as firing instructions. Even
so, data-flow architectures come close in terms of shift-
ing the emphasis from executing instructions to
processing data[6,7,8].

As with data-flow, element-based model programs can
be viewed as graphs. The big difference is that the da-
ta-flow graphs are finite and allow for cycles, whereas in
the element model programs, the graphs can be infinite
and acyclic. A data-flow program is stored as a graph
with pointers to the nodes in memory, restricting the
graph to being finite and thus cyclic. A data-flow pro-
gram cannot be represented by an infinite graph as can be
done with the element-based approach. The element
model achieves this by expressing the graph using
classes of relations that represent infinitely many nodes
and edges and not representing the graph as nodes and
pointers in memory.

The unique aspect of this model is that values are not
referenced by memory addresses, but rather, the seman-
tic information required to process the elements is kept
together with values. The processor determines how to
process the value based on the element name and indices.
In the von Neumann model it is an instruction that de-
termines how the value will be processed. In the da-
ta-flow it is the instruction that gets fired when the re-
quired values arrive at a node.

2 Except in the case where a tuple operation is involved, where
the semantic information of the element is used to redirect this
operation to where its partner will be directed to.

Like the von Neumann model, the element model has
a simple three step execution cycle but instead of ex-
ecuting the next instruction, the next element on the
queue is processed. There is no concept of the program
counter and hence the state of the program execution is
determined by active elements that are on the queue of
elements waiting to be processed. This contrasts with the
von Neumann model, where the program counter and the
contents of memory capture the state, or the data-flow
model where the state is determined by the state of the
nodes.

The data-flow model allows for parallelism in that any
number of nodes can fire simultaneously. However there
are a number of limitations. The cycles in the graph limit
the degree to which available values can be processed.
Either starting the next cycle has to wait for the previous
cycle to finish or there has to be some mechanism for
differentiating between cycles. The nodes are stored in
memory that restricts the evaluation of values to take
place in the processor where the nodes are stored. The
element model is able to process all the active elements
in any order and any number at the same time, limited
only by the number of processors.

Being able to process elements in this way facilitates
parallelism for a number of reasons. Processing an ele-
ment is independent of other active elements and hence
of the state of the program, thus any processor that has
access to the relations associated with an element can
process that element. The exception is forming tuples
that requires a mechanism to handle that the two com-
ponents of the tuple need to access the same hash table. It
does come at a cost and that is an aspect that this research
attempts to evaluate.

The element model is a functional one, yet different
from current models. Instead of expressing and evaluat-
ing a program as a function that gets applied to values, a
program is a set of algebraic expressions of relations
between sets of elements. Such a relation defines the
mapping between the elements of the two sets. A relation
and an element in its domain are used to create an ele-
ment in the range. Thus a relation, such as

a = f(b), (5)

and an element in the domain, e.g.

b=(5,3), (6)

are enough to determine the element

a=8. (7)

An element consists of an identifier (name and indices)
and a value. The element name is used to establish for
which relations the element is a member of its domain.
When a new element is created, the relation determines
what the identifier is and what operation has to be applied
to determine the value of the new element.

Identifiers are used in a different way. Most languages
typically express a function such as square something
like square(x) = x*x.

 Element-Based Computational Model 5

Copyright © 2012 MECS I.J. Modern Education and Computer Science, 2012, 1, 1-11

In this example the variable identifier x has no signi-
ficance other than that it represents the value passed to
the function. The variable x can be used in the definition
of other functions and using the same variable does not
imply any relationship between these functions and the
function square. An element example of a relation is

volume = area * height. (8)

Here the meaning of area is not confined to this rela-
tionship. Hence using the same identifier in another re-
lation relates the two relations. For example if there is
another relation

area = length * breadth, (9)

then area refers to the same entity in both relations.
Whereas the functional approach sees the function
square as the mapping

,

the element-based relation describing volume is viewed
as the mapping

. (10)

The variable x has no significance once the function
square has been computed. The element area has a life
independent of the relation that created it and its meaning
holds for the entire computation.

