
I.J.Modern Education and Computer Science, 2011, 4, 55-62
Published Online July 2011 in MECS (http://www.mecs-press.org/)

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 4, 55-62

 Design and Implementation of GPU-Based
Prim's Algorithm

Wei Wang

Zhengzhou Information Science and Technology Institute, Zhengzhou, China
Email: wangwei8137@gmail.com

Yongzhong Huang and Shaozhong Guo

Zhengzhou Information Science and Technology Institute, Zhengzhou, China
Email: xy_gsz@163.com

Abstract—Minimum spanning tree is a classical problem in
graph theory that plays a key role in a broad domain of
applications. This paper proposes a minimum spanning tree
algorithm using Prim's approach on Nvidia GPU under
CUDA architecture. By using new developed GPU-based
Min-Reduction data parallel primitive in the key step of the
algorithm, higher efficiency is achieved. Experimental
results show that we obtain about 2 times speedup on Nvidia
GTX260 GPU over the CPU implementation and 3 times
speedup over non-primitives GPU implementation.

Index Terms—GPU, minimum spanning tree, Prim's
algorithm, data parallel primitives, CUDA

I. INTRODUCTION

A. MST Problem and Prim’s Algorithm
Minimum spanning tree (MST) is a fundamental

concept in classic graph theory. It is defined as follows:
Given an undirected graph G = (V, E) with a weight
mapping w : E → R, find a connected sub graph T = (V,E'

E) with |E'| = |V | -1 that minimizes the objective
function ∑e∈E' w(e). Fig. 1 illustrates the MST concept
described above. MST plays a key role in a broad domain
of applications, including network organization, touring
problems and VLSI layout. Moreover, they are typically
only a part of more complex graph algorithms.

Figure 1. Minimum spanning tree concept

Prim's algorithm is one of the most commonly used
MST algorithms, and it belongs to classic greedy

algorithm. The serial computational complexity of Prim's
algorithm implemented with traditional data structure is
O(|V|2). Research of Prim's algorithm concentrates on its
serial version. There have been several parallel
formulations of Prim's algorithm [1][2][3]. The common
disadvantage of these algorithms is that the speedup is
limited compared with parallel Borůvka's MST algorithm
especially when the graph size is very large.

B. GPU-Based Accelerating Applications
Graphics Processor Unit (GPU) is used for many

general purpose applications recently. Modern GPU
provides high computational power at a low cost. Many
new development platforms such as CUDA (Compute
Unified Device Architecture) [4] and OpenCL (Open
Computing Language) [5] make GPU become a
affordable and accessible computing coprocessor. Due to
the features of GPU architecture, those applications that
have good speedup effect are mostly belong to regular
problem. GPU model is best suited to process
independent data instances. Processing less regular data
on GPU architectures is a challenge to programmers [6].
These irregular problems include graph theory and
computing geometry. MST problem is an irregular
problem. To our best knowledge, there has been no GPU
version of parallel Prim's algorithm up to the present.

C. Our Work and Contribution
In our previous work, we have implemented the GPU

version of Prim's algorithm using common approach on
CUDA platform, but the performance of that version’s
algorithm is even worse than CPU sequential
implementation in industrial Boost Graphic Library [7].
After analysis, we consider that the key problem is the
parallelization difficulty of finding minimum value in the
inner loop of Prim’s algorithm. Recent studies on
irregular algorithm reveal that the use of efficient
primitives to map the irregular aspects of problem to the
data-parallel architecture of these massively
multithreaded architectures is central to obtain high
performance. This result can be helpful in paralleling the
step of finding minimum value.

In this paper, we design and implement the parallel
Prim's algorithm using data parallel primitives under

Manuscript received January 1, 2008; revised June 1, 2008; accepted
July 1, 2008.

Copyright credit, project number, corresponding author, etc.

