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Abstract—As increasingly large RDF data sets are being 
published on the Web, effcient RDF data management has 
become an essential factor in realizing the Semantic Web 
vision. However, most existing RDF storage schemes, which 
are built on top of row-store relational databases, are 
constrained in terms of efficiency and scalability.  Still, the 
growing popularity of the RDF format used in real-world 
applications arguably calls for an effort to deal with these 
drawbacks. In this paper, we propose a novel RDF storage 
and indexing scheme, called CHex, which uses the triple 
nature of RDF as an asset to implement sextuple indexing 
for a column-oriented database system. Using binary 
association tables (BATs) in the column-oriented data model, 
RDF data is indexed in six possible ways, one for each 
possible ordering of the three RDF elements. The sextuple 
indexing scheme in a column-oriented database not only 
provides efficient single triple pattern lookups, but also 
allows fast merge-joins for any pair of two triple patterns. 
To evaluate the performance of our approach, we generate 
large-scale data sets upto 13 million triples, and devise 
benchmark queries that cover important RDF join patterns. 
The experimental results show that our approach 
outperforms the row-oriented database systems by upto an 
order of magnitude and is even competitive to the best state-
of-the-art native RDF store. 
 
Index Terms—RDF, storage scheme, sextuple indexing, 
column-oriented database, binary association table, URI 
 

I.  INTRODUCTION 

The Resource Description Framework (RDF) [1][2][3] 
is a standard data model for describing machine-readable 
information in the emerging Semantic Web [4]. An RDF 
data set is a collection of statements, called triples, of the 
form (S, P, O) where S is a subject, P is a predicate (also 
called property) and O is an object. Each triple states the 
relation (represented by its predicate) between its subject 

and object. A set of triples can be represented as a labeled 
directed graph, with nodes representing subjects and 
objects and labeled edges representing predicates, 
connecting subject nodes to object nodes. 

As an example, Fig. 1 (a) shows a set of RDF triples 
and Fig. 1 (b) depicts the corresponding RDF graph. This 
set of RDF triples as well as the RDF graph states a fact 
that the book book1 whose title is “Foundations of 
Databases” is co-authored by author1, anthor2 and 
author3, whose names are “Serge Abiteboul”, “Rick 
Hull” and “Victor Vianu” respectively. In fact, HTTP 
URIs are used to identify every resource in RDF data, e.g.,  
book1 is actually an abbreviation of HTTP URI http:// 
www.example.org/book1. Thus, the uniqueness of the 
resource identifiers can be ensured. 

In order to provide a convenient data access method 
for RDF graphs, W3C has proposed the SPARQL [5][6] 
query language for RDF data, which is based upon  
powerful graph pattern matching facilities. Fig. 2 (a) 
shows a SPARQL query that returns names of persons 
who is a co-author of the book titled “Foundations of 
Databases”. A SPARQL query can also be represented as 
an RDF (sub)graph with variable (indicated by a question 
mark) occuring on the subject, predicate or object 
positions. The graph that corresponds to the query in Fig. 
2 (a) is depicted in Fig. 2 (b), where the object node 
“?name” is shaded, indicating that it is the return variable. 
The SPARQL query processor will use the query graph as 
a pattern to match results in the RDF data graph by 
binding the variables in the query graph to the 
corresponding parts of each triple in the data graph. It is 
not difficult to figure out that the results of the SPARQL 
query in Fig. 2 is a set of mappings {?name ® “Serge 
Abiteboul”, ?name ® “Rick Hull”, ?name ® “Victor 
Vianu”}. 

Obviously, the increasing amount of avaiable RDF 
data being published on the Web calls for the 
development of efficient and scalable approaches to RDF 
storage and querying. Perhaps the most straightforward 
way to store RDF triples is to use a relational three-
column table (S, P, O), called the triples table, each of 
columns storing subject, predicate and object respectively.  
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(b)

(a)

(person1, isNamed, "Serge Abiteboul")
(person2, isNamed, "Rick Hull")
(person3, isNamed, "Victor Vianu")
(book1, hasAuthor, person1)
(book1, hasAuthor, person2)
(book1, hasAuthor, person3)
(book1, isTitled, "Foundations of Databases")

person1

person2

Serge Abiteboul

hasAuthor

hasAuthor

isNamed

Rick Hull
isNamed

Victor Vianu

isNamed

person3

hasAuthor

book1

Foundations of 
Databases

isTitled

 
Figure 1.   A set of RDF triples and the corresponding RDF graph. 

