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Abstract—Minimum spanning tree is a classical problem in 
graph theory that plays a key role in a broad domain of 
applications. This paper proposes a minimum spanning tree 
algorithm using Prim's approach on Nvidia GPU under 
CUDA architecture. By using new developed GPU-based 
Min-Reduction data parallel primitive in the key step of the 
algorithm, higher efficiency is achieved. Experimental 
results show that we obtain about 2 times speedup on Nvidia 
GTX260 GPU over the CPU implementation and 3 times 
speedup over non-primitives GPU implementation.  
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I.  INTRODUCTION 

A.  MST Problem and Prim’s Algorithm 
Minimum spanning tree (MST) is a fundamental 

concept in classic graph theory. It is defined as follows: 
Given an undirected graph G = (V, E) with a weight 
mapping w : E → R, find a connected sub graph T = (V,E' 

E) with |E'| = |V | -1 that minimizes the objective 
function ∑e∈E' w(e). Fig. 1 illustrates the MST concept 
described above. MST plays a key role in a broad domain 
of applications, including network organization, touring 
problems and VLSI layout. Moreover, they are typically 
only a part of more complex graph algorithms. 

 
Figure 1.  Minimum spanning tree concept 

Prim's algorithm is one of the most commonly used 
MST algorithms, and it belongs to classic greedy 

algorithm. The serial computational complexity of Prim's 
algorithm implemented with traditional data structure is 
O(|V|2). Research of Prim's algorithm concentrates on its 
serial version. There have been several parallel 
formulations of Prim's algorithm [1][2][3]. The common 
disadvantage of these algorithms is that the speedup is 
limited compared with parallel Borůvka's MST algorithm 
especially when the graph size is very large. 

B.  GPU-Based Accelerating Applications 
Graphics Processor Unit (GPU) is used for many 

general purpose applications recently. Modern GPU 
provides high computational power at a low cost. Many 
new development platforms such as CUDA (Compute 
Unified Device Architecture) [4] and OpenCL (Open 
Computing Language) [5] make GPU become a 
affordable and accessible computing coprocessor. Due to 
the features of GPU architecture, those applications that 
have good speedup effect are mostly belong to regular 
problem. GPU model is best suited to process 
independent data instances. Processing less regular data 
on GPU architectures is a challenge to programmers [6]. 
These irregular problems include graph theory and 
computing geometry. MST problem is an irregular 
problem. To our best knowledge, there has been no GPU 
version of parallel Prim's algorithm up to the present. 

C.  Our Work and Contribution 
In our previous work, we have implemented the GPU 

version of Prim's algorithm using common approach on 
CUDA platform, but the performance of that version’s 
algorithm is even worse than CPU sequential 
implementation in industrial Boost Graphic Library [7]. 
After analysis, we consider that the key problem is the 
parallelization difficulty of finding minimum value in the 
inner loop of Prim’s algorithm. Recent studies on 
irregular algorithm reveal that the use of efficient 
primitives to map the irregular aspects of problem to the 
data-parallel architecture of these massively 
multithreaded architectures is central to obtain high 
performance. This result can be helpful in paralleling the 
step of finding minimum value. 

In this paper, we design and implement the parallel 
Prim's algorithm using data parallel primitives under 
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CUDA architecture on GPU. Our work extends and 
improves the approach of Mark Harris et al. [8] and 
designs new GPU Min-Reduction primitive suited to 
Prim's algorithm. After fully optimization, when the input 
size is 16384 vertices, we achieve about 2 times speedup 
on GTX260 GPU over the BGL CPU serial 
implementation and about 3 times speedup over non-
primitives GPU implementation. Besides, the reason of 
limited speedup in our implementation is also be 
analyzed. 

II.  RELATED WORK 

A.  Parallel Prim’s Algorithms 
Kumar et al. [9] pointed out that the outer while loop 

in serial Prim's algorithm is hard to parallelize due to its 
inherent character, but the two inner loop steps can be 
parallelized and they are: finding minimum weighted 
edge in the candidate edge set  (i.e. Min-Reduction step) 
and updating the candidate edge set(i.e. Comparing and 
updating MST step) . 

