
I.J.Modern Education and Computer Science, 2011, 3, 55-61
Published Online June 2011 in MECS (http://www.mecs-press.org/)

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 3, 55-61

CHex: An Efficient RDF Storage and Indexing
Scheme for Column-Oriented Databases

Xin Wang

School of Computer Science and Technology, Tianjin University, Tianjin, China
Email: wangx@tju.edu.cn

Shuyi Wang1, Pufeng Du2, and Zhiyong Feng2

1Business School, Nankai University, Tianjin, China
Email: wshuyi@mail.nankai.edu.cn

2School of Computer Science and Technology, Tianjin University, Tianjin, China
Email: {pdu, zyfeng}@ tju.edu.cn

Abstract—As increasingly large RDF data sets are being
published on the Web, effcient RDF data management has
become an essential factor in realizing the Semantic Web
vision. However, most existing RDF storage schemes, which
are built on top of row-store relational databases, are
constrained in terms of efficiency and scalability. Still, the
growing popularity of the RDF format used in real-world
applications arguably calls for an effort to deal with these
drawbacks. In this paper, we propose a novel RDF storage
and indexing scheme, called CHex, which uses the triple
nature of RDF as an asset to implement sextuple indexing
for a column-oriented database system. Using binary
association tables (BATs) in the column-oriented data model,
RDF data is indexed in six possible ways, one for each
possible ordering of the three RDF elements. The sextuple
indexing scheme in a column-oriented database not only
provides efficient single triple pattern lookups, but also
allows fast merge-joins for any pair of two triple patterns.
To evaluate the performance of our approach, we generate
large-scale data sets upto 13 million triples, and devise
benchmark queries that cover important RDF join patterns.
The experimental results show that our approach
outperforms the row-oriented database systems by upto an
order of magnitude and is even competitive to the best state-
of-the-art native RDF store.

Index Terms—RDF, storage scheme, sextuple indexing,
column-oriented database, binary association table, URI

I. INTRODUCTION

The Resource Description Framework (RDF) [1][2][3]
is a standard data model for describing machine-readable
information in the emerging Semantic Web [4]. An RDF
data set is a collection of statements, called triples, of the
form (S, P, O) where S is a subject, P is a predicate (also
called property) and O is an object. Each triple states the
relation (represented by its predicate) between its subject

and object. A set of triples can be represented as a labeled
directed graph, with nodes representing subjects and
objects and labeled edges representing predicates,
connecting subject nodes to object nodes.

As an example, Fig. 1 (a) shows a set of RDF triples
and Fig. 1 (b) depicts the corresponding RDF graph. This
set of RDF triples as well as the RDF graph states a fact
that the book book1 whose title is “Foundations of
Databases” is co-authored by author1, anthor2 and
author3, whose names are “Serge Abiteboul”, “Rick
Hull” and “Victor Vianu” respectively. In fact, HTTP
URIs are used to identify every resource in RDF data, e.g.,
book1 is actually an abbreviation of HTTP URI http://
www.example.org/book1. Thus, the uniqueness of the
resource identifiers can be ensured.

In order to provide a convenient data access method
for RDF graphs, W3C has proposed the SPARQL [5][6]
query language for RDF data, which is based upon
powerful graph pattern matching facilities. Fig. 2 (a)
shows a SPARQL query that returns names of persons
who is a co-author of the book titled “Foundations of
Databases”. A SPARQL query can also be represented as
an RDF (sub)graph with variable (indicated by a question
mark) occuring on the subject, predicate or object
positions. The graph that corresponds to the query in Fig.
2 (a) is depicted in Fig. 2 (b), where the object node
“?name” is shaded, indicating that it is the return variable.
The SPARQL query processor will use the query graph as
a pattern to match results in the RDF data graph by
binding the variables in the query graph to the
corresponding parts of each triple in the data graph. It is
not difficult to figure out that the results of the SPARQL
query in Fig. 2 is a set of mappings {?name ® “Serge
Abiteboul”, ?name ® “Rick Hull”, ?name ® “Victor
Vianu”}.