The recently proposed sextuple indexing scheme 
[11][12] turns a conventional triples table to a much more 
efficient one. Moreover, a column-oriented relational 
database systems not only adds another factor of 
efficiency, but also offers maturity, generality and 
scalability [10][13]. To gain this double advantages, in 
this paper, we propose a novel RDF storage and indexing 
scheme, called CHex1, which applies sextuple indexing 
techniques to a column-oriented relational database 
system. In order to verify the performance of our scheme, 
we generate 5 large-scale data sets using the Lehigh 
University benchmark (LUBM) [10], and design 4 
benchmark queries that cover all important RDF join 
patterns. The experimental results show that our approach 
outperforms the row-oriented approach by upto an order 
of magnitude, and is even competitive to the best state-of-
the-art native RDF store. 

The remainder of this paper is organized as follows. In 
Section II, we review related work. Section III introduces 
some preliminaries of the column-oriented data model. 
Section IV presents the CHex storage and indexing 
scheme. Section V describes our extensive experimental 
evaluation. Finally, we conclude in Section VI. 

II.  RELATED WORK 

The state-of-the-art RDF storage and indexing schemes 
can be mainly summarized into two categories: (1) 
relational schemes [7][8][9][10] that use relational 
database management systems (RDBMSs) as RDF 
storage backends; and (2) native schemes [11][12] that 
build RDF-specific storage and indexing structures from 
scratch. 

                                                           
1 CHex stands for Column-oriented Hexastore 

(b)

(a)

SELECT ?name
WHERE {
    ?book  isTitled  "Foundations of Databases" .
    ?book  hasAuthor  ?person .
    ?book  isNamed  ?name .
}

?person ?name

hasAuthor isNamed

?book

Foundations of 
Databases

isTitled

 
Figure 2.   A SPARQL query and the corresponding query graph. 

Although native RDF stores are largely more efficient 
for SPARQL queries due to their tailored design, the 
maturity, generality and scalability of morden relational 
databases make them preferred solutions to large scale 
RDF data management. 

The most straightforward relational approach is to 
store RDF triples in a three-column table (S, P, O), each 
of the three columns storing subject, predicate and object 
respectively, which is called the triples table approach [7]. 
The basic problem of this approach is that SPARQL 
queries with multiple triple patterns require expensive 
self-joins over this (possibly large) triples table. To 
reduce the number of self-joins, the property tables [8] 
approach are introduced to cluster subjects that tend to 
have a collection of common properties (i.e., predicates) 
defined together. However, this approach does not fit 
well with the semi-structured nature of RDF data. 
Because not all properties will be defined for all subjects 
in the subject cluster, property tables will have possibly 
many NULLs and incur the space overhead. Moreover, it 
is inefficient for the property table approach to execute 
SPARQL queries with unbound variables in the property  
position. To address these limitations, Abadi et al. [9] 
proposed the vertical partitioning approach. In this 
approach, a triples table is rewritten into n two-column 
tables (S, O), where n is the number of unique properties 
in the RDF data. Unfortunately, the experiments in [10] 
and [13] have reported that the vertical partitioning 
approach also performs poorly for queries that have 
unspecified property values. 

It is worth noting that the experimental results in 
[9][10][13] have shown that for all relational schemes 
storing RDF data in column-oriented databases performs 
better than that of row-oriented databases. 

RDF-3X [11] and Hexastore [12] are the most recently 
proposed native RDF storage approaches that introduce 
the concept of sextuple indexing, which makes use of the 
fact that an RDF triple is a fixed three-dimensional entity 
and hence it builds all 6-way indexes. Thus, this approach 
not only provides efficient single triple pattern lookups, 
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but also allows fast merge-joins for any pair of two triple 
patterns. However, both Hexastore and RDF-3X are 
RDF-native schemes, and they do not address the 
relational realization of sextuple indexing, thus not 
having the advantages of the mature RDBMSs. 

