
I.J.Modern Education and Computer Science, 2011, 5, 47-53
Published Online August 2011 in MECS (http://www.mecs-press.org/)

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 5, 47-53

H-RBAC: A Hierarchical Access Control Model
for SaaS Systems

Dancheng Li

Software College of Northeastern University, Shenyang, China
Email: ldc@mail.neu.edu.cn

Cheng Liu and Binsheng Liu

Software College of Northeastern University, Shenyang, China
Email: {lectery, lbs.neu}@gmail.com

Abstract—SaaS is a new way to deploy software as a hosted
service and accessed over the Internet which means the
customers don’t need to maintain the software code and
data on their own servers. So it’s more important for SaaS
systems to take security issues into account. Access control
is a security mechanism that enables an authority to access
to certain restricted areas and resources according to the
permissions assigned to a user. Several access models have
been proposed to realize the access control of single instance
systems. However, most of the existing models couldn’t
address the following SaaS system problems: (1) role name
conflicts (2) cross-level management (3) the isomerism of
tenants' access control (4) temporal delegation constraints.
This paper describes a hierarchical RBAC model called H-
RBAC solves all the four problems of SaaS systems
mentioned above. This model addresses the SaaS system
access control in both system level and tenant level. It
combines the advantages of RBDM and ARBAC97 model
and introduces temporal constraints to SaaS access control
model. In addition, a practical approach to implement the
access control module for SaaS systems based on H-RBAC
model is also proposed in this paper.

Index Terms—H-RBAC, access control, SaaS, RBAC,
hierarchical model, multi-tenant

I. INTRODUCTION

SaaS is a new way to deploy software as a hosted
service and accessed over the Internet [1], by which users
can rent web-based software from the service providers to
manage business activities instead of purchasing and
maintaining software by themselves. At the same time,
this new method brings new challenges to data security,
consistency and integrity in SaaS systems. In order to
make users be assured of the safety of important or
confidential data, permission management and access
control are particularly important in the process of SaaS
system development.

Access control as an important part of security services
is an essential measure to ensure the security of
information system [2]. It is a defensive method to prevent
unauthorized resource use, and make sure the system is
used safely. Access control determines what the user can
do, and what types of resources can be used, it can

effectively prevent the invasion of illegal users and the
unauthorized access to system resources of legal users.

There are three most widely recognized access control
models: Discretionary Access Control (DAC), Mandatory
Access Control (MAC), and Role Based Access Control
(RBAC) [3]. MAC and RBAC are both non-discretionary.
DAC is very flexible, but security is not strong,
authorization management is complex. MAC is a more
stringent access control method, but it is inflexible and
not suitable for the large-scale application, because it
carries into execution complexly [4]. RBAC is an access
control strategy which is between DAC and MAC, it has
a strong ability to represent the semantic meaning of the
relationship between users [5]. It is not only able to
express the "responsibility" in complex social
organizations, but also to reduce the complexity of access
control management. Now it has been widely accepted as
an alternative to traditional discretionary and mandatory
access controls [6, 7].

II. RELATED RESEARCHES

RBAC is an enabling technology for managing and
enforcing security in large-scale and enterprise-wide
systems. It was first proposed by David Ferraiolo and
Rick Kuhn in 1992 [8]. RBAC model introduces the
"role" concept between "user" and "permission", every
user is related to one or more roles, one role is related to
one or more permission, and the roles can be created or
deleted according to needs. After that, professor Ravi
Sandhu of George Mason University put forward the
most famous RBAC96 model with his colleagues; they
added the role hierarchy and assign constraints to RBAC
model, the RBAC96 model can be divided to RBAC0,
RBAC1, RBAC2, RBAC3 the four conceptual models [9].
RBAC0 is the base model which consists of users (U),
roles (R), permissions (P), and sessions (S). This RBAC0
supports the least-privilege principle. A user belonging to
several roles can invoke any subset of them that enables
tasks to be accomplished in a session. Thus, a user who is
a member of a powerful role can normally keep this role
deactivated and explicitly activate it when needed.
RBAC1 introduces role hierarchies (RH) to the base
RBAC model. Role hierarchies are invariably discussed
along with roles in the literature [10] and they are