Since the meaning of an element holds for the entire
computation, the order in which it is processed is not
important. This property enables elements to be
processed in any order as well as on different processors,
facilitating parallel processing. This property also helps
with programming. The programmer does not need to
have to design the order in which the execution takes
place and, more important, does not need to design the
coordination between the processors. Since the meanings
of elements are static, relations also are. This is unlike
instruction-based programming where the programmer
needs to take into account that a statement has different
meanings as different values are iterated through it.

Given that in any program one is limited to a finite
number of identifiers, this suggests that one is limited to a
fixed number of elements and computations. Both in-
structional and functional models get around this by
reusing identifiers. The element-based model overcomes
this limitation by having element identifiers consisting of
a name and indices. For practical purposes, this enables
infinitely many unique element identifiers. By using
implied universal quantifiers this enables any algebraic
expression, such as

si+1 = si + ni, (11)

to define infinitely many relations, called a class relation,
and to be able to process an unlimited number of ele-
ments. The name part of the identifier identifies the class
relation and the indices instantiate a particular relation to
process that element.

The element-based approach does not use indices in
the same way as the instruction-based model. An index is
part of the element identifier and not an offset into some
fixed memory. The element name and indices provide
the semantic information required to process the element
and thus this avoids having to use addressing to access
data. The other advantage is that elements are never al-
tered: they are created, processed and discarded; hence
there are no cache memory writes. Again this facilitates
distribution across processors.

The element model is computationally equivalent to
the instruction model as it can implement a Turing ma-
chine. A series of examples, such as sorts and pattern
matching, have been successfully implemented. Like
with any model some algorithms are better suited to the
element model. The purpose of this research is to explore
how the element model is likely to perform for the spe-
cific case of simple matrix multiplication. The reason this
case has been chosen is that it is a tightly coupled com-
putationally intensive example.

III. RESEARCH APPROACH

What is the best way to evaluate the proposed model,
especially only having von Neumann hardware available?
The success of the model depends on it being able to
compete head on with current technology. For this reason,
the choice was made to do a direct comparison with the
instruction-based model. Since the research is around
finding better models for parallel computing, the case
study needs to focus on this aspect. Experiments were
run on a cluster as this was the only resource available.
An MPI emulation was used for running the element
based programs. A comparison is made between a MPI C
program and an element-based program.

The model is evaluated in 3 ways: ease of program-
ming; use of resources; and performance. The evaluation
of the model is done on a number of levels. An impor-
tant one is how easy it is to write programs. As the lan-
guage has not been discussed in detail, a brief compari-
son is given. The next level is a complexity analysis of
the resources required, looking at memory requirements
and number of instructions executed and how this scales
with the number of processors. Data collected in the
emulation of the element-based model is used to verify
the analysis. Finally a study is made of how the runtimes
of the two programs compare as the size of the matrix
and the number of processors increases.

At the end of the day what matters is whether the
element-based model has the potential to out-perform the
current technologies, and in particular, scale better with
the number of processors.

A. The programs

To make a fair comparison and facilitate the analysis,
the approach was to use the most basic design of the
program for both cases. The algorithm for matrix mul-
tiplication of is simple:

6 Element-Based Computational Model

Copyright © 2012 MECS I.J. Modern Education and Computer Science, 2012, 1, 1-11

(12)
where nc and nr are the number of columns and rows.
This can be expressed as a simple C program as follows:

Figure 4: C Matrix Multiplication Code

In the case of the element base program one can al-
most use the expression as is. However to make the
program more explicit we expand the above expression
to:

 (13)
and further develop it to:

 (14)

The “assembly” code is given in Figure 4.

Figure 4: Element based assembly code

The two programs appear similarly complex, but we
now need to look at the parallel versions. In the case of
the C program we chose to distribute the computation of
each element of A[r,c] to a processor as outlined below.

Figure 5: MPI C Matrix Multiplication Code

The implementation of this is somewhat more com-
plicated using MPI. Managing the slaves and synchro-
nizing requires additional code provided in Figure 6.