III.  COLUMN-ORIENTED DATA MODEL 

In this section, we introduce some preliminaries of the 
column-oriented data model, which are borrowed from 
the MonetDB 2  interpreter language [15], as the 
foundations of our CHex RDF storage and indexing 
scheme. 

A.  Binary Association Table 
The fundamental idea behind the column-oriented 

model for databases is to store tables as collections of 
columns rather than as collections of rows. The prime 
data structure of the column-oriented data model is a 
collection type, called binary association table (BAT), 
which is actually a two-column table of the form 

[ , ]bat H T . The left column of a BAT is called the head 
column that is of type H, and the right is called the tail 
column that is of type T. A BAT value is a list that 
contains binary tuples, called binary units (BUNs). A 
BUN is denoted by a pair ( , )a b , where Îa H  and 

Îb T . Thus, the notation of a BAT is a BUN list 

1 1[( , ), , ( , )]= K n nB h t h t , shortened as 1[ ( , )]=
n
i i ih t , where 

| |=n B  is the size of the BAT. The relational model can 
then be adapted to this model by splitting each table by 
column. Each column becomes a BAT that holds the 
column values in its tail. The head holds an object 
identifier oid that is of type non-negative integer. 

B.  BAT algebra 
The operations on BATs are offered by a BAT algebra, 

whose operators (that are used in this paper) are listed in 
Table I. We formally define the semantics of each 
operator using an algebraic expression that represents its 
result. If an operator needs to work on the opposite 
column of a BAT B, the reverse(B) operator returns the 
reverse view of B with the head and tail columns swapped. 
Note that it is an operation on the internal column 
pointers only, which means it does not touch the actual 
BAT data. Hence, the execution time for this operator is 
negligible. The mark(B, o) operator returns a new BAT 
whose tail column filled with an ascending range of oids 
that starts with the second parameter value o. Note that 
the BAT algebra is closed on the BAT type, so the result 
of the join(B1, B2) operator is again a binary table. The 
result consists of the outer columns of the left BAT B1 
and the right BAT B2 where their inner columns match, 
i.e., tail values of B1 are equal to head values of B2. 
Finally, the refine(B1, B2) operator refines the ordering of 
a tail-ordered BAT by sub-ordering on the tail values of 
the second BAT parameter. The semantics of other 
operators are relatively straightforward. For more details, 
we refer the reader to [11].  

                                                           
2 http://monetdb.cwi.nl/ 

TABLE I. 
BAT OPERATORS AND THEIR SEMANTICS 

Operator Semantics 

find(B, h) t if ( , )$ �h t B , else Æ  

append(B, (h, t)) [( , )]　B B h t  

reverse(B) 1[ ( , )]=
n
i i it h  view of B 

mark(B, o) 1[ ( , 1)]= + -n
i ih o i  

order(B) 1 1[ ( , )] ( 1 ) : ( )= +? ? �n
k k k k kh t k n h h  

join(B1, B2) 1 2[( , ) | ( , ) ( , ) ]钨 钨 =i j i i j j i jh t h t B h t B t h

refine(B1, B2) 

order(reverse(B1)) if B1 not tail-ordered 

1[ ( , )] ( 1 )= ? ?n
k k kh t k n  

1 1(( , ), ( , ) )+傥 k kh t h t B  
1 2(( , ), ( , ) ) : ( )+傥 �k p k q p qh t h t B t t  

1 1

,
, ( 1)

1,+

ì =ïï? =íï <+ïî

p qk
k

p qk

t tt
t t

t tt
 

 

IV.  CHEX STORAGE AND INDEXING 

This section explains CHex storage and indexing 
scheme in detail based on the aforementioned column-
oriented data model. In fact, CHex is the integration of 
the triples table and sextuple indexing with the dictionary 
encoding for space saving. 