48 H-RBAC: A Hierarchical Access Control Model for SaaS Systems

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 5, 47-53

commonly implemented in systems that provide roles.
RBAC2 is unchanged from RBAC0 except for requiring
that there be constraints to determine the acceptability of
various components of RBAC0. Only acceptable values
will be permitted. RBAC3 combines both RBAC1 and
RBAC2 and provides role hierarchies and constraints [9].
But in modern large enterprise wide systems, there may
be a large number of roles and many users. The
relationships among the roles, permissions and users
change continuously, so the previous centralized RBAC
models have several drawbacks to do access control in
this situation. In 1997, Sandho and Bhamidipati raised the
ARBAC97 model which consists of URA97 (User-Role
Assignment ‘97), PRA97 (Permission-Role Assignment
‘97), and RRA97 (Role-Role Assignment ’97). They
based on the basic idea that using RBAC to manage
RBAC and further to provide administrative convenience
and scalability, especially in decentralizing administrative
authority, responsibility, and chores [11]. After that, they
have extended the ARBAC97 model to ARBAC99 where
they separate users/permissions into mobile and immobile
users/permissions [12], and later to ARBAC02, where
they use an organization structure to define user-role
assignment and role-permission assignment [13].
ARBAC02 contains the main features of ARBAC97, and
add the concept "organization" to improve many
imperfect aspects in ARBAC97.

In RBAC, permissions are associated with roles, and
roles are assigned to users. With the increment of roles
and permissions, we need to reassign some roles from
one user to another in short term or long term to make
sure the business activities performed normally. And also
permissions can be revoked from roles as needed. All the
roles delegation actions were performed via the
administrator’s temporary user-role configuration before.
But with the development of business, the number of
roles in a company is increasing all the time. If we use the
old method to achieve the delegation work, the system
administrator will face with so heavy burden that some of
the delegations will not be accomplished in time. And
this practice will affect the efficiency of enterprises
directly. So we need a mechanism to realize the user-role
reassignments in enterprise systems. Based on this theory,
Barka and Sandhu proposed the RBDM0 model [14]
which introduced the “delegation” to the traditional
RBAC model. In RBDM0, a user has the ability to
authorize the assigned roles to another user to help him
perform the works. But the RBDM0 model is so simple
that it’s hard to be used in the real enterprise applications
directly. In 2005, they did some improvement to the
previous model and put forward the RBDM1 model [15].
In RBDM1, hierarchical roles were added to the basic
model, like that happened in RBAC1. This change makes
the model more practical in actual application
environment. But there are still many problems that the
RBDM models didn’t take into account, such as the
temporal constraints to the roles delegation, multistep
delegation and the delegated roles revocation mechanism.
In 2000, Longhua Zhang’s team proposed the RDM2000
model based on the basic RBDM models. This model

solves the problems of the hierarchical delegation and
multistep delegation effectively. But RDM2000 still
doesn’t bring the temporal constraints to access control
model.

Researchers and vendors have proposed many
enhancements of RBAC models in the past decades. Chen
Nanping and his colleagues proposed a RBAC model with
www extends, they added role proxy layer between users
and roles to implement role assign dynamically, and
improve the efficiency of network transmission [16]. Xia
Luning and his team proposed the N-RBAC, a hierarchical
namespace-based RBAC model. They used namespace to
organize roles and resources in order to simplify the
complexity of the role hierarchy structure [17]. Ma Lilin
and Li Hong did some research on admission control,
operation control, data access control of SaaS systems, but
they didn’t do deeply research on access control and
didn’t provide a feasible implementation of access control
module [18].