Obviously, the increasing amount of avaiable RDF
data being published on the Web calls for the
development of efficient and scalable approaches to RDF
storage and querying. Perhaps the most straightforward
way to store RDF triples is to use a relational three-
column table (S, P, O), called the triples table, each of
columns storing subject, predicate and object respectively.

Manuscript received January 1, 2011; revised June 1, 2011;
accepted July 1, 2011.

This is an extened and revised version of a paper [16] published in
the proceedings of DBTA 2010. This work was supported by the
National Science Foundation of China under grant number 61070202
and the Seed Foundation of Tianjin University under grant number
60302010.

56 CHex: An Efficient RDF Storage and Indexing Scheme for Column-Oriented Databases

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 3, 55-61

(b)

(a)

(person1, isNamed, "Serge Abiteboul")
(person2, isNamed, "Rick Hull")
(person3, isNamed, "Victor Vianu")
(book1, hasAuthor, person1)
(book1, hasAuthor, person2)
(book1, hasAuthor, person3)
(book1, isTitled, "Foundations of Databases")

person1

person2

Serge Abiteboul

hasAuthor

hasAuthor

isNamed

Rick Hull
isNamed

Victor Vianu

isNamed

person3

hasAuthor

book1

Foundations of
Databases

isTitled

Figure 1. A set of RDF triples and the corresponding RDF graph.

The recently proposed sextuple indexing scheme
[11][12] turns a conventional triples table to a much more
efficient one. Moreover, a column-oriented relational
database systems not only adds another factor of
efficiency, but also offers maturity, generality and
scalability [10][13]. To gain this double advantages, in
this paper, we propose a novel RDF storage and indexing
scheme, called CHex1, which applies sextuple indexing
techniques to a column-oriented relational database
system. In order to verify the performance of our scheme,
we generate 5 large-scale data sets using the Lehigh
University benchmark (LUBM) [10], and design 4
benchmark queries that cover all important RDF join
patterns. The experimental results show that our approach
outperforms the row-oriented approach by upto an order
of magnitude, and is even competitive to the best state-of-
the-art native RDF store.

The remainder of this paper is organized as follows. In
Section II, we review related work. Section III introduces
some preliminaries of the column-oriented data model.
Section IV presents the CHex storage and indexing
scheme. Section V describes our extensive experimental
evaluation. Finally, we conclude in Section VI.

II. RELATED WORK

The state-of-the-art RDF storage and indexing schemes
can be mainly summarized into two categories: (1)
relational schemes [7][8][9][10] that use relational
database management systems (RDBMSs) as RDF
storage backends; and (2) native schemes [11][12] that
build RDF-specific storage and indexing structures from
scratch.

1 CHex stands for Column-oriented Hexastore

(b)

(a)

SELECT ?name
WHERE {
 ?book isTitled "Foundations of Databases" .
 ?book hasAuthor ?person .
 ?book isNamed ?name .
}

?person ?name

hasAuthor isNamed

?book

Foundations of
Databases

isTitled

Figure 2. A SPARQL query and the corresponding query graph.

Although native RDF stores are largely more efficient
for SPARQL queries due to their tailored design, the
maturity, generality and scalability of morden relational
databases make them preferred solutions to large scale
RDF data management.

The most straightforward relational approach is to
store RDF triples in a three-column table (S, P, O), each
of the three columns storing subject, predicate and object
respectively, which is called the triples table approach [7].
The basic problem of this approach is that SPARQL
queries with multiple triple patterns require expensive
self-joins over this (possibly large) triples table. To
reduce the number of self-joins, the property tables [8]
approach are introduced to cluster subjects that tend to
have a collection of common properties (i.e., predicates)
defined together. However, this approach does not fit
well with the semi-structured nature of RDF data.
Because not all properties will be defined for all subjects
in the subject cluster, property tables will have possibly
many NULLs and incur the space overhead. Moreover, it
is inefficient for the property table approach to execute
SPARQL queries with unbound variables in the property
position. To address these limitations, Abadi et al. [9]
proposed the vertical partitioning approach. In this
approach, a triples table is rewritten into n two-column
tables (S, O), where n is the number of unique properties
in the RDF data. Unfortunately, the experiments in [10]
and [13] have reported that the vertical partitioning
approach also performs poorly for queries that have
unspecified property values.