The element-based program, by comparison, is inhe-
rently parallel and does not need to be rewritten to run on
a parallel architecture. Also there are no built in restric-
tions as to the size of the buffers for message passing.
Using an old measure of lines of code, the element-based
program is a fraction of the size. There is no need to
come to grips with message passing or synchronization.
Not having to manage the parallelism gives the ele-
ment-based approach an advantage.

 Element-Based Computational Model 7

Copyright © 2012 MECS I.J. Modern Education and Computer Science, 2012, 1, 1-11

Figure 6: Parallel MPI Matrix Multiplication Program

The assembly code generated by the parallel version of
the C program ran to 600 odd lines and 20 lines for the
slave. A small sample is given in Figure 7. Comparing
the element-based code with the C code, there is a close
mapping between the element program and the low level
machine code, in contrast to the instruction-based. In the
element-based model the semantic gap between the
high-level program and the machine code is small re-

sulting in a small amount of machine code. The second
aspect is that the element-based program does not need to
be altered to run on a parallel architecture. It is inherently
parallel.

Figure 7: Sample of assembly code for MPI program

B. Complexity Analysis
The complexity of the instruction-based model can be

measured in terms of the number of instructions, whereas
for the element-based model, elements can be used. A
starting point is to show that the complexity of the ele-
ment-based model is at least equivalent, if not better, than
the instruction-based model for the matrix example.
Having established that the complexity of the ele-
ment-based model is comparable with the instruction
model, the focus can turn to a comparison between the
execution times and scalability with increased number of
processors.

The analysis is a waste of time if processing an ele-
ment is clearly vastly more expensive than executing an
instruction. On the basis of the instruction cycle versus
the element cycle, creating an element is argued to be at
least as efficient as processing an element. Consider each
step in the cycle.

Accessing/storing elements from/to hardware queues
should give the element-based approach a major advan-
tage over having to read/write data from/to memory.
The element-based approach has the potential of being
able to delay paging to access relations until there is
enough demand. Except for tuples, information is only
read, eliminating the need for cache block write-back.
Any number of elements can be processed in parallel, as
there are no dependencies between them. This scaling
factor has the potential to far exceed any pipelining ap-
proach of the instruction model. Even though it is not
clear what the full cost of performing the tuple operation
will be, this seems a reasonable initial assumption that
the cost of creating an element is likely to be better than
performing an instruction.

8 Element-Based Computational Model

Copyright © 2012 MECS I.J. Modern Education and Computer Science, 2012, 1, 1-11

Table 8: Comparison of memory accesses

Step Instruction-based Element-based
1 get instruction pop element
 memory access stack register
 cache/page faults none
2 get data get relation
 memory/register memory
 cache/page faults cache/page faults
3 perform instruction evaluate relation
 exception branch inst exception tuple op

 cache/page fault cache/page fault
4 store push element
 memory/register stack register
 cache/page faults none

For the analysis, the multiplications of matrices

are compared. The master has an outer loop of 97 in-
structions and the inner loop is 92. The slave has 79 in-
structions of which 27 are in the loop. Every time the
slave is passed a message it loops n times to compute one
element in the resulting matrix resulting in 27n instruc-
tions. For every entity in the resulting matrix, a message
is sent to the slave that is n2 messages. Thus, the number
of instructions computed in the slave's loop is 27n3.
There are 52 instructions remaining in the slave if one
excludes the instructions in the slave's loop and the 92
instructions in the inner loop of the master that are ex-
ecuted for each row and column. This gives 144 instruc-
tions that are executed n2 times. There are 5 instructions
in the outer master loop not in the inner loop that are
executed n times and some constant c instructions that
are only executed once in the master. Thus the number of
instructions executed for a matrix is
27n3+144n2+5n+c. This ignores the cost of the calls to
MPI subroutines that should result in a significant num-
ber of additional instructions that get executed.