56 Design and Implementation of GPU-Based Prim's Algorithm

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 4, 55-62

CUDA architecture on GPU. Our work extends and
improves the approach of Mark Harris et al. [8] and
designs new GPU Min-Reduction primitive suited to
Prim's algorithm. After fully optimization, when the input
size is 16384 vertices, we achieve about 2 times speedup
on GTX260 GPU over the BGL CPU serial
implementation and about 3 times speedup over non-
primitives GPU implementation. Besides, the reason of
limited speedup in our implementation is also be
analyzed.

II. RELATED WORK

A. Parallel Prim’s Algorithms
Kumar et al. [9] pointed out that the outer while loop

in serial Prim's algorithm is hard to parallelize due to its
inherent character, but the two inner loop steps can be
parallelized and they are: finding minimum weighted
edge in the candidate edge set (i.e. Min-Reduction step)
and updating the candidate edge set(i.e. Comparing and
updating MST step) .

There are several parallel implementations of Prim's
algorithm. Rohit Setia et al. [1] presented a new parallel
Prim's algorithm targeting SMP with shared address
space, and obtained 2.64 times speedup. Gonina et al. [2]
used a novel extension of adding multiple vertices per
iteration to achieve significant performance improvement
under MPI environment. Bader et al. [3] proposed a
parallel MST algorithm which uses a hybrid approach of
Borůvka's and Prim's algorithm.

B. GPU Data Parallel Primitives
Data parallel primitives are common fundamental

parallel operations when developing parallel algorithms.
In the GPU parallelization process of serial algorithm
aimed at irregular problem, the use of data parallel
primitives can achieve crucial performance improvement.
Mark Harris et al. [8] presented a reduction primitive
implementation on GPU using CUDA. Blelloch[10]
formulated MST algorithm using the scan primitive on an
EREW PRAM model. Vineet et al. [11] used three GPU
primitives to solve MST problem using Borůvka's
approach. Aydin Buluc [12] researched the application of
GPU data parallel primitives in several graph theory
problems such as APSP (All Pairs Shortest Path).

Besides, some GPU data parallel primitive libraries
under CUDA architecture appear recently, including
CUDPP [13], Thrust [14]. The utilization of these
libraries will make the development of GPU application
more convenient, but the disadvantage is that the
primitives in these libraries are not abundant yet and
sometimes may cause redundant memory access.

III. GRAPH REPRESENTATION ON CUDA PLATFORM

A. Traditional graph representation
Traditional data structure for graph representation

includes adjacency matrix and adjacency list [15]. Fig. 2
shows these two structures. For the adjacency matrix
representation of a graph G = (V, E), we assume that the

vertices are numbered 1, 2, ... , |V| in some arbitrary
manner. Then the adjacency matrix representation of a
graph G consists of a |V| × |V| matrix A = (aij), and if (i,j)
∈E, then aij = 1, otherwise aij = 0.The adjacency list
representation of a graph G = (V, E) consists of an array
Adj of |V| lists, one for each vertex in V . For each u ∈ V,
the adjacency list Adj[u] contains all the vertices v such
that there is an edge (u, v) ∈ E.

Figure 2. Traditional graph representation

After analyzing the feature of these two graph data
structure, we draw the conclusion as follows. Adjacency
matrix is suitable for dense graph representation, but the
O(|V|2) space requirement is too large to be suitable for
the limited GPU device memory, especially when the
graph size is very large. Adjacency list is suitable for
sparse graph and its space requirement is only
O(|V|+|E|).But the pointer data in traditional adjacency list
is too many, CUDA platform is not adept in processing
pointer data, so traditional adjacency list is also not
suitable for graph representation on GPU device.

B. Compact Adjacency List
In recent related studies, there are two main graph data

structures on CUDA platform (Fig. 3), which are both
improvement forms of traditional adjacency list.