It is worth noting that the experimental results in
[9][10][13] have shown that for all relational schemes
storing RDF data in column-oriented databases performs
better than that of row-oriented databases.

RDF-3X [11] and Hexastore [12] are the most recently
proposed native RDF storage approaches that introduce
the concept of sextuple indexing, which makes use of the
fact that an RDF triple is a fixed three-dimensional entity
and hence it builds all 6-way indexes. Thus, this approach
not only provides efficient single triple pattern lookups,

 CHex: An Efficient RDF Storage and Indexing Scheme for Column-Oriented Databases 57

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 3, 55-61

but also allows fast merge-joins for any pair of two triple
patterns. However, both Hexastore and RDF-3X are
RDF-native schemes, and they do not address the
relational realization of sextuple indexing, thus not
having the advantages of the mature RDBMSs.

III. COLUMN-ORIENTED DATA MODEL

In this section, we introduce some preliminaries of the
column-oriented data model, which are borrowed from
the MonetDB 2 interpreter language [15], as the
foundations of our CHex RDF storage and indexing
scheme.

A. Binary Association Table
The fundamental idea behind the column-oriented

model for databases is to store tables as collections of
columns rather than as collections of rows. The prime
data structure of the column-oriented data model is a
collection type, called binary association table (BAT),
which is actually a two-column table of the form

[,]bat H T . The left column of a BAT is called the head
column that is of type H, and the right is called the tail
column that is of type T. A BAT value is a list that
contains binary tuples, called binary units (BUNs). A
BUN is denoted by a pair (,)a b , where Îa H and

Îb T . Thus, the notation of a BAT is a BUN list

1 1[(,), , (,)]= K n nB h t h t , shortened as 1[(,)]=
n
i i ih t , where

| |=n B is the size of the BAT. The relational model can
then be adapted to this model by splitting each table by
column. Each column becomes a BAT that holds the
column values in its tail. The head holds an object
identifier oid that is of type non-negative integer.

B. BAT algebra
The operations on BATs are offered by a BAT algebra,

whose operators (that are used in this paper) are listed in
Table I. We formally define the semantics of each
operator using an algebraic expression that represents its
result. If an operator needs to work on the opposite
column of a BAT B, the reverse(B) operator returns the
reverse view of B with the head and tail columns swapped.
Note that it is an operation on the internal column
pointers only, which means it does not touch the actual
BAT data. Hence, the execution time for this operator is
negligible. The mark(B, o) operator returns a new BAT
whose tail column filled with an ascending range of oids
that starts with the second parameter value o. Note that
the BAT algebra is closed on the BAT type, so the result
of the join(B1, B2) operator is again a binary table. The
result consists of the outer columns of the left BAT B1
and the right BAT B2 where their inner columns match,
i.e., tail values of B1 are equal to head values of B2.
Finally, the refine(B1, B2) operator refines the ordering of
a tail-ordered BAT by sub-ordering on the tail values of
the second BAT parameter. The semantics of other
operators are relatively straightforward. For more details,
we refer the reader to [11].

2 http://monetdb.cwi.nl/

TABLE I.
BAT OPERATORS AND THEIR SEMANTICS

Operator Semantics

find(B, h) t if (,)$ �h t B , else Æ

append(B, (h, t)) [(,)]　B B h t

reverse(B) 1[(,)]=
n
i i it h view of B

mark(B, o) 1[(, 1)]= + -n
i ih o i

order(B) 1 1[(,)] (1) : ()= +? ? �n
k k k k kh t k n h h

join(B1, B2) 1 2[(,) | (,) (,)]钨 钨 =i j i i j j i jh t h t B h t B t h

refine(B1, B2)

order(reverse(B1)) if B1 not tail-ordered

1[(,)] (1)= ? ?n
k k kh t k n

1 1((,), (,))+傥 k kh t h t B
1 2((,), (,)) : ()+傥 �k p k q p qh t h t B t t

1 1

,
, (1)

1,+

ì =ïï? =íï <+ïî

p qk
k

p qk

t tt
t t

t tt

IV. CHEX STORAGE AND INDEXING

This section explains CHex storage and indexing
scheme in detail based on the aforementioned column-
oriented data model. In fact, CHex is the integration of
the triples table and sextuple indexing with the dictionary
encoding for space saving.