The features of multi-tenant, configurability and
security make SaaS systems so different with the
traditional systems. If we apply existed access control
models to SaaS systems directly, the following problems
will appear:

A. Role Name Conflicts
In SaaS applications, there are always a large number

of tenants using the system services at the same time.
Each tenant usually needs very large number of roles,
which means that there are many nodes in the roles
hierarchy structure. However, these nodes cannot have
duplicate names, so we have to take measures to modify
role names to avoid naming conflicts, such as adding a
prefix to the role names. In this way, the roles inheritance
become more complex, and the roles’ names will be
longer.

B. Cross-level Management
According to the regulations of ARBAC97, the system

administrators inherit the permissions of all the following
administrators in different tenants. This means that system
administrators can do some changes within each tenant‘s
permission scope and can ignore the “can_assign”
constraint in URA97. But in fact, a tenant is usually an
independent company or a department of a big business.
That means that each tenant must be an autonomous unit.
The tenant’s resources such as permissions, roles, users
etc. must be managed by the system administrator of the
tenant instead of the SaaS system administrator which is
usually a staff of the SaaS service provider.

C. The Isomerism of Tenants' Access Control.
SaaS System is a multi-tenant online rental system,

although in theory the tenants should belong to a same
field, but from the practical point of view, each tenant’s
development is uneven, and thus there’re many
differences in access control among the various tenants.
The differences are mainly as follows:

1) The Different Control Scope of Permissions

 H-RBAC: A Hierarchical Access Control Model for SaaS Systems 49

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 5, 47-53

Since the tenants of different sizes have distinct access
control needs, the control scopes of permissions among all
the tenants are not the same. Some tenants would like to
restrict all the resources, while some only want to do
access control on certain permissions. Even some tenants
do not need the access control mechanism which means
all the members in the tenant can access all the functions
and data. All the above exist objectively in the real world.

2) The Heterogeneous Relations of Roles
Since the departments and jobs are different within

different tenants, the roles and role-permission relations in
different tenant are different. If the traditional RBAC
model is used in SaaS systems, all roles will be defined in
global scope, they are visible to any tenants. This will not
only bring the naming conflicts problems, but also it’s
inconvenient to manage the roles within a tenant.

3) The Heterogeneous Constraints of Permission
Assignments

Each tenant in SaaS system is a highly autonomous
entity, so the constraints of role assignments in different
tenants are different. If we define the constraints of role
assignments in the global scope, this will bring the
assignment constraints conflicts, which may bring
confusion in the roles relationship management.

D. Temporal Role Delegations
Sandhu has formally defined the role-based delegation

model based on hierarchical relationship between the roles
involved to realize the roles delegation between
users. According to the enterprise actual needs, the access
control model should include the constraints or rules of
roles delegation and revocation. These limitations may
include whether to allow the original user revoke the
permissions from delegated user directly or get back the
roles after the authorized users’ use. If we allow the
directly revocation, the mandatory operations may bring
system data loss or the system may face the data
consistency problem. Because some functions may be in
operating state when the revocation performing. In
addition, time constraint is also an indispensable part of
role delegation model. After a user delegate some roles to
another user, the original user should also define the
permissions’ valid period to prevent the abuse of authority.

The temporal constraint based delegation in SaaS
systems includes two levels: the system level and the
tenant level. The system level time constraints are the
constraints that SaaS services providers define to limit the
valid period of SaaS services according to how much the
tenants pay for them, such as the system expired time
constraints. The tenant level time constraints are the
limitations that the tenant system administrator formulates
to assign available permissions to system users reasonably
after the tenant gets the use authorization of SaaS services
and further to ensure the system security. However, all the
existing models don’t meet all the requirements of SaaS
systems’ temporal roles delegation.

In SaaS systems, the services every tenant has belong to
different instances of system though, but all these services
are deployed at one time. Taking into account that this

article is focused on level-3 SaaS systems, therefore, when
designing the access control model, the purpose is very
clear that all the users and tenants’ information must be
stored in the same database server, so there are high
demands in the clarity of the access control model. In
addition, taking into account the upgrade and maintenance,
the access control model the systems use should have
some scalability. The models mentioned above are all
unable to fully meet the three conditions that SaaS
systems access control model must satisfy.