A.  Triples Table 
Although the naive triples table approach may 

experience a performance decrease for large-scale RDF 
data sets and complex SPARQL queries, we decided to 
pursue the simplicity and generality of this approach with 
our own column-oriented implementation underneath. To 
this end, we overcome the previous criticism that a triples 
table incurs too many expensive self-joins by creating the 
“right” set of indexes and employing an RDF-specific 
query optimizer (see below). In fact, our triples table is a 
virtual view made up of 3 BATs (i.e., S, P, O), each of 
which is of type [ , ]bat oid oid , whose head column holds 
object identifiers that are sequentially generated for each 
RDF triple and tail column holds integer keys that are 
dictionary-encoded for each RDF element value (i.e., 
subject, predicate or object). 

Since RDF element values are either URIs or string 
literals, we use a mapping dictionary that consists of two 
BATs: one is of type [ , ]bat str oid that maps string values 
(URIs or string literals) in the tail column to unique 
integer identifiers (i.e., keys) in the head column, and the 
other is of type [ , ]bat oid str  that maps integer identifiers 
in the head column to their original string values in the 
tail column. This has two main benefits: (1) it compresses 
the triples table and related indexes, and (2) it is a 
simplification for the query processor since it will have to 
deal only with integers instead of strings. Thus, this 
mapping amounts to a dictionary encoding of string 
values. Of course, to show the query results, all integers 
need to be translated into the original strings by 
dictionary lookups.
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Input: D: an RDF data set. 
Output: S, P, O: BATs of the triples table, 

         M: the dictionary BAT. 
1: S, P, O ¬ empty bat[oid, oid]; 
2: M ¬  empty bat[oid, str]; 
3: i  ¬  0; 
4: for each (s, p, o) Î  D do 
5:    ks ¬ append_dict(M, s); 
6:    append(S, (i, ks)); 
7:    kp ¬ append_dict(M, p); 
8:    append(P, (i, kp)); 
9:    ko ¬  append_dict(M, o); 

10:    append(O, (i, ko)); 
11:    i ¬  i + 1; 
12: end for 
13: order(reverse(M));  /* order dictionary */ 
14: T ¬ mark(M, 0); 
15: order(T); 
16: M ¬ reverse(mark(reverse(M), 0)); 
17: /* convert old keys in S, P, O to new ones */ 
18: S ¬  join(S, T); 
19: order(reverse(S)); 
20: P ¬  join(P, T); 
21: order(reverse(P)); 
22: O ¬  join(O, T); 
23: order(reverse(O)); 

24: function append_dict(M, sv) 
25:     id ¬ find(reverse(M), sv); 
26:    if id = Æthen 
27:        id ¬ |M|; 
28:        append(M, (id, sv)); 
29:    end if 
30:    return id; 
31: end function 

 
Figure 3.   Algorithm chex_storing. 

Fig. 3 shows the algorithm chex_storing that details the 
procedure of storing an RDF data set D into the triples 
table and the mapping dictionary. For each triple ( , , )s p o , 
ks, kp and ko are the dictionary-encoded integer keys for s, 
p and o respectively (line 4-12). If a string is encountered 
for the first time, the function append_dict(M, sv) 
appends the string value sv to the dictionary BAT M and 
generates a integer key id for it (line 26-29). If the string 
already exists in the dictionary, the function just returns 
its corresponding key id (line 30). After all triples have 
been shredded into the BATs S, P and O, we order the 
dictionary BAT M by string values and reassign 
ascending keys to the ordered strings by the mark(M, 0) 
operation (line 14). Then, we replace old keys in the 
BATs S, P and O with new ones in the dictionary (line 
18-23). By doing so, the dictionary can use only one BAT 
M to do both side mappings (from oids to string values 
and from string values to oids), thus saving the 
aforementioned [ , ]bat str oid BAT. Finally, we order the 
three BATs S, P and O by their new keys in the tail 

columns. Thus, we obtain the column-oriented triples 
table with the compact dictionary encoding. 