There are several parallel implementations of Prim's 
algorithm. Rohit Setia et al. [1] presented a new parallel 
Prim's algorithm targeting SMP with shared address 
space, and obtained 2.64 times speedup. Gonina et al. [2] 
used a novel extension of adding multiple vertices per 
iteration to achieve significant performance improvement 
under MPI environment. Bader et al. [3] proposed a 
parallel MST algorithm which uses a hybrid approach of 
Borůvka's and Prim's algorithm.  

B.  GPU Data Parallel Primitives 
Data parallel primitives are common fundamental 

parallel operations when developing parallel algorithms. 
In the GPU parallelization process of serial algorithm 
aimed at irregular problem, the use of data parallel 
primitives can achieve crucial performance improvement. 
Mark Harris et al. [8] presented a reduction primitive 
implementation on GPU using CUDA. Blelloch[10] 
formulated MST algorithm using the scan primitive on an 
EREW PRAM model. Vineet et al. [11] used three GPU 
primitives to solve MST problem using Borůvka's 
approach. Aydin Buluc [12] researched the application of 
GPU data parallel primitives in several graph theory 
problems such as APSP (All Pairs Shortest Path). 

Besides, some GPU data parallel primitive libraries 
under CUDA architecture appear recently, including 
CUDPP [13], Thrust [14]. The utilization of these 
libraries will make the development of GPU application 
more convenient, but the disadvantage is that the 
primitives in these libraries are not abundant yet and 
sometimes may cause redundant memory access. 

III. GRAPH REPRESENTATION ON CUDA PLATFORM 

A. Traditional graph representation 
Traditional data structure for graph representation 

includes adjacency matrix and adjacency list [15]. Fig. 2 
shows these two structures. For the adjacency matrix 
representation of a graph G = (V, E), we assume that the 

vertices are numbered 1, 2, ... , |V| in some arbitrary 
manner. Then the adjacency matrix representation of a 
graph G consists of a |V| × |V| matrix A = (aij), and if (i,j) 
∈E, then aij = 1, otherwise aij = 0.The adjacency list 
representation of a graph G = (V, E) consists of an array 
Adj of |V| lists, one for each vertex in V . For each u ∈ V, 
the adjacency list Adj[u] contains all the vertices v such 
that there is an edge (u, v) ∈ E. 

 
Figure 2.  Traditional graph representation 

After analyzing the feature of these two graph data 
structure, we draw the conclusion as follows. Adjacency 
matrix is suitable for dense graph representation, but the 
O(|V|2) space requirement is too large to be suitable for 
the limited GPU device memory, especially when the 
graph size is very large. Adjacency list is suitable for 
sparse graph and its space requirement is only 
O(|V|+|E|).But the pointer data in traditional adjacency list 
is too many, CUDA platform is not adept in processing 
pointer data, so traditional adjacency list is also not 
suitable for graph representation on GPU device.   

B.  Compact Adjacency List 
In recent related studies, there are two main graph data 

structures on CUDA platform (Fig. 3), which are both 
improvement forms of traditional adjacency list.  

Figure 3.  Compact Adjacency List 
P. Harish et al.[16] propose a kind of graph 

representation named  compact adjacency list. As Fig. 3a) 
shows, compact adjacency list consists of three arrays: 
vertex array Vg, edge array Eg, weight array Wg. The 
length of Vg is |V| and its element points to the start index 
in Eg and Wg. The lengths of Eg and Wg are both | Eg|*2 
when all edges of the graph is directed. Under CUDA 
architecture, device memory is treated as general arrays 
and can be accessed efficiently, so compact adjacency list 
is a efficient graph representation on GPU device. Many 
later studies [17] use that data structure as foundational 
graph representation. A. Leist et al. [18] propose another 
kind of graph representation which makes some 
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improvement on compact adjacency list. As Fig. 3b) 
shows, this representation uses two multidimensional 
arrays and adds the amount of vertices in every list 
compared to Fig. 3a). 

C.  Our Graph Representation 
In this paper, we propose a new graph representation 

based on compact adjacency list. The key improvement 
of our graph representation is the usage of CUDA built-in 
vector data type, i.e. int2, which can be accessed 
efficiently under CUDA architecture.  