Therefore, this article proposed a hierarchical access
control model named with H-RBAC for SaaS systems
after summarizing advantages and disadvantages of the
existing access control models. This model solves the
access control problems from both system and tenant
perspective.

III. H-RBAC MODEL

This paper proposes a RBAC model based on hierarchy
structure, defines the management scope from both system
and tenant point. In a SaaS system, each tenant has its own
users with the features distinct from others’, so that each
tenant should have its own access control policy and
administrative scope. Therefore, SaaS systems need not
only provide access control for tenants, but also provide
users’ access control within every tenant. On the system
level, the target objects of access control model to address
are the tenants, not the detailed users. So, from the whole
system perspective, the access control in SaaS systems
should contain several sub-access controls, that means
system access control include tenant access control, tenant
access control is based on the system access control.

Above all, we propose the H-RBAC model, it improves
tenant-based RBAC model, the static model as shown in
Fig. 1. Furthermore, this paper realizes the access control
in SaaS systems from two aspects: tenant-level access
control and system-level access control. The tenant-level
access control uses the organization-based access control
model, and the system-level access control uses the
administrative role-based access control model based on
ARBAC97 which provide the mechanism to distinguish
administration roles from general roles. In addition, we
take the roles delegation into account so the H-RBAC
model combines the advantages of ARBAC97 model and
RBDM and we also do several improvements based on
them.

A. H-RBAC Basic Structure
We can see the hierarchical structure of H-RBAC

model from Fig. 1 clearly. The top level elements are all
belong to the SaaS system provider. These elements are
used to implement the tenant authorization. While the
bottom elements are belong to every tenant, and used to
realize the access control in a tenant. The H-RBAC model
contains the following elements:

 System User: it represents all the individuals that use
the SaaS system directly, such as the system
administrators in SaaS services provider companies and
the clients (tenants) that rent the system services from the
services provider.

50 H-RBAC: A Hierarchical Access Control Model for SaaS Systems

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 5, 47-53

 AURC: Administrative User-Role Constraint, it
defines the rules that apply to the user-roles assignments.
Since in the actual SaaS system services provider
company, there must be a large number of administrative
tasks to be performed, the top level administrator may
divide the tasks to many other administrators. Each
administrator can only use the permissions that assigned
to him. The AURC ensure the administrator doesn’t have
the rights that not be assigned and ensure one
administrator will not get the exclusive permissions.

 APRC: Administrative Permission-Role Constraint,
it is used to separate duties, to ensure different roles own
different permissions.

 TTC: Tenant Time Constraint, it represents all the
time related rules that SaaS system providers define and to
be applied to the tenants, such as the tenant authorization
activation time constraints, the tenant authorization valid
time period constraints and so on.

 User: all the individuals that use the system services
directly, including both the persons and other entities,
such as the personal computers, agents, networks etc.

 Role: a job function within the organization that
describes the authority and responsibility conferred on a
user assigned to the role.

 Permission: a description of the operation types of
authorized interactions a subject can have with one or
more objects.

 RE: short for resource, anything used or consumed
while performing a function in the system. The resources
can be divided into several categories, such as time,
information, objects, and processors etc.

 Role Hierarchy: a partial order relationship
established among roles.

 User Group: a set of users that are in the same
department in the tenant company or have the similar
duties. In the system, the user group can be regarded as an
access control unit. A major difference between groups
and roles is that groups are typically treated as a collection
of users but not as a collection of permissions. A role,
serving as an intermediary, is both a collection of users
and a collection of permissions.

 URTC: User-Role Time Constraint, the limitations
that used to define the assigned roles valid activation time
and the roles available time period for a user.