Figure 3. Compact Adjacency List
P. Harish et al.[16] propose a kind of graph

representation named compact adjacency list. As Fig. 3a)
shows, compact adjacency list consists of three arrays:
vertex array Vg, edge array Eg, weight array Wg. The
length of Vg is |V| and its element points to the start index
in Eg and Wg. The lengths of Eg and Wg are both | Eg|*2
when all edges of the graph is directed. Under CUDA
architecture, device memory is treated as general arrays
and can be accessed efficiently, so compact adjacency list
is a efficient graph representation on GPU device. Many
later studies [17] use that data structure as foundational
graph representation. A. Leist et al. [18] propose another
kind of graph representation which makes some

 Design and Implementation of GPU-Based Prim's Algorithm 57

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 4, 55-62

improvement on compact adjacency list. As Fig. 3b)
shows, this representation uses two multidimensional
arrays and adds the amount of vertices in every list
compared to Fig. 3a).

C. Our Graph Representation
In this paper, we propose a new graph representation

based on compact adjacency list. The key improvement
of our graph representation is the usage of CUDA built-in
vector data type, i.e. int2, which can be accessed
efficiently under CUDA architecture.

As Fig. 4 shows, it consists of two two-dimensioned
arrays, i.e. A[][],B[][]. A[][] includes information of all
vertices of the graph. For every element in A[][], A[n].x
is the number of vertices connected to vertex A[n] and
A[n].y points to the start address in B[] connected to
vertex A[n]. B[][] includes information of all edges of the
graph. For every element in B[][], B[n].x represents a
incoming vertex of one edge and B[n].y represents the
corresponding weight of that edge. In order to fully
exploit the efficiency of texture memory of CUDA
memory model, we implement that graph representation
in texture memory. Our experimental results show that
our graph data structure obtains better performance
compared to compact adjacency list.

Figure 4. Our graph representation

IV. GPU MIN-REDUCTION PRIMITIVE

A. Reduction Data Parallel Primitive
Reduction data parallel primitive is a kind of parallel

operation which processes a group of data elements and
gets a single value, such as sum, min and max. Reduction
primitive is a common process in parallel program design.
Many situations of parallel computing involves
comparing or summarizing all results of different threads,
such as gather computing data or draw a specific value.
Reduction primitive is the best choice in these situations.
There are many studies about Reduction primitive under
traditional parallel computing architectures. Recently,
some studies about Reduction primitive under GPU
architecture begin to appear. David Roger et al. [19]
design and implement Reduction primitive on GPU using
OpenGL shading language. Mark Harris et al. [8]

proposed a GPU Sum-Reduction primitive under CUDA
architecture and achieve good efficiency. For simplicity,
GPU Sum-Reduction primitive will be abbreviated to
GSR primitive in the rest of the paper.

 B. Overall Description of GMR Primitive
Aiming at the goal of paralleling the key step of

finding minimum weighted edge in Prim's MST
algorithm, we improve and extend the GSR primitive,
and design the GPU Min-Reduction primitive under
CUDA architecture. For simplicity, we will call GPU
Min-Reduction primitive GMR for short in the rest of the
paper.

1) Principles of GMR's design
The fundamental principles of GMR's design include

the following content. To fully exploiting the efficiency
of massively multithreaded architectures CUDA platform,
we apply some optimizing techniques such as successive
address, static shared memory and template parameter
compilation in two GMR modules, i.e. global memory
reduction and shared memory reduction, and quickly
obtain the minimum value and corresponding index from
an array of input values.

2) Structure of GMR's modules
Fig. 5 describes the structure of GMR's modules. GMR

primitive is constituted of two CUDA Kernel invokes.
The reason for using multiple Kernel invokes is that there
is no efficient synchronizing method among thread blocks
on CUDA platform. Because computing work in the first
Kernel invoke are carried out by multiple thread blocks,
when the number of thread blocks is large than one, one
Kernel invoke cannot get the final result. GMR primitive
uses global memory to synchronize among multiple
thread blocks, so the number of Kernel invokes is larger
than one.