Table 9 works out the number of elements processed
to be 14n3+7n2. It should be no surprise that the number
of instruction/operations in both the instruction and
element-based programs are of order n3. Even so the
number of elements processed, 14n3+7n2, is more or less
half the number of instructions executed by the instruc-
tion-based program, 27n3+144n2+5n+c. However, the
real issue is what improved performance can be expected
by increasing the number of slaves and how the speed
scales with increasing number of processors.

Consider the instruction-based C program first. Given
m slaves, the calculation of n2 entries of the resulting
matrix is distributed to the m3 slaves as these processors
become available. Given an ideal environment, in which
there are no delays in sending and receiving data, the

3 One processor is used for the master.

speed up should be directly related to the number of
processors. The purpose of the empirical study is to as-
sess
• what the overhead of the MPI model is on achieving

this as well as the cost of transferring the data and
• the weaknesses the instruction-based model has i.e.

the memory wall, page faults etc.
The particular program that is used does have a limit

on the size of the matrices it can handle. Other aspects
that affect the performance are cache faults that can only
be measured empirically.

Table 9: Analysis of Elements Processed

domain range op number

 b n2

 c n2

b b$0 xins n2

b$0 b$2 xnfltr n3

 a$0 tuple 0 n3

b$2 b$0 xsub n3

c c$0 xins n2

c$0 c$2 xins n3

 a$0 tuple 1 n3

c$2 c$0 xsub n3

a$0 a$1 mult n3

a$1 a$2 xfltr n3

 a$3 xnfltr n3

a$2 a$4 xsub n3

a$3 a$5 tuple 0 n3

a$4 a$5 tuple 1 n3

a$5 a$6 add n3

a$6 a$7 xfltr n3

 a$2 xnfltr n3

a$7 a zdel n2

a print print n2

 14n3+7n2

The same argument holds for the element-based model
that the elements can be distributed across the m pro-
cessors. There are however some advantages in terms of
distributing the elements. Elements can be processed in
any order and one does not need to synchronize the
sending and receiving of elements between processors.
The element-based model processes elements rather than
accessing data via an address in memory, eliminating this
potential cause of page faults. The element-based model
does synchronize using a hash table that has potential
page fault costs. Part of the empirical study is to get some
indication of this cost. In doing the comparison of cost,
the following factors need to be taken into account: the

 Element-Based Computational Model 9

Copyright © 2012 MECS I.J. Modern Education and Computer Science, 2012, 1, 1-11

cost of emulation and the inability to tailor hardware to
suit the element model. Processing an element involves
executing 12 emulator C statements. The hardware used
to run the comparison is highly optimized for the in-
struction-based model. The emulator has none of these
benefits. Hardware queues and hardware designed to
perform tuple hashing would improve the performance.

C. Empirical Study

In the previous section a case is made that, potentially,
the element model has significant advantages over the
instruction model. However the argument is based on a
number of assumptions. This section tries to get some
handle on how valid these assumptions are. The runtimes
of the instruction-based and the element-based programs
are collected for different sizes of matrices and different
numbers of processors. These runtimes are compared to
assess:
• whether the element-based program execution times

are comparable with the instruction-based execution
times, given that the code is emulated on an instruc-
tion-based computer, and

• whether the element-based model scales better with
the number of processors.

An MPI program (see Figure 8) was used to emulate the
behavior of the model to give some idea of its possible
performance and highlight weaknesses. The results give
some indication of the potential performance of an ele-
ment-based architecture. An evaluation of the experi-
ments is used to assess the validity of the assumptions
made in the complexity analysis. On the basis of these
results an assessment is made as to whether the element
model is worth investigating further.

Experiments were undertaken to assess if there are
grounds to support the arguments that an element-based
model:
• can be implemented to do a computation such as

matrix multiplication,
• performs better without parallelism, and
• scales better with increasing number of processors.

The experiments involve comparing the performance of
the emulation of the element-based program and the ex-
ecution of the C program. The following data is com-
pared:
• the number of elements created with increasing sizes

of matrices with a single slave,
• the wall times of both with increasing sizes of ma-

trices with a single processor, and
• the wall times of both for a given size of matrix with

increasing number of slaves.
The simple emulator shows that it is possible to im-

plement the model of computation to compute problems
such as matrix multiplication. The model does handle the

essential primitives i.e. selection, iteration and progres-
sion4.