 URDC: User-Role Dynamic Constraint, it is a kind
of dynamic duties separation constraints, which is used to
avoid assigning overmuch permissions to one user. The
URDC is only act on the permissions activated in the
current session to ensure the exclusive roles that defined
in the URDC will not be assigned to one user. It’s
established when a user logs in the system, and if the user
logs out, the constraints will become invalid.

 General Permission: a description of the type of
authorized interactions a subject can have with an object
in the system. The permissions include the resources and
operations. The resources include all resource entities that
the system functions need, such as data tables, properties
etc. The operations contain all the actions of accessing the
system resources, such as database queries, update, delete
and modification and so on.

 General Role: in SaaS systems, it represents the
release suits that the service provider provide for renting,
such as the standard edition, advanced edition, starter
edition etc.

 Admin Permission: express the permission to operate
the model itself, such as adding a new role, deleting a user
etc.

 Admin Role: it corresponds to the jobs in the system
whose responsibility is managing the access control model
itself. Such as the permission to modify the set of users,
roles, permissions and modify the user assignments or
permission assignment relations are all included in the
administrative jobs.

 GPRC: in real life, certain functions cannot be
assigned to the same role, that is the separation of duties,
which is aim to divide different skills and different
interests to different kinds of people in order to prevent or
reduce the chance of fraud and cut down the loss made by
mistakes. General Permission-Role Constraints define
some rules to avoid a role has some exclusive permissions.

 GURC: General User-Role Constraint, it defines the
authorize rules between the roles and users.

 Admin Constraint: the “admin” means the
management of access control model，including the user-
role assign management, permission-role assign
management etc. It ensures the separation of exclusive
administrative duties.

 Tenant: the client of SaaS systems, tenants pay on
demand to SaaS services providers. Each tenant requires
SaaS system to ensure a high degree isolation of data and
configuration to ensure the security and privacy also
requires the customization of user interface, business logic
and data structures etc. In practice, each tenant is the form
of enterprise, so each tenant can have many users.

 Session: a session is a mapping from a user to
multiple roles, a session is established when the user
activates some or all authorized roles. What the user can
do is within the tasks set activated during this session.

 URC: User-Role Constraint, it defines the
authorization rules between the users and roles in a tenant,
to avoid assign the exclusive roles to the same user.

 PRC: Permission-Role Constraint, it defines the
assign rules between the permissions and roles within a
tenant, to avoid the exclusive permissions authorized to
the same role.

 UGRTC: User Group-Role Time Constraint, it is the
limitations or rules of user group-role assignment. That

Figure 1. H-RBAC model.

 H-RBAC: A Hierarchical Access Control Model for SaaS Systems 51

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 5, 47-53

defines the available time or period that the roles act on a
user group.

The concepts not mentioned above are exactly the
same as the corresponding ones in classical ARBAC97
model. As mentioned above, the differences between H-
RBAC model and ARBAC97 model are as follows: the
user resources are not defined in the global scope, but in
the different tenant namespaces, in this way, we can
effectively solve the roles naming conflicts problem.
Meanwhile, in a tenant, the administrator can define and
distribute all the roles and permissions within the tenant
on demands, which solves the inconsistent permission
needs problems among different tenants. In the H-RBAC
model, each tenant is an autonomous entity. Therefore
inheritance exists between different roles, and
implementation of inheritance is similar to that in
ARBAC97. In ARBAC97, the inheritance of roles for
administrator is aiming to facilitate the distributed
management of permissions, however, in H-RBAC, the
distributed management is implemented via the way of
tenant autonomy, and the permissions in one tenant will
not spread to other tenants. So in the system permission
management level of H-RBAC, the system administrators
will neither inherit the permissions of tenant
administrators anymore nor be allowed to interfere with
the permission assignments within the tenant scope. That
means the tenants are regarded as "black box" at the
system level, and the permissions in a tenant are managed
by the tenant administrator.

B. Time Constraints in H-RBAC
In the actual environment the time constraints mainly

include two aspects: the delegation starting time
constraints and the delegation duration constraints.