Figure 5. Structure of GMR's modules

3) Steps of GMR's process course
The basic steps of GMR's process course can be

described as follows.
Firstly, all threads in thread grid make reduction

operation on an array of input data in global memory, and
obtain the minimum value and its corresponding index of
every thread. This step changes the number of data from

58 Design and Implementation of GPU-Based Prim's Algorithm

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 4, 55-62

random number to the number of all threads. Note that
the results of the first step are stored in shared memory of
every thread block.

Secondly, all threads in every thread block make
reduction operation on the result data of the first step in
shared memory, and obtain the minimum value and its
corresponding index of every thread block. This step
changes the number of data from the number of all
threads from the number of all thread blocks.

If there is only one thread block, the fianl results have
already obtained. But if the number of thread blocks is
larger than one, the second shared memory reduction
operation must be used, i.e. the third step. This step
change the number of data from the number of all thread
blocks to one, and the GMR primitive's process is over.
The final results include two values, i.e. the minimum
value and its corresponding index. In these steps, the first
two steps constitute CUDA Kernel1, and the last step
constitutes CUDA Kernel2.

 Through these three steps of GMR's process, we can
see that there are three main improvements and
extensions. a) The number of data elements is not
confined to power of 2, it can be random number; b) It
can obtain final result after at most two kernel invoke
steps; c) We add a index array which contains the
corresponding index of the minimum weight.Table I
summarize the differences between GSR and GMR
primitive.

TABLE I.
GMR’S IMPROVEMENT AND EXTENSIONS

Type Function Number of
input data Output

GSR primitive Sum Power of 2 Sum value

GMR primitive Min Random Min value
and index

C. Global Memory Reduction

Figure 5. Global memory reduction

Fig. 5 illustrates the global memory reduction of GPU
Min-Reduction. This reduction is used in Kernel1. The
boundary of threads’ global memory access is modified
to the length of R3', so it adapts to array with any length.
We obtain the flexibility at a cost of some performance
loss in nature. Due to the definition of MAX_BLOCKS,
we can foresee the number of temporary reduction results.
The reduction will finish after at most two kernel invoke
steps and it facilitates the host invoke.

D. Shared Memory Reduction
Fig. 6 illustrates the shared memory reduction of GPU

Min-Reduction. This reduction is used in the second half
of Kenrel1 and Kernel2. Because the index of minimum
weighted edge is needed in the candidate edge list adjust,
we add index arrays in all steps. There are two skills here.
One skill is adjacent threads operating adjacent elements,
so bank conflicts in shared memory access is avoided.
The other skill is canceling _syncthreads() function in
operations of the last 32 threads, it saves possible
performance loss in thread synchronism.

Figure 6. Shared memory reduction

V. DESIGN AND IMPLEMENTATION

A. Overall Design of GPU Prim’s Algorithm
Prim's algorithm belongs to greedy algorithm. It starts

by selecting an arbitrary vertex as the root of the tree. It
then grows the tree by adding a vertex that is closest to
the current tree and adding the minimum weighted edge
from any vertex already in the tree to the new vertex. The
algorithm terminates once all vertices have been added to
the tree [15]. The output is a list of edges present in MST.

We design and implement GPU Prim algorithm on
CUDA platform. Fig. 7 shows the overall design flow
diagram. We apply the GMR primitive in the key step of
finding minimum weighted edge(i.e. Kernel1 and
Kernel2 in Fig. 5), the step of comparing and updating
MST edge list is paralleling by common CUDA
techniques.

B. Important Arrays and Values
All data structures using in GPU Prim's algorithm

include three groups. One is the graph data structure, it's
the most important and the most frequently access data
structure, we use the graph representation described in
Fig. 4. The second data structure is used for storing
algorithm results. We use three arrays as MST edge list
when implementing GPU Prim's algorithm. The third
group is other data structures, including temporary arrays
T1 and T2, global variable C etc. TABLE II. states the
important arrays and values in GPU Prim's algorithm.