A. Triples Table
Although the naive triples table approach may

experience a performance decrease for large-scale RDF
data sets and complex SPARQL queries, we decided to
pursue the simplicity and generality of this approach with
our own column-oriented implementation underneath. To
this end, we overcome the previous criticism that a triples
table incurs too many expensive self-joins by creating the
“right” set of indexes and employing an RDF-specific
query optimizer (see below). In fact, our triples table is a
virtual view made up of 3 BATs (i.e., S, P, O), each of
which is of type [,]bat oid oid , whose head column holds
object identifiers that are sequentially generated for each
RDF triple and tail column holds integer keys that are
dictionary-encoded for each RDF element value (i.e.,
subject, predicate or object).

Since RDF element values are either URIs or string
literals, we use a mapping dictionary that consists of two
BATs: one is of type [,]bat str oid that maps string values
(URIs or string literals) in the tail column to unique
integer identifiers (i.e., keys) in the head column, and the
other is of type [,]bat oid str that maps integer identifiers
in the head column to their original string values in the
tail column. This has two main benefits: (1) it compresses
the triples table and related indexes, and (2) it is a
simplification for the query processor since it will have to
deal only with integers instead of strings. Thus, this
mapping amounts to a dictionary encoding of string
values. Of course, to show the query results, all integers
need to be translated into the original strings by
dictionary lookups.

58 CHex: An Efficient RDF Storage and Indexing Scheme for Column-Oriented Databases

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 3, 55-61

Input: D: an RDF data set.
Output: S, P, O: BATs of the triples table,

 M: the dictionary BAT.
1: S, P, O ¬ empty bat[oid, oid];
2: M ¬ empty bat[oid, str];
3: i ¬ 0;
4: for each (s, p, o) Î D do
5: ks ¬ append_dict(M, s);
6: append(S, (i, ks));
7: kp ¬ append_dict(M, p);
8: append(P, (i, kp));
9: ko ¬ append_dict(M, o);

10: append(O, (i, ko));
11: i ¬ i + 1;
12: end for
13: order(reverse(M)); /* order dictionary */
14: T ¬ mark(M, 0);
15: order(T);
16: M ¬ reverse(mark(reverse(M), 0));
17: /* convert old keys in S, P, O to new ones */
18: S ¬ join(S, T);
19: order(reverse(S));
20: P ¬ join(P, T);
21: order(reverse(P));
22: O ¬ join(O, T);
23: order(reverse(O));

24: function append_dict(M, sv)
25: id ¬ find(reverse(M), sv);
26: if id = Æthen
27: id ¬ |M|;
28: append(M, (id, sv));
29: end if
30: return id;
31: end function

Figure 3. Algorithm chex_storing.

Fig. 3 shows the algorithm chex_storing that details the
procedure of storing an RDF data set D into the triples
table and the mapping dictionary. For each triple (, ,)s p o ,
ks, kp and ko are the dictionary-encoded integer keys for s,
p and o respectively (line 4-12). If a string is encountered
for the first time, the function append_dict(M, sv)
appends the string value sv to the dictionary BAT M and
generates a integer key id for it (line 26-29). If the string
already exists in the dictionary, the function just returns
its corresponding key id (line 30). After all triples have
been shredded into the BATs S, P and O, we order the
dictionary BAT M by string values and reassign
ascending keys to the ordered strings by the mark(M, 0)
operation (line 14). Then, we replace old keys in the
BATs S, P and O with new ones in the dictionary (line
18-23). By doing so, the dictionary can use only one BAT
M to do both side mappings (from oids to string values
and from string values to oids), thus saving the
aforementioned [,]bat str oid BAT. Finally, we order the
three BATs S, P and O by their new keys in the tail

columns. Thus, we obtain the column-oriented triples
table with the compact dictionary encoding.