The basic delegation model consists of three parts: (S,
O, R). S means subject user who initiate the delegation
action. O means object user who is to accept the
delegation role. R means the delegation role in this action.

Whether a role is valid at some time is related to the
state of the role. In the H-RBAC model, we define that
every role has three states based on the using condition.
Three states are assigned, activated and disabled as
shown in Fig 2.

We define two levels time constraints in the SaaS
system delegation. They are the system level constraints
and tenant level constraints.

The system level time constraints’ target objects are
the tenants. These constraints focus on controlling the
system available duration. Because if a company want to
use SaaS services, it must pay some money to the SaaS

system providers to get a fixed services available duration.
So the SaaS system must provide a mechanism to stop the
services being used once the services are expired. And
this mechanism can be implemented by the system level
time constraints in H-RBAC. Before we introduce the
time constraints, the tenant authorization in SaaS system
is in the form of (t, r). The t represents a tenant, r means
the role assigned to the tenant. In H-RBAC, we add the
valid time duration to it, the form of temporal tenant
authorization is (t, r, d). The d is a time interval [ts, te], in
which the ts means the start time of the authorization
effect and the te means the authorization expired time.
The new delegation expression means assign the role r to
tenant t, and the delegation relation is valid only during
the time period of d. If the current time past te, the SaaS
system will withdraw the assigned role r from t.

After a role assigned to a user, the user can use the
assigned rights to perform some business functions. But
the user may need others’ help in practice and these helps
always relate to some confidential data or functions. So
we define the tenant level time constraints to put some
limit to the delegations. These constraints concentrate on
providing the temporal limitations to all the users and
user groups in the tenant scope. According to the actual
needs, we divide the tenant level time constraints into
three types:

1) Activation time constraint
It defines the valid roles’ activation time period, which

means the assigned roles should be only activated in a
specified duration. For example, in some companies the
stuffs can only use the system during the worktime, or
some peculiar functions can be only activated in a
specified time period.

2) Available duration constraint:
This constraint limit certain assigned roles of a user can

be only activated for a fixed duration every time. Its goal
is to protect the important or confidential operations from
being embezzled because of the too long activation.

3) Available times constraint:
The available times constraint contains both the

available duration constraint and the number limit of uses.
It ensures that certain roles can be only activated fixed
times during the specified duration.

IV. ACCESS CONTROL MODULE ARCHITECTURE

This paper applies H-RBAC model to the access
control module of the community health services system
based on SaaS, which provides some basic functions for
small or medium sized community health organizations,
including registration management, medical record
management, outpatient clinic, pharmacy management etc.
The system follows the SaaS patterns, provides its
services in the way of single instance and multi-tenant
structure. In view of the system involves a number of
business units, roles assignments are complex, there are
too many kinds of constraints and a wide range of other
factors, we use the H-RBAC model to achieve the roles Figure 2. Role state transition.

52 H-RBAC: A Hierarchical Access Control Model for SaaS Systems

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 5, 47-53

management, roles allocation, dynamic constraint access
control, dynamic permissions distribution and other access
control functions. Concrete realization of the access
control module is shown in Fig. 3.

The access control module is composed of the
following components: ACS (Access Control Server),
AFS (Access Filter Server), UDCS (User Dynamic
Constraints Server), PMC (Permission Management
Center), AUC (Authentication Center) etc. Following are
the detailed description of each section.

A. Authentication Center
The authentication center is a function to authenticate

each user that attempts to access to the system services.
Only the users passed the authentication can send further
requests to the system.

B. Access Filter Server
Access Filter Server is equivalent to a control switch, it

filter access requests by using the filter configuration and
the capability list generated by ACS. If a user has the
specific permission, the AFS will forward the request to
the application server, if doesn’t have, the AFS will
intercept the request and return the failure messages.

C. Access Control Server
Access Control Server forwards the requests to the

tenant-level access control module, it implements the
Access(S,O,OP) function which determine whether this
session S has the operation OP on the object O. It use the
capability list (CL) as the control method, attached the CL
to the current session as an attribute.