As Fig. 4 shows, it consists of two two-dimensioned 
arrays, i.e. A[][],B[][]. A[][] includes information of all 
vertices of the graph. For every element in A[][],  A[n].x 
is the number of vertices connected to vertex A[n] and  
A[n].y points to the start address in B[] connected to 
vertex A[n]. B[][] includes information of all edges of the 
graph. For every element in B[][], B[n].x represents a 
incoming vertex of one edge and  B[n].y represents the 
corresponding weight of that edge. In order to fully 
exploit the efficiency of texture memory of CUDA 
memory model, we implement that graph representation 
in texture memory. Our experimental results show that 
our graph data structure obtains better performance 
compared to compact adjacency list. 

 
Figure 4.  Our graph representation 

IV.  GPU MIN-REDUCTION PRIMITIVE 

A. Reduction Data Parallel Primitive 
Reduction data parallel primitive is a kind of parallel 

operation which processes a group of data elements and 
gets a single value, such as sum, min and max. Reduction 
primitive is a common process in parallel program design. 
Many situations of parallel computing involves 
comparing or summarizing all results of different threads, 
such as gather computing data or draw a specific value.  
Reduction primitive is the best choice in these situations. 
There are many studies about Reduction primitive under 
traditional parallel computing architectures. Recently, 
some studies about Reduction primitive under GPU 
architecture begin to appear. David Roger et al. [19] 
design and implement Reduction primitive on GPU using 
OpenGL shading language. Mark Harris et al. [8] 

proposed a GPU Sum-Reduction primitive under CUDA 
architecture and achieve good efficiency. For simplicity, 
GPU Sum-Reduction primitive will be abbreviated to 
GSR primitive in the rest of the paper. 

 B.  Overall Description of GMR Primitive 
Aiming at the goal of paralleling the key step of 

finding minimum weighted edge in Prim's MST 
algorithm, we improve and extend the GSR primitive, 
and design the GPU Min-Reduction primitive under 
CUDA architecture. For simplicity, we will call GPU 
Min-Reduction primitive GMR for short in the rest of the 
paper. 

1) Principles of GMR's design 
The fundamental principles of GMR's design include 

the following content. To  fully exploiting the efficiency 
of massively multithreaded architectures CUDA platform, 
we apply some optimizing techniques such as successive 
address, static shared memory and template parameter 
compilation in two GMR modules, i.e. global memory 
reduction and shared memory reduction, and quickly 
obtain the minimum value and corresponding index from 
an array of input values. 

2)  Structure of GMR's modules 
Fig. 5 describes the structure of GMR's modules. GMR 

primitive is constituted of two CUDA Kernel invokes. 
The reason for using multiple Kernel invokes is that there 
is no efficient synchronizing method among thread blocks 
on CUDA platform. Because computing work in the first 
Kernel invoke are carried out by multiple thread blocks, 
when the number of thread blocks is large than one, one 
Kernel invoke cannot get the final result. GMR primitive 
uses global memory to synchronize among multiple 
thread blocks, so the number of Kernel invokes is larger 
than one. 

 

Figure 5.  Structure of GMR's modules 

3) Steps of GMR's process course 
The basic steps of GMR's process course can be 

described as follows.  
Firstly, all threads in thread grid make reduction 

operation on an array of input data in global memory, and 
obtain the minimum value and its corresponding index of 
every thread. This step changes the number of data from 
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random number to the number of all threads. Note that 
the results of the first step are stored in shared memory of 
every thread block.  

Secondly, all threads in every thread block make 
reduction operation on the result data of the first step in 
shared memory, and obtain the minimum value and its 
corresponding index of every thread block. This step 
changes the number of data from the number of all 
threads from the number of all thread blocks.  

If there is only one thread block, the fianl results have 
already obtained. But if the number of thread blocks is 
larger than one, the second shared memory reduction 
operation must be used, i.e. the third step. This step 
change the number of data from the number of all thread 
blocks to one, and the GMR primitive's process is over. 
The final results include two values, i.e. the minimum 
value and its corresponding index. In these steps, the first 
two steps constitute CUDA Kernel1, and the last step 
constitutes CUDA Kernel2. 

 Through these three steps of GMR's process, we can 
see that there are three main improvements and 
extensions.  a) The number of data elements is not 
confined to power of 2, it can be random number; b) It 
can obtain final result after at most two kernel invoke 
steps; c) We add a index array which contains the 
corresponding index of  the minimum weight.Table I 
summarize the differences between GSR and GMR 
primitive.   