Step 4

Shared

Memory

Thread 1 2 3 4

1 2

1

Thread

Thread

Thread

Step 1

Step 2

Step 3

41 2 3 5 6 7 8

8 20 3 5 15 1 2 6 7 51 4 9 11 4 10 55
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7 20 3 5 15 1 2 6 7 51 4 9 11 4 10 55
8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7 1 2 5 15 1 2 6 7 51 4 9 11 4 10 55
8 5 6 3 4 5 6 7 8 9 10 11 12 13 14 15

2 1 2 5 15 1 2 6 7 51 4 9 11 4 10 55
6 5 6 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 3 5 15 1 2 6 7 51 4 9 11 4 10 55
5 5 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Value

Index

…

….

…. …...……....R3' (Weight)

CUDA Grid

Size: num_of_blocks

T2 (Index)

T1 (Weight)

GPU Min-Reduction
primitive can process
array with random

length.

Max size: |V|-1

….

Block1 Block2 Blockn

 Design and Implementation of GPU-Based Prim's Algorithm 59

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 4, 55-62

 Figure 7. Overall design flow diagram

TABLE II.
IMPORTANT ARRAYS AND VARIABLES

Name Purpose

Vg, Eg Store vertices, edges, weights.

R1, R2, R3 MST edge list (outgoing vertex, incoming vertex,
and weight).

T1, T2 Store temporary reduction results (value, index).

R3' Current searching section in R3.

C Store R2 vertex of the edge newly added to MST.

Kernel1, Kernel2 Two CUDA kernels in GPU Min-Reduction.

Kernel3 Compare and update the MST edge list

C. Techniques Used in Implementation
We use some techniques in the process of

implementing GPU Prim's algorithm. These techniques
greatly improve the performance of program. We will
describe the detail of these techniques step by step.

1) Growing MST
Initializing MST edge list: In order to exploit

efficiency of GPU Min-Reduction primitive, we divide
traditional MST edge list into three arrays (R1, R2, R3)
whose lengths are all |V|-1. The same position holds three
properties of one edge respectively: outgoing vertex,
incoming vertex and weight. They hold all edges that
start from one chosen vertex (we choose vertex 0 in
implementation). If there is no edge between vertex 0 and

one vertex, write MAX_WEIGHT to the corresponding
position in R3.

Finding minimum weighted edge: This step use G
MR primitive introduced above to find minimum
weighted edge in R3' and its corresponding index in R2
(Fig. 8). We introduce two temporary arrays (T1, T2) to
hold the weight and index. There are two kernels in this
step. T1 and T2 hold the results of Kernel1. Kernel2 is
invoked only When |R3'|>MAX_BLOCK*
MAX_THREADS_PER_BLOCK. Unlike Kernel1,
Kernel2’s operating targets are T1 and T2 instead of R3',
and its results are T1[0] and T2[0]. In our implementation,
we use static shared memory instead of dynamic shared
memory in Mark Harris et al.’s [8] implementation due to
the limitation of number of CUDA blocks. The size of
used shared memory in every block is
|MAX_THREADS_PER_BLOCK|*2.

Figure 8. Finding minimum weighted edge

Adding new MST edge: After finding out the
minimum weighted edge, T1[0] and T2[0] are read in this
step, then we add minimum weighted edge and its vertex
to the MST by moving the edge to the first position of
MST candidate edge list(i.e. R1, R2, R3). These
operations take places in two possible positions. If
Kernel2 is invoked, it takes place after Kernel2,
otherwise after Kernel1. The other operation is saving the
current vertex (i.e. R2[T2[0]]) , and we introduce global
variable C for this purpose. All operations of this step are
processed by one thread (we choose thread 0 in
implementation) instead of multiple threads to avoid
access conflict in global memory.