Input: S, P, O: BATs of the triples table.
Output:15 BATs that constitute the 6-way indexes.
1: PPO, OPO, OOP, POP, SSO, OSO, OOS, SOS,
 SSP, PSP, PPS, SPS ¬ empty bat[oid, oid];
2: (PPO, OPO) ¬ refine_order(S, P, O);
3: (OOP, POP) ¬ refine_order(S, O, P);
4: (SSO, OSO) ¬ refine_order(P, S, O);
5: (OOS, SOS) ¬ refine_order(P, O, S);
6: (SSP, PSP) ¬ refine_order(O, S, P);
7: (PPS, SPS) ¬ refine_order(O, P, S);
8: S ¬ reverse(mark(reverse(S), 0));
9: P ¬ reverse(mark(reverse(P), 0));

10: O ¬ reverse(mark(reverse(O), 0));

11: function refine_order(B1, B2, B3)
12: T1 ¬ refine(B1, B2);
13: T2 ¬ refine(T1, B3);
14: T1 ¬ mirror(mark(T2, 0));
15: R1 ¬ join(T1, B2);
16: R2 ¬ join(T1, B3);
17: return (R1, R2);
18: end function

Figure 4. Algorithm chex_indexing.

C. Sextuple Indexing
Inspired by the approach adopted in [11] and [12], we

have implemented the sextuple indexing scheme in our
column-oriented scenario. Fig. 4 shows the algorithm
chex_indexing that builds indexes over all 6 permutations
(SPO, SOP, PSO, POS, OSP, OPS) of the 3 columns of
the triples table. For any given ordering (B1, B2, B3) of
BATs (S, P, O) produced by Algorithm chex_storing, the
function refine_order(B1, B2, B3) sorts triples by values of
(B1, B2, B3), and returns these sorted versions of B2 and B3
(line 11-18). Note that B1 is already ordered before
calling this function. The first BAT needs to be stored
only once for each couple of indexes with the same first
BAT. For example, it holds that S in SPO is the same as S
in SOP. Thus, we generate 15 (instead of 18) BATs that
are needed to constitute 6 different indexes (line 1-10).

In addition, we have also implemented an RDF-
specific query optimizer that can leverage the sextuple
indexing scheme to the largest possible extent. Namely,
our optimizer will use the set of 6 indexes to construct
execution plans that contain as many linear-time merge-
joins as possible.

V. EVALUATION

We implemented our approach by modifying the open-
source column-oriented RDBMS MonetDB version
5.21.0. For comparison purposes, we also implemented
the triples table approach with the sextuple indexing
scheme using the row-oriented RDBMS PostgreSQL
version 8.4.3. According to the published performance
figures [12], RDF-3X is widely known as the best state-
of-the-art native RDF store. In this section, we compare

 CHex: An Efficient RDF Storage and Indexing Scheme for Column-Oriented Databases 59

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 3, 55-61

the performance of our CHex scheme to both PostgreSQL
and RDF-3X. All experiments were conducted on a Dell
OptiPlex 360 PC with a 2.93 GHz Intel Core 2 Duo
processor, 4 GB of memory, and running a 64-bit Linux
2.6.32 kernel, with 4 GB of swap space on a 7200 RPM
disk with 320 GB capacity.

A. Data sets
We generate 5 synthetic data sets using the LUBM

benchmark [14], which complies with a university
domain ontology. The characteristics of these data sets
are given in Table II. The notation LUBM(n) stands for
an LUBM data set that contains RDF triples from n
universities. The largest data set LUBM(100) has over 13
million RDF triples. Note that all these data sets have 18
predicates. Table III lists the load time of each approach.
The load time of CHex is comparable to that of RDF-3X,
which is an order of magnitude smaller than that of
PostgreSQL. The database size of each approach is
shown in Table IV. Our CHex approach has a similar size
to the orignal raw RDF data presented in N-Triples
format, whereas PosgreSQL has the largest size. The size
of RDF-3X is smallest mainly due to its compression
mechanism tailored for RDF.