TABLE I.   
GMR’S IMPROVEMENT AND EXTENSIONS 

Type Function Number of 
input data Output  

GSR primitive Sum Power of 2 Sum value 

GMR primitive Min Random Min value 
and index 

C. Global Memory Reduction 

 
Figure 5.  Global memory reduction 

Fig. 5 illustrates the global memory reduction of GPU 
Min-Reduction. This reduction is used in Kernel1. The 
boundary of threads’ global memory access is modified 
to the length of R3', so it adapts to array with any length. 
We obtain the flexibility at a cost of some performance 
loss in nature. Due to the definition of MAX_BLOCKS, 
we can foresee the number of temporary reduction results. 
The reduction will finish after at most two kernel invoke 
steps and it facilitates the host invoke. 

D. Shared Memory Reduction 
Fig. 6 illustrates the shared memory reduction of GPU 

Min-Reduction. This reduction is used in the second half 
of Kenrel1 and Kernel2. Because the index of minimum 
weighted edge is needed in the candidate edge list adjust, 
we add index arrays in all steps. There are two skills here. 
One skill is adjacent threads operating adjacent elements, 
so bank conflicts in shared memory access is avoided. 
The other skill is canceling _syncthreads() function in 
operations of the last 32 threads, it saves possible 
performance loss in thread synchronism. 

 
Figure 6.  Shared memory reduction 

V.  DESIGN AND IMPLEMENTATION 

A. Overall Design of GPU Prim’s Algorithm 
Prim's algorithm belongs to greedy algorithm. It starts 

by selecting an arbitrary vertex as the root of the tree. It 
then grows the tree by adding a vertex that is closest to 
the current tree and adding the minimum weighted edge 
from any vertex already in the tree to the new vertex. The 
algorithm terminates once all vertices have been added to 
the tree [15]. The output is a list of edges present in MST. 

We design and implement GPU Prim algorithm on 
CUDA platform. Fig. 7 shows the overall design flow 
diagram. We apply the GMR primitive in the key step of 
finding minimum weighted edge( i.e. Kernel1 and 
Kernel2 in Fig. 5), the step of comparing and updating 
MST edge list is paralleling by common CUDA 
techniques. 

B. Important Arrays and Values 
All data structures using in GPU Prim's algorithm 

include three groups. One is the graph data structure, it's 
the most important and the most frequently access data 
structure, we use the graph representation described in 
Fig. 4. The second data structure is used for storing 
algorithm results. We use three arrays as MST edge list 
when implementing GPU Prim's algorithm. The third 
group is other data structures, including temporary arrays 
T1 and T2, global variable C etc. TABLE II.  states the 
important arrays and values in GPU Prim's algorithm. 
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 Figure 7.  Overall design flow diagram 

TABLE II.   
IMPORTANT ARRAYS AND VARIABLES 

Name Purpose 

Vg, Eg Store vertices, edges, weights. 

R1, R2, R3 MST edge list (outgoing vertex, incoming vertex, 
and weight). 

T1, T2 Store temporary reduction results (value, index). 

R3' Current searching section in R3. 

C Store R2 vertex of the edge newly added to MST. 

Kernel1, Kernel2 Two CUDA kernels in GPU Min-Reduction. 

Kernel3 Compare and update the MST edge list 

C. Techniques Used in Implementation 
We use some techniques in the process of 

implementing GPU Prim's algorithm. These techniques 
greatly improve the performance of program. We will 
describe the detail of these techniques step by step. 

1) Growing  MST 
Initializing MST edge list: In order to exploit 

efficiency of GPU Min-Reduction primitive, we divide 
traditional MST edge list into three arrays (R1, R2, R3) 
whose lengths are all |V|-1. The same position holds three 
properties of one edge respectively: outgoing vertex, 
incoming vertex and weight. They hold all edges that 
start from one chosen vertex (we choose vertex 0 in 
implementation). If there is no edge between vertex 0 and 

one vertex, write MAX_WEIGHT to the corresponding 
position in R3. 