2) Comparing and updating MST
Global variable C is read and current vertex is obtained

in this step. The weights between current vertex and other
vertices can be found through referring to Eg, Vg. The
index of current vertex is assumed to be n, and the
computing result is Wn. We compare Wn with the old
weight R3[n]. If Wn < R3[n], we will adjust MST edge
list by following operations: R3[n]=Wn, R1[n]=C. Data
elements in MST edge list are independent to each other,
so the operations described above can be parallelly
handled through multiple threads in thread grid. Similar
to the reduction in global memory, every thread in GPU
grid can process multiple data elements in our
implementation and only one CUDA kernel invoke is
needed.

C (Current Vertex)Current MST

MST edge list

Size: |V|-1

R3 (Weight)

R2 (Incoming Vertex)

R1 (Outgoing Vertex)

The minimum
weighted edge

R3’

u
v

60 Design and Implementation of GPU-Based Prim's Algorithm

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 4, 55-62

Two skills are used in this step. One skill is using static
shared memory, and the reason is similar to that of
Kernel1 and Kernel2. The other skill is searching the
weight of C→n instead of n→C when searching for the
weight between current vertex C and the other vertex n,
and the cause is to avoid thread branch in a warp and
achieve more consistency between threads when they
refer to Eg. This skill is crucial to obtain efficiency under
CUDA architecture.

3) Main outer loop
The main outer loop invokes these two steps for loop

until the algorithm finishes. The number of loop times is
a fixed number |V|-2. Kumar et al. [9] pointed out that the
main outer loop is very difficult to run in parallel, and
that is why the efficiency of parallel Prim’s algorithm is
worse than parallel Borůvka’s MST algorithm. Unlike
Mark Harris [8]’s approach, we re-define the size of
CUDA block before every invoking kernel, and this can
avoid the unbalanced loading in fixed size definition. In
invoking Kernel1 and Kernel2, we adopt C++ template
technique to completely unroll the reduction, and we
define the CUDA block size in different conditions to one
of these values: 256,128,64,32,16,8,4,2,1. In invoking
kernel in Comparing and Updating the MST step, we
define the CUDA block size to the number of data
elements when the number of all data elements is less
than MAX_THREADS_PER_BLOCK.

4) CPU preprocessing and postprocessing
GPU computing uses CPU-GPU cooperation pattern.

Besides GPU's parallel computing work, some necessary
serial work must to be processed by CPU, i.e.
preprocessing and postprocessing. In preprocessing step,
CPU startup the GPU device, construct graph data
structures and MST edge list in CPU host memory, and
read input file to initial these data structures. The other
important work in this step is allocating memory space in
GPU device memory with CUDA API and transferring
graph data structures and MST edge list to device
memory. In postprocessing step, CPU transfers the
computing results from device memory to host memory,
and write results to output file, free host and device
memory space, finally exit from CUDA environment.

D. Complete Algorithm Outline
Algorithm 1 presents the complete algorithm as

reported in the previous section.

Algorithm 1 CUDA_PRIM_MST
1: Read graph data from input file, initializing Eg, Vg.
2: Construct R1, R2, R3 and global variable C in CPU

host memory and initialize them.
3: Transfer Eg, Vg, R1, R2, R3, C to GPU device memory,

construct temporary arrays T1, T2.
4: Define the size of CUDA grid and block based on the

number of data elements in Min-Reduction.
5: Invokes Kernel1 and write the results to T1, T2. If

final results have been obtained, jump to step 7.
6: If |R3'|>MAX_BLOCK*MAX_THREADS_PER_BLOCK,

invokes Kernel2, and write the results to T1[0], T2[0].
7: Read T1[0], T2[0] and add the corresponding edge to

MST edge list. Write current vertex to C.

8: Re-define the size of CUDA grid and block based on
the number of data elements in comparing MST step.

9: Read global variable C and get the current vertex, find
the weight between current vertex and other vertices.

10: For every vertex, If new weight<old weight, adjust
the corresponding values in R1 and R3.