B. Queries
We have designed a set of 4 meaningful benchmark

queries. These queries cover not only the single triple
pattern (Q1) but also 3 RDF join patterns, i.e., the
subject-subject join (Q2), the subject-object join (Q3) and
the object-object join (Q3, Q4). These join patterns are of
interest because they form the basic graph patterns of
SPARQL, and are extensively used to compose more
complex queries. The selectivities of these queries (Q1 to
Q4) are 20.02%, 17.27%, 0.22% and 8.28% respectively.
The SPARQL and SQL code of all queries is given in the
appendix.

C. Results
Fig. 5 shows the performance results of our approach,

PostgreSQL and RDF-3X. From Fig. 5 (a), we can see
that the data set load times of our approach as well as
RDF-3X are about one order of magnitude smaller than
that of PostgreSQL. As shown in Fig. 5 (b), the database
size of our approach is comparable to the size of the raw
RDF data in N-Triples format, and RDF-3X requires less
disk space because of its dedicated compression
mechanism for the native RDF store.

 Fig. 5 (c)-(f) show the execution times of Q1 to Q4
respectively with the data set size increasing. We observe
that our approach is much more efficient than the
PostgreSQL approach due to our column-oriented triples
table and sextuple indexing scheme with the compact
dictionary encoding. For Q1 and Q2, our approach even
outperforms the row-oriented PostgreSQL approach by
about one order of magnitude. For Q3 and Q4, our
approach still outperforms PostgreSQL on average by
5.76 and 2.24 times respectively. Moreover, our approach
is competitive to RDF-3X that is known to be the best
state-of-the-art native RDF store. As a result, our CHex
approach not only takes advantages of the column-

oriented data model to implement the sextuple indexing,
but also avoids the prematurity of native RDF stores.

TABLE II.
CHARACTERISTICS OF DATA SETS

Data sets #Triples #Subjects #Objects

LUBM(20) 2,782,126 437,556 327,102

LUBM(40) 5,495,742 864,223 644,016

LUBM(60) 8,287,974 1,302,465 970,222

LUBM(80) 11,108,166 1,744,927 1,299,760

LUBM(100) 13,879,970 2,179,767 1,623,319

TABLE III.
LOAD TIME OF EACH APPROACH

Approach
Time (sec)

LUBM
(20)

LUBM
(40)

LUBM
(60)

LUBM
(80)

LUBM
(100)

CHex 28.28 63.4 108.54 148.32 275.9

RDF-3X 39.46 84.93 127.84 181.54 231.08

PostgreSQL 650.82 1272.64 1939.7 2644.05 3458.8

TABLE IV.
DATABASE SIZE OF EACH APPROACH

Approach
Size (GB)

LUBM
(20)

LUBM
(40)

LUBM
(60)

LUBM
(80)

LUBM
(100)

N-Triples 0.46 0.91 1.4 1.9 2.3

CHex 0.43 0.85 1.4 2 2.4

RDF-3X 0.13 0.26 0.4 0.53 0.67

PostgreSQL 0.73 1.5 2.2 2.9 3.6

VI. CONCLUSION

In this paper, we have proposed the CHex RDF storage
and indexing scheme that applies sextuple indexing
techniques to the RDF triples table using a column-
oriented relational database system. CHex makes full use
of the triple nature of RDF to build indexes over all 6
permutations of the 3 columns of the triples table. We
also devise a compact dictionary encoding for the triples
table to save storage space effectively. Our CHex
indexing scheme not only provides efficient single triple
pattern lookups, but also allows fast merge-joins for any
pair of two triple patterns. We have carried out extensive
experiments using the LUBM benchmark to evaluate the
performance of our approach. The experimental results
have shown that our CHex approach, with satisfactory
load time and database size, outperforms the row-oriented
PostgreSQL approach by upto an order of magnitude, and
is competitive to RDF-3X that is widely known as the
best state-of-the-art native RDF store.