Finding minimum weighted edge: This step use G 
MR primitive introduced above to find minimum 
weighted edge in R3' and its corresponding index in R2 
(Fig. 8). We introduce two temporary arrays (T1, T2) to 
hold the weight and index. There are two kernels in this 
step. T1 and T2 hold the results of Kernel1. Kernel2 is 
invoked only When |R3'|>MAX_BLOCK* 
MAX_THREADS_PER_BLOCK. Unlike Kernel1, 
Kernel2’s operating targets are T1 and T2 instead of R3', 
and its results are T1[0] and T2[0]. In our implementation, 
we use static shared memory instead of dynamic shared 
memory in Mark Harris et al.’s [8] implementation due to 
the limitation of number of CUDA blocks. The size of 
used shared memory in every block is 
|MAX_THREADS_PER_BLOCK|*2. 

 
Figure 8.  Finding minimum weighted edge 

Adding new MST edge: After finding out the 
minimum weighted edge, T1[0] and T2[0] are read in this 
step, then we add minimum weighted edge and its vertex 
to the MST by moving the edge to the first position of 
MST candidate edge list(i.e. R1, R2, R3). These 
operations take places in two possible positions. If 
Kernel2 is invoked, it takes place after Kernel2, 
otherwise after Kernel1. The other operation is saving the 
current vertex (i.e. R2[T2[0]]) , and we introduce global 
variable C for this purpose. All operations of this step are 
processed by one thread (we choose thread 0 in 
implementation) instead of multiple threads to avoid 
access conflict in global memory. 

2) Comparing and updating MST 
Global variable C is read and current vertex is obtained 

in this step. The weights between current vertex and other 
vertices can be found through referring to Eg, Vg. The 
index of current vertex is assumed to be n, and the 
computing result is Wn. We compare Wn with the old 
weight R3[n]. If Wn < R3[n], we will adjust MST edge 
list by following operations: R3[n]=Wn, R1[n]=C. Data 
elements in MST edge list are independent to each other, 
so the operations described above can be parallelly 
handled through multiple threads in thread grid. Similar 
to the reduction in global memory, every thread in GPU 
grid can process multiple data elements in our 
implementation and only one CUDA kernel invoke is 
needed. 

C (Current Vertex)Current MST

MST edge list

Size: |V|-1 

R3 (Weight)

R2 (Incoming Vertex)

R1 (Outgoing Vertex)

The minimum 
weighted edge 

R3’

u
v 
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Two skills are used in this step. One skill is using static 
shared memory, and the reason is similar to that of 
Kernel1 and Kernel2. The other skill is searching the 
weight of C→n instead of n→C when searching for the 
weight between current vertex C and the other vertex n, 
and the cause is to avoid thread branch in a warp and 
achieve more consistency between threads when they 
refer to Eg. This skill is crucial to obtain efficiency under 
CUDA architecture. 

3) Main outer loop 
The main outer loop invokes these two steps for loop 

until the algorithm finishes. The number of loop times is 
a fixed number |V|-2. Kumar et al. [9] pointed out that the 
main outer loop is very difficult to run in parallel, and 
that is why the efficiency of parallel Prim’s algorithm is 
worse than parallel Borůvka’s MST algorithm. Unlike 
Mark Harris [8]’s approach, we re-define the size of 
CUDA block before every invoking kernel, and this can 
avoid the unbalanced loading in fixed size definition. In 
invoking Kernel1 and Kernel2, we adopt C++ template 
technique to completely unroll the reduction, and we 
define the CUDA block size in different conditions to one 
of these values: 256,128,64,32,16,8,4,2,1. In invoking 
kernel in Comparing and Updating the MST step, we 
define the CUDA block size to the number of data 
elements when the number of all data elements is less 
than MAX_THREADS_PER_BLOCK. 

4) CPU preprocessing and postprocessing 
GPU computing uses CPU-GPU cooperation pattern. 

Besides GPU's parallel computing work, some necessary 
serial work must to be processed by CPU, i.e. 
preprocessing and postprocessing. In preprocessing step, 
CPU startup the GPU device, construct graph data 
structures and MST edge list in CPU host memory, and 
read input file to initial these data structures. The other 
important work in this step is allocating memory space in 
GPU device memory with CUDA API and transferring 
graph data structures and MST edge list to device 
memory. In postprocessing step, CPU transfers the 
computing results from device memory to host memory, 
and write results to output file, free host and device 
memory space, finally exit from CUDA environment. 