D. User Dynamic Constraints Server
In the process of generating the capability list, the

access control module must ensure the capability set does
not include the exclusive abilities. But exclusive
relationships are defined in the role-user and the role-
permission constraints. The UDCS generates the
permission set which cannot be assigned to the specific
user based on the user information submitted by the ACS
and the related constraints.

E. Temporal Constraints Server
It is used to handle all the operations related to the time

constraints. The TCS get the role set or permission set
after the UDCS dispose. Then it gets the related time
constraints from the Access Control Database according to
the identification included in the previous step’s result.
The TCS realizes the process of time validation for every
role to be assigned to the user. It ensures that the expired
roles or permissions will not be authorized to any user.

F. System Management Server
The SMS (System Management Server) provide an

entrance of SaaS system management for the system top
level administrators. These administrators usually belong
to the SaaS service providers and are responsible for all
the top level system management works, such as the
tenant authorization, system parameters settings and
system functions management etc.

Figure 3. The structure of access control module

G. Delegation Server
The DS (Delegation Server) is used to handle all the

roles delegation requests in the system. According to the
user’s assignment, the DS transfer the input from the UI
page to formal expressions that can be easily stored and
queried in the database.

H. Permission Management Center
Permission Management Center provides the

permission management operations for system
administrators, including system-level management and
tenant-level management. The system-level management
provides the functions from the view of system
administrators it provides some management operations
based on tenants, such as tenant management, service suit
management, system permission management etc. While
the tenant-level management achieves the management
functions within a tenant, it involves the user management,
permission management, constraint management etc.

The client initiated authentication request to access
control module, then the module will send the user
information to the Authentication Center, after the success
of authentication, the center will returns the successful
authentication access control mask, the user dynamic
constraint code and other information and save them to the
session related to this user. The Access Filter Server
encapsulates the user's information and the authentication
result into another data structure and sends it to the Access
Control Server which can generate the permission
constraints according to the request parameter, and then
the ACS generates the capability list of this user based on
the constraints and user role information. At last, the AFS
validates the business requests according to the capability
list and forward the valid requests to the application server.

V. CONCLUSION AND FUTURE WORK

This paper proposed a hierarchical access control model
for SaaS systems named with H-RBAC. And we raised a
practical implementation of access control module for
SaaS systems based on the H-RBAC model. First we
introduced the basic concepts about SaaS and access
control methods. Followed by related researches on the
RBAC-based access control, this paper analyzed the

 H-RBAC: A Hierarchical Access Control Model for SaaS Systems 53

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 5, 47-53

advantages and disadvantages of existing RBAC models.
Then we raised the H-RBAC model which solves the
access control problem in SaaS systems. Finally, we put
forward a practical way of access control module
implementation for SaaS systems. Practice shows that the
access control based on H-RBAC model is practical and it
has several advantages: (1) flexible structure, conducive
to hierarchical responsibility segments and authority
management. (2) self-government within tenants, without
overemphasizing the role hierarchies of multiple levels. (3)
intuitive permission assignments, easy to understand and
use for SaaS system developers. (4) good scalability,
supporting the needs of different tenants of heterogeneous
access control.

However, the method proposed in this paper has some
imperfections, so we need to do more in-depth research in
the future. For example, we’d better take the system
security and data consistency into account when designing
models. Because when the roles revocation proceeding we
must guarantee the services are available and will not be
interrupted. Another direction is promoting the efficiency
of the access control. Since the permission related
operations are performed frequently in SaaS systems, we
can provide an optimization method based on H-RBAC
model to ensure the system efficiency.

ACKNOWLEDGMENT
This Work was supported by Natural Science

Foundation of Liaoning Province. (No.20092006)

REFERENCES
[1] Frederick Chong, Gianpaolo Carraro, Architecture

Strategies for Catching the Long Tail,
http://msdn.microsoft.com/enus/architecture/aa479069.as
px, 2006, 4.