11: Invokes step 4-10 for |V|-2 times until obtain the final
result.

12: Transfer the result from GPU device memory to CPU
host memory, and write the results into output file.

__

VI. PERFORMANCE ANALYSIS

A. Comparison Algorithms
We choose two comparison algorithms. One

algorithm is CPU Boost Graph Library serial Prim's
algorithm [7]. The other is our new developed non-
primitive CUDA Prim's algorithm, and the difference is
that it adopts common GPU parallelization when finding
minimum weighted edge.

B. Testing Platform
Intel Pentium4 3GHz CPU,2G host memory, NVIDIA

GeForce GTX260 GPU, 896M device memory, Linux
RedHat 5 OS, CUDA 2.3.

C. Experimental Data
We choose the random generator from Georgia Tech

graph generator suite [20]. The generated graphs have a
short band of degree where all vertices lie, with a large
number of vertices having similar degrees. The input
graphs have 27-214 vertices and 28-215 edges. The
weight of all edge is confined to 1-1K.

D. The Results

Fig. 9 and Fig. 10 show the final results of runtimes
and speedup. The performance of
“CUDA_No_Reduction” algorithm is always worse than
that of others. When the number of vertices is larger than
4096, the performance of “CUDA_Reduction” algorithm
is better than the other two algorithms. The speedup of
“CUDA_No_Reduction” algorithm is always less than 1.
The maximum speedup of “CUDA_Reduction” is close
to 2 and the speedup over “CUDA_No_Reduction”
algorithm is nearly 3.

Figure 9. Runtimes of three algorithms

 Design and Implementation of GPU-Based Prim's Algorithm 61

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 4, 55-62

Figure 10. Speedup of two CUDA Prim's algorithms

The result data above shows the advantage of using
data primitives in performance improvements when
developing GPU algorithms. Besides, we notice that
different size of CUDA grid and block can result in
different performance. In our implementation, we achieve
the best performance when MAX_BLOCKS = 128 and
MAX_THREADS_PER_BLOCK=128.

E. Analysis of Limited Speedup

Compared to parallel Borůvka's MST algorithm [16],
the speedup of our implementation is not outstanding. We
consider the main reason is that the main outer loop of
Prim's algorithm is hard to parallelized, and this inherent
character greatly limits the performance. The difficulty of
parallelizing Prim's algorithm in MST problem is very
similar to that of parallelizing Dijkstra's algorithm which
is also a classic algorithm in SSSP (Single Source
Shortest Path) problem.

VII. CONCLUSION

In this paper, we implement Prim's algorithm using
new developed Min-Reduction data parallel primitive
under CUDA architecture on GPU to solve MST problem.
The experimental results show that our algorithm
effectively improves the performance compared to CPU
BGL serial Prim's algorithm and GPU Prim's algorithm
without primitives. The reason of limited speedup in our
implementation is also be analyzed. We believe that using
data parallel primitives in solving irregular problem
including graph theory and computing geometry on GPU
is helpful to achieve performance improvement.

ACKNOWLEDGMENT

This work was supported by the National Natural
Science Foundation of China (863 Program, Grant
No.2009AA012201) and the Key Programs for Science
and Technology Development of Shanghai Science
Committee (Grant No.08dz501600).

REFERENCES

[1] R. Setia, A. Nedunchezhian, and S. Balachandran, "A new
parallel algorithm for minimum spanning tree problem,"

Proc.International Conference on High Performance
Computing (HiPC), pp. 1-5, 2009.

[2] E. Gonina and L. Kalé, "Parallel Prim’s algorithm on dense
graphs with a novel extension," Tech. Rep., 2007.

[3] D. A. Bader and G. Cong, "Fast shared-memory algorithms
for computing the minimum spanning forest of sparse
graphs," Journal of Parallel and Distributed Computing,
v.66 n.11, p.1366-1378, November 2006.