D. Complete Algorithm Outline 
Algorithm 1 presents the complete algorithm as 

reported in the previous section. 

Algorithm 1 CUDA_PRIM_MST 
1: Read graph data from input file, initializing Eg, Vg. 
2: Construct R1, R2, R3 and global variable C in CPU 

host memory and initialize them. 
3: Transfer Eg, Vg, R1, R2, R3, C to GPU device memory, 

construct temporary arrays T1, T2. 
4: Define the size of CUDA grid and block based on the 

number of data elements in Min-Reduction. 
5: Invokes Kernel1 and write the results to T1, T2. If 

final results have been obtained, jump to step 7. 
6: If |R3'|>MAX_BLOCK*MAX_THREADS_PER_BLOCK, 

invokes Kernel2, and write the results to T1[0], T2[0]. 
7: Read T1[0], T2[0] and add the corresponding edge to 

MST edge list. Write current vertex to C. 

8: Re-define the size of CUDA grid and block based on 
the number of data elements in comparing MST step. 

9: Read global variable C and get the current vertex, find 
the weight between current vertex and other vertices. 

10: For every vertex, If new weight<old weight, adjust 
the corresponding values in R1 and R3. 

11: Invokes step 4-10 for |V|-2 times until obtain the final 
result. 

12: Transfer the result from GPU device memory to CPU 
host memory, and write the results into output file. 

______________________________________________ 

VI.  PERFORMANCE ANALYSIS 

A. Comparison Algorithms 
We choose two comparison algorithms. One 

algorithm is CPU Boost Graph Library serial Prim's 
algorithm [7]. The other is our new developed non-
primitive CUDA Prim's algorithm, and the difference is 
that it adopts common GPU parallelization when finding 
minimum weighted edge. 

B. Testing Platform 
Intel Pentium4 3GHz CPU,2G host memory, NVIDIA 

GeForce GTX260 GPU, 896M device memory, Linux 
RedHat 5 OS, CUDA 2.3. 

C. Experimental Data 
We choose the random generator from Georgia Tech 

graph generator suite [20]. The generated graphs have a 
short band of degree where all vertices lie, with a large 
number of vertices having similar degrees. The input 
graphs have 27-214 vertices and 28-215 edges. The 
weight of all edge is confined to 1-1K. 

D. The Results 

Fig. 9 and Fig. 10 show the final results of runtimes 
and speedup. The performance of 
“CUDA_No_Reduction” algorithm is always worse than 
that of others. When the number of vertices is larger than 
4096, the performance of “CUDA_Reduction” algorithm 
is better than the other two algorithms. The speedup of 
“CUDA_No_Reduction” algorithm is always less than 1. 
The maximum speedup of “CUDA_Reduction” is close 
to 2 and the speedup over “CUDA_No_Reduction” 
algorithm is nearly 3. 

 

Figure 9.  Runtimes of three algorithms
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Figure 10.  Speedup of two CUDA Prim's algorithms 

The result data above shows the advantage of using 
data primitives in performance improvements when 
developing GPU algorithms. Besides, we notice that 
different size of CUDA grid and block can result in 
different performance. In our implementation, we achieve 
the best performance when MAX_BLOCKS = 128 and 
MAX_THREADS_PER_BLOCK=128. 

E. Analysis of Limited Speedup 

Compared to parallel Borůvka's MST algorithm [16], 
the speedup of our implementation is not outstanding. We 
consider the main reason is that the main outer loop of 
Prim's algorithm is hard to parallelized, and this inherent 
character greatly limits the performance. The difficulty of 
parallelizing Prim's algorithm in MST problem is very 
similar to that of parallelizing Dijkstra's algorithm which 
is also a classic algorithm in SSSP (Single Source 
Shortest Path) problem. 

VII.  CONCLUSION 

In this paper, we implement Prim's algorithm using 
new developed Min-Reduction data parallel primitive 
under CUDA architecture on GPU to solve MST problem. 
The experimental results show that our algorithm 
effectively improves the performance compared to CPU 
BGL serial Prim's algorithm and GPU Prim's algorithm 
without primitives. The reason of limited speedup in our 
implementation is also be analyzed. We believe that using 
data parallel primitives in solving irregular problem 
including graph theory and computing geometry on GPU 
is helpful to achieve performance improvement. 
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