The predicted number of elements relates closely to
the number of elements processed. The difference with
the analysis 14n3+7n2 differs by a factor of n2 shown by
Table 10.

Table 10: Comparison Between Predicted and Actual

Size Predicted Actual

100 14 070 000,00 14 960 000,00

110 18 718 700,00 19 916 600,00

120 24 292 800,00 25 862 400,00

130 30 876 300,00 32 887 400,00

140 38 553 200,00 41 081 600,00

150 47 407 500,00 50 535 000,00

One reason for the discrepancy is an implementation

design aspect that results in an additional element being
created for each tuple operation. This is not a significant
difference and aspects like system calls by the C program
can result in similar discrepancies. This result supports
the argument that the element-based model will perform
better, given the assumption that creating an element is
no worse than executing an instruction.

If we look at the execution times for the matrix of 100
by 100 in Table 11 we see that the number of instructions
per time unit is 15.5 for the element based technique and
240.8 for the instruction based one. This is roughly 15.5
times slower than the C program. Considering that the
emulator has to execute well over twenty instructions for
processing each element, it suggests that the assumption,
that processing an element is at least equivalent to
processing an instruction, may be a reasonable one. If
one takes into account that the estimated number of in-
structions executed is three times the number of elements
evaluated, this reduces the gap to just over 5 times
slower.

4 The equivalent sequential execution in the instruction based
form.

10 Element-Based Computational Model

Copyright © 2012 MECS I.J. Modern Education and Computer Science, 2012, 1, 1-11

Figure 8: Outline of Emulator

The picture does not look so favorable when the ma-
trix size increases and the element-based model is from 5
times for (100 by 100) to 7.5 times slower for (150 by
150) see Table 11. However the emulation is at present a
very simple implementation and on a totally unsuitable
architecture. Like with the current architectures, con-
siderable effort will need to be put into its design. Since
elements do not need to be processed in a predetermined
order, this enables the processor to better manage the
resources by determining the order in which elements are
processed. This could have significant impacts on the
implementation of the tuple operations that could explain
the deterioration of performance as the size of the ma-
trices increase.

The next comparison given in Table 11 looks at how
the two approaches speed up with the number of slaves.
The instruction-based times do not improve beyond two
slaves whereas we see that the times of the ele-
ment-based program do. The execution times for the
element-based program show some unexpected results,
even though for all measures, the best wall time of five

executions was selected. Part of the problem may be a
property of the cluster. Both the instruction and ele-
ment-based times seem out of line for the case with 6
slaves. The picture looks much better for the ele-
ment-based program if we look at the speedup factor.
The performance is better than linear up to 8 slaves and
unexpectedly there is a degree of superscalar speedup.
This result further supports the argument that this model
needs to be explored further.

Table 11: Comparison of wall times

 Element-based Instruction-based
Size Predicted Time Predicted Time
100 14070 907 42141 175
110 18719 1211 56072 280
120 24293 1530 72778 322
130 30876 2052 92511 398
140 38553 2665 115523 410
150 47408 3299 142066 442

Table 12: Comparison of wall times

Elem Instr
Number

Processors
Time Speed

up
Time

1 10207 1.0 978
2 3959 2.6 646
3 3315 3.1 627
4 2250 4.5 573
5 1728 5.9 672
6 1865 5.5 661
7 1193 8.6 620
8 1198 8.5 626

IV. EVALUATION AND CONCLUSION

This paper presents an alternative computational
model that has significant advantages. The most signifi-
cant is the concept of processing elements one at a time
in a similar way to processing instructions. Underpin-
ning this mechanism is that elements encapsulate both
semantic information and data. The semantic informa-
tion is used to determine how an element gets processed
to create new elements. Like the von Neumann model,
the evaluation cycle is a simple three-step process.