In the future, we intend to examine more RDF-specific
query processing and optimization techniques based on
our CHex scheme. In particular, we plan to investigate

60 CHex: An Efficient RDF Storage and Indexing Scheme for Column-Oriented Databases

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 3, 55-61

how to design and implement the efficient execution of
the property path patterns that are proposed by the latest

SPARQL 1.1 working draft [6].

Figure 5. Performance results.

APPENDIX A

SPARQL Queries

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub:<http://www.lehigh.edu/~zhp2/2004/0401/

univ-bench.owl#>
Q1:
SELECT ?X
WHERE { ?X rdf:type ?Y . }

Q2:
SELECT ?X ?Y
WHERE { ?X rdf:type ub:UndergraduateStudent .

?X ub:takesCourse ?Y . }

Q3:
SELECT DISTINCT ?A
WHERE { ?X ub:publicationAuthor ?Y .

?Y ub:memberOf ?Z .
?A ub:subOrganizationOf ?Z. }

Q4:
SELECT DISTINCT ?X
WHERE { <FullProfessor0> ?P0 ?O .

?X ?P1 ?O .
FILTER (?X != <FullProfessor0>) }

SQL Queries

Q1:
SELECT a.s
FROM triples AS a
WHERE a.p = <rdf:type>

Q2:
SELECT a.s, b.o

FROM triples AS a, triples AS b
WHERE a.p = <rdf:type>
 AND a.o = <ub:UndergraduateStudent>

AND a.s = b.s AND b.p = <ub:takesCourse>

Q3:
SELECT DISTINCT d.s
FROM triples AS a, triples AS b, triples AS c, triples AS d
WHERE a.p = <ub:publicationAuthor> AND a.o = b.s

AND b.p = <ub:memberOf> AND b.o = c.s
AND d.p = <ub:subOrganizationOf> AND d.o = c.s

Q4:
SELECT b.s
FROM triples AS a, triples AS b
WHERE a.s = <FullProfessor0>

AND a.o = b.o
AND b.s <> <FullProfessor0>

ACKNOWLEDGMENT

The authors wish to thank Lefteris Sidirourgos for his
help in our email discussions on RDF data management
in MonetDB. This work was supported by the National
Science Foundation of China under grant number
61070202 and Seed Foundation of Tianjin University
under grant number 60302010.

REFERENCES

[1] F. Manola, E. Miller, and B. McBride, “RDF primer,”
W3C Recommendation, 10 February 2004.

[2] G. Klyne, J. J. Carroll, and B. McBride. “Resource
description framework (RDF): concepts and abstract
syntax,” W3C Recommendation, 10 February 2004.

[3] P. Hayes and B. McBride. “RDF semantics,” W3C
Recommendation, 10 February 2004.

 CHex: An Efficient RDF Storage and Indexing Scheme for Column-Oriented Databases 61

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 3, 55-61

[4] T. Berners-Lee, J. Hendler, and O. Lassila. “The Semantic
Web,” Scientific American, 284(5):34-43, 2001.

[5] E. Prud’hommeaux and A. Seaborne, “SPARQL query
language for RDF,” W3C Recommendation, 15 January
2008.

[6] S. Harris and A. Seaborne. “SPARQL 1.1 query language,”
W3C Working Draft, 14 October 2010.

[7] S. Harris and N. Gibbins, “3store: Efficient bulk RDF
storage,” In Proc. PSSS, pp. 1–20, 2003.

[8] K. Wilkinson, “Jena property table implementation,” In
Proc. SSWS, pp. 54–68, 2006.

[9] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach,
“Scalable semantic web data management using vertical
partitioning,” In Proc. VLDB, pp. 411–422, 2007.