[4] NVIDIA Corporation. CUDA Programming Guide 2.3,
http://developer.download.nvidia.com/compute/cuda/2_3/t
oolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pd
f, 2009.

[5] A. Munshi, "OpenCL: parallel computing on the GPU and
CPU," http://s08.idav.ucdavis.edu/munshi-opencl.pdf,
2008.

[6] R. Vuducy, A.Chandramowlishwarany, J. Choi, M. Guney,
and A. Shringarpurez, "On the limits of GPU acceleration,"
http://www.usenix.org/event/hotpar10/tech/full_papers/Vu
duc.pdf, 2010.

[7] J. Siek, L. Lee, and A. Lumsdaine, "The Boost graph
library: user guide and reference manual," Addison-Wesley,
2002.

[8] M. Harris, "Optimizing parallel reduction in CUDA, "
Nvidia, Tech. Rep., 2007.

[9] G. Karypis, A. Grama, A. Gupta and V. Kumar.
Introduction to Parallel Computing. Addison Weslesy,
second edition, 2003.

[10] G. E. Blelloch, "Scans as primitive parallel operations,"
IEEE Transactions on Computers, v.38 n.11, p.1526-1538,
November 1989.

[11] V. Vineet, P. Harish, S. Patidar, and P. J. Narayanan, "Fast
minimum spanning tree for large graphs on the GPU, " in
HPG ’09: Proceedings of the Conference on High
Performance Graphics 2009, 2009, pp. 167– 171.

[12] A. Buluc, "Linear algebraic primitives for parallel
computing on large graphs," Ph.D. thesis, University of
California, Santa Barbara, 2010.

[13] M. Harris, J. Owens, S. Sengupta, Y. Zhang and A.
Davidson. CUDPP: CUDA Data Parallel Primitives
Library. http://www.gpgpu.org/developer/cudpp/, 2011.

[14] Thrust. Thrust homepage. http://code.google.com/p/thrust/.
2011.

[15] T. Cormen, C. Leiserson, R. Rivest, and C. Stein,
Introduction to Algorithms, MIT press, 2001.

[16] V. Vineet, P. Harish, and P. J. Narayanan, "Large graph
algorithms for massively multithreaded architectures,"
Tech. Rep., 2009.

[17] J. M. Pedro, T. Robert and G. Antonio. "CUDA solutions
for the SSSP problem," Proc of the 9th international
conference on computational science, 2009, pp. 904–913.

[18] A. Leist, D. P. Playne and K. A. Hawick. "Exploiting
graphical processing units for data-parallel scientific
applications".Tech. Rep., December, 2009.

[19] D. Roger, U. Assarsson and N. Holzschuch. "Efficient
stream reduction on the GPU". In Workshop on General
Purpose Processing on Graphics Processing Units, 2007.

[20] D. A. Bader and K. Madduri, "GTgraph: a synthetic graph
generator suite," Tech. Rep., 2006.

62 Design and Implementation of GPU-Based Prim's Algorithm

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 4, 55-62

Wei Wang is born in TaiAn ShanDong China, born in
1983. Between the year 2002 and 2006, get bachelor’s
degree in computer science and technology in Zhengzhou
Information Science and Technology Institute which is in
Zhengzhou Henan China. He is a Master candidate in
computer software and theory in Zhengzhou Information
Science and Technology Institute, and is expected to
graduate in June 2011. His research interests include
distributed system, parallel computing, and general
purpose computing on GPU.

Yongzhong Huang is born in 1968, ph. D. He is

currently a doctor supervisor in distributed system in
Zhengzhou Information Science and Technology Institute
which is in Zhengzhou Henan China. His research
interests include distributed system, parallel computing.

Shaozhong Guo is born in HeFei AnHui China, born
in 1964. She is currently a master supervisor in computer
software and theory in Zhengzhou Information Science
and Technology Institute which is in Zhengzhou Henan
China. His research interests include distributed system,
parallel computing, and DBMS system.