[2] Messaoud Benantar, Access Control Systems: Security,
Identity, Management and Trust Models, Springer US,
2009, 12.

[3] Bo Lang, Ian Foster, Frank Siebenlist, Rachana
Ananthakrishnan, A Flexible Attribute Based Access
Control Method for Grid Computing, Journal of Grid
Computing, vol.7, pp.169-180.

[4] Jiang Yueqiu, Jiao Yan, Research and Implementation of
Access control Model of Military Information System,
Acta Armamentarii, 2009, 4, pp.431-437.

[5] Feng Demin, Wang Xiaoming, Zhao Zongtao, An
Expanded Role-Based Access Control Model,
COMPUTER ENGINEERING AND APPLICATIONS,
2003.

[6] Liu Peishun, He Dake, Application of RBAC in the
Railway Passenger Ticket Network Security
System, JOURNAL OF THE CHINA RAILWAY
SOCIETY, 2004.

[7] J. Bacon, K. Moody, Toward open, secure, widely
distributed services, Communications of the ACM -
Adaptive middleware, vol. 45, 2002.

[8] David Ferraiolo and Richard Kuhn, Role-Based Access
Controls, Reprinted from15th National Computer Security
Conference, 1992, pp.554-563.

[9] R. S. Sandhu, E.J. Coyne, H.L. Feinstein, C.E. Youman,
Role-Based Access Control Models, IEEE Computer,
IEEE Press, 1996, pp.38-47.

[10] S.H. von Solms and I. van der Menve, The Management
of Computer Security Profiles Using a Role-Oriented

Approach, Computers & Security, vol. 13, No. 8, 1994, pp.
673-680.

[11] R. Sandhu, V. Bhamidipati, and Q. Munawer, The
ARBAC97 Model for Role-Based Administration of
Roles, ACM Transactions on Information and System
Security (TISSEC), vol. 2, 1999, pp. 105-135.

[12] R. Sandhu and Q. Munawer. The ARBAC99 Model for
Administration of Roles, In Proceedings of 15th
Computer Security Applications Conference, 1999, 2, pp.
229.

[13] S. Oh, R. Sandhu, A model for role administration using
organization structure, Proceedings of the 7th ACM
symposium on Access control models and technologies,
Monterey, 2002.

[14] E. Barka and R. Sandhu. A role-based delegation model
and some extensions. In 23rd National Information
Systems Security Conference, Baltimore, MD, October
2000.

[15] Barka, R. Sandhu, Role-based delegation
model/hierarchical roles (RBDM1), Computer Security
Applications Conference, 2004, pp.396 – 404.

[16] Chen Nanping, Chen Chuanbo, Implementing role based
access control in WWW environment, Journal of
Huazhong University of science and technology, 2002.

[17] Xia Luning, Jing Jiwu. An Administrative Model for
Role-Based Access Control Using Hierarchical
Namespace. Journal of computer research and
development. 2007.

[18] Ma Lilin, Li Hong, A permission model of SaaS system
based on RBAC, Computer application and software,
2010.

Dancheng Li was born in Shenyang,
Liaoning province in 1963, earned M.S. degree
in the field of computer software in 1990 from
Shenyang Institute of Computing Technology,
Chinese Academy of Sciences.

She is now an associate professor and
postgraduate supervisor in Software College of

Northeastern University, China (NEU). Before joining NEU,
she was an associate research fellow in Shenyang Institute of
Automation, Chinese Academy of sciences for about 3 years.
Her main research directions include IT service management
and information system engineering.

Cheng Liu, born in Shenyang, Liaoning

province in 1988, earned B.S degree in the field
of software engineering in 2010 from
Northeastern University, China. Now he is a
postgraduate student major in computer
software and theory in Northeastern University,
China.

Binsheng Liu was born in China in 1987.

He received the bachelor degree in software
engineering in Northeastern University, China
in 2010. He is recently a postgraduate student
in Northeastern University, China.