[10] L. Sidirourgos, R. Goncalves, M. Kersten, N. Nes, and S.
Manegold, “Column-store support for RDF data
management: not all swans are white,” In Proc. VLDB, pp.
1553–1563, 2008.

[11] T. Neumann and G. Weikum, “RDF-3X: a RISC-style
engine for RDF,” In Proc. VLDB, pp. 647–659, 2008.

[12] C. Weiss, P. Karras, and A. Bernstein, “Hexastore:
sextuple indexing for semantic web data management,” In
Proc. VLDB, pp. 1008–1019, 2008.

[13] M. Schmidt, T. Hornung, N. Küchlin, G. Lausen, and C.
Pinkel, “An experimental comparison of RDF data
management approaches in a SPARQL benchmark
scenario,” In Proc. ISWC, pp. 82–97, 2008.

[14] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A benchmark for
OWL knowledge base systems,” Web Semantics 3(2), pp.
158–182, 2005.

[15] P. Boncz and M. Kersten, “MIL primitives for querying a
fragmented world,” VLDB Journal, 8(2), pp. 101–119,
1999.

[16] X. Wang, S. Wang, P. Du, and Z. Feng. “Storing and
indexing RDF data in a column-oriented DBMS,” In Proc.
DBTA, pp. 46-49, 2010.

 Xin Wang was born in Tianjin, China, in
1981. He received his Ph.D. degree in
Computer Science from Nankai University,
Tianjin, China, in 2009.

He is an Assistant Professor of School of
Computer Science and Technology at Tianjin
University, Tianjin, China, since July 2009.

His representative publications include: “Storing and indexing
RDF data in a column-oriented DBMS” (In Proc. of the 2nd
International Workshop on Database Technology and
Applications, 2010), “Efficient XPath evaluation using a
structural summary index” (In Proc. of the 1st International
Conference on Computer Science and Software Engineering,
2008), and “Towards an incremental approach to validation of
native XML databases” (Journal of Computational Information

Systems, 2007). His current research interests are semantic data
management and database implementation.

Prof. Wang is a member of Association for Computing
Machinery (ACM) and China Computer Federation (CCF).

Shuyi Wang was born in Tianjin, China, in
1982. He received his Master's degree in
Computer Science from Tianjin University,
Tianjin, China, in 2007.

He is a Ph.D. candidate of Business School
at Nankai University since July 2008. His main
publications include: "Storing and indexing

RDF data in a column-oriented DBMS" (In Proc. of the 2nd
International Workshop on Database Technology and
Applications, 2010), "SVM-Based Models for Predicting
WLAN Traffic" (in Proc. of the IEEE 2006 International
Conference on Communications, 2006), "Throughput Analysis
of IEEE 802.11-based Ad hoc Networks in Presence of Selfish
Node Networks" (In Proc. of International Symposium on
Information Technologies and Communications, 2006) . His
current research interests are competitive intelligence and
information management.He is an Assistant Professor of the
School of Computer Science and Technology, Tianjin
University, Tianjin, China, since January 2010. His current
research interests are bioinformatics and machine learning.

Mr. Wang is a student member of Association for Computing
Machinery (ACM) and China Computer Federation (CCF).

Pufeng Du was born in Tianjin, China, in 1983.
He received his Ph.D. degree in Control Theory
and Engineering from Tsinghua University,
Beijing, China, in 2010.

He is an Assistant Professor of the School of
Computer Science and Technology, Tianjin
University, Tianjin, China, since January 2010.

His current research interests are bioinformatics and machine
learning.

Prof. Du is a member of Association for Computing
Machinery (ACM) and China Computer Federation (CCF).

Zhiyong Feng was born in Inner Mongolia,
China, in 1965. He received his Ph.D. degree in
Machinery Manufacturing from Tianjin
University, Tianjin, China, in 1996.

He is a Professor and Vice-president of the
School of Computer Science and Technology,
Tianjin University, Tianjin, China. His current

research interests are knowledge engineering service computing
and security software engineering.

Prof. Feng is a member of Association for Computing
Machinery (ACM) and China Computer Federation (CCF).