Since this paper is focused on the model as the basis
for parallel architectures, the description of programs is
touched on. The program in the case study is expressed in
basic algebraic notation that maps closely to the machine
level code. There is a small semantic gap between the
program and the code, unlike the C program. Both the
source and the assembly code are more concise than the
equivalent C program. The element program has a big
advantage in that it is inherently parallel and does not
need to be specially designed for parallel processors. If
the case study is representative of writing programs for
parallel architectures, then the element base architecture
has a decided advantage.

 Element-Based Computational Model 11

Copyright © 2012 MECS I.J. Modern Education and Computer Science, 2012, 1, 1-11

The complexity analysis of the two programs unsur-
prisingly shows that both are of order n3. However, on
the basis of the given assumptions and potential advan-
tages of the element-based model, the analysis indicates
that the element-based model is more efficient than in-
struction-based model. Both programs should exhibit
linear speedup with the number of processors.

The element-based execution times were considerably
better than was expected, given that the element-based
execution used a crude emulator running on an instruc-
tion-based cluster. The area of concern is around the
decline in performance as the matrix size increases. The
suspected reason for this is the hashing with the asso-
ciated page faults. More investigation is needed to ex-
plore how to improve the tuple hashing by ordering the
processing of tuples. Being able to use hardware queues
rather than addressed memory access for the unprocessed
elements, as well as passing elements between processes,
should further improve the performance.

The element-based execution times showed a better
than linear speedup whereas the instruction-based did not.
This contradicts the complexity analysis for the instruc-
tion base model that it would. This provides the strongest
case that the element-based model may be a better model
for parallel architectures.

This paper provides evidence that, for a tightly
coupled memory intensive program, the element-based
model has the potential to perform better than the in-
struction-based model. The next step is to implement
the model using FPGAs [9]. However this is beyond my
resources without some support for the potential of the
model. Research is continuing informally, describing
both the theory underpinning the model and the lan-
guage.

REFERENCES

[1] John L. Hennessy David A. Patterson, “Computer
Organization and Design: The Hardware/Software
Interface”, Morgan Kaufmann, 4th edition, (2009).

[2] Kreste Asanovic, Ras Bodik, Bryan Christopher
Catanzaro, Joseph James Gebis, Parry Husbands,
Kurt Keutzer, David P. Patterson, William Lester
Plishker, John Shalf, Samuel Webb Wiliams, and

Katherine A. Yelick, “The landscape of parallel
computing research: A view from Berkeley”, Tech-
nical report, Electrical Engineering and Computer
Sciences, University of California at Berkeley,
(2006).

[3] Klaus Erik Schauser David E. Culler and Thorsten
von Eicken, “Two fundamental limits on dataflow
multiprocessing”, Technical Report UCB/CSD-92-
716, EECS Department, University of California,
Berkeley, (1992).

[4] David Patterson John Hennessy, “A conversation
with John Hennessy and David Patterson”, ACM
Queue, 4(10), 2006.

[5] http://www.mpi forum.org/. Message passing inter-
face forum.

[6] Arvind, “Data flow languages and architectures”,
ISCA '81: Proceedings of the 8th annual sympo-
sium on Computer Architecture, 1981.

[7] Sajjan G Shivas, Advanced Computer Architecture,
pages 284-299, 2006.

[8] R.S.V. Whiting, P.G. Pascoe, “A history of da-
ta-flow languages”, Annals of the History of Com-
puting, IEEE.

[9] J. Teifel and R. Manohar, “An asynchronous dataf-
low fpg a architecture”, Computers, IEEE Transac-
tions on, 53(11):1376–1392, Nov. 2004.

Dr Conrad Mueller is a research fellow in both the
School of Electrical and Information Engineering: Uni-
versity of the Witwatersrand and in the School of IT:
Monash South Africa. His research interests are pro-
gramming languages, computer architectures and com-
puter science education with the main focus on new
computational model that can contribute to these three
fields. He received his PhD in Computer Science from
The University of Witwatersrand. He had taught a wide
range of courses in Computer Science. He is a member
of the ACM and a fellow of the Institute of Computer
Scientists and Information Technologists, South Africa.