Input: S, P, O: BATs of the triples table. 
Output:15 BATs that constitute the 6-way indexes.
1: PPO, OPO, OOP, POP, SSO, OSO, OOS, SOS, 
    SSP, PSP, PPS, SPS ¬  empty bat[oid, oid]; 
2: (PPO, OPO) ¬  refine_order(S, P, O); 
3: (OOP, POP) ¬  refine_order(S, O, P); 
4: (SSO, OSO) ¬  refine_order(P, S, O); 
5: (OOS, SOS) ¬  refine_order(P, O, S); 
6: (SSP, PSP) ¬  refine_order(O, S, P); 
7: (PPS, SPS) ¬  refine_order(O, P, S); 
8: S ¬  reverse(mark(reverse(S), 0)); 
9: P ¬  reverse(mark(reverse(P), 0)); 

10: O ¬  reverse(mark(reverse(O), 0)); 

11: function refine_order(B1, B2, B3) 
12:    T1 ¬  refine(B1, B2); 
13:    T2 ¬  refine(T1, B3); 
14:    T1 ¬  mirror(mark(T2, 0)); 
15:    R1 ¬  join(T1, B2); 
16:    R2 ¬  join(T1, B3); 
17:    return (R1, R2); 
18: end function 

 
Figure 4.  Algorithm chex_indexing. 

C.  Sextuple Indexing 
Inspired by the approach adopted in [11] and [12], we 

have implemented the sextuple indexing scheme in our 
column-oriented scenario. Fig. 4 shows the algorithm 
chex_indexing that builds indexes over all 6 permutations 
(SPO, SOP, PSO, POS, OSP, OPS) of the 3 columns of 
the triples table. For any given ordering (B1, B2, B3) of 
BATs (S, P, O) produced by Algorithm chex_storing, the 
function refine_order(B1, B2, B3) sorts triples by values of 
(B1, B2, B3), and returns these sorted versions of B2 and B3 
(line 11-18). Note that B1 is already ordered before 
calling this function. The first BAT needs to be stored 
only once for each couple of indexes with the same first 
BAT. For example, it holds that S in SPO is the same as S 
in SOP. Thus, we generate 15 (instead of 18) BATs that 
are needed to constitute 6 different indexes (line 1-10). 

In addition, we have also implemented an RDF-
specific query optimizer that can leverage the sextuple 
indexing scheme to the largest possible extent. Namely, 
our optimizer will use the set of 6 indexes to construct 
execution plans that contain as many linear-time merge-
joins as possible. 

V.  EVALUATION 

We implemented our approach by modifying the open-
source column-oriented RDBMS MonetDB version 
5.21.0. For comparison purposes, we also implemented 
the triples table approach with the sextuple indexing 
scheme using the row-oriented RDBMS PostgreSQL 
version 8.4.3. According to the published performance 
figures [12], RDF-3X is widely known as the best state-
of-the-art native RDF store. In this section, we compare 
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the performance of our CHex scheme to both PostgreSQL 
and RDF-3X. All experiments were conducted on a Dell 
OptiPlex 360 PC with a 2.93 GHz Intel Core 2 Duo 
processor, 4 GB of memory, and running a 64-bit Linux 
2.6.32 kernel, with 4 GB of swap space on a 7200 RPM 
disk with 320 GB capacity. 

A.  Data sets 
We generate 5 synthetic data sets using the LUBM 

benchmark [14], which complies with a university 
domain ontology. The characteristics of these data sets 
are given in Table II. The notation LUBM(n) stands for 
an LUBM data set that contains RDF triples from n 
universities. The largest data set LUBM(100) has over 13 
million RDF triples. Note that all these data sets have 18 
predicates. Table III lists the load time of each approach. 
The load time of CHex is comparable to that of RDF-3X, 
which is an order of magnitude smaller than that of 
PostgreSQL.  The database size of each approach is 
shown in Table IV. Our CHex approach has a similar size 
to the orignal raw RDF data presented in N-Triples 
format, whereas PosgreSQL has the largest size. The size 
of RDF-3X is smallest mainly due to its compression 
mechanism tailored for RDF. 

B.  Queries 
We have designed a set of 4 meaningful benchmark 

queries. These queries cover not only the single triple 
pattern (Q1) but also 3 RDF join patterns, i.e., the 
subject-subject join (Q2), the subject-object join (Q3) and 
the object-object join (Q3, Q4). These join patterns are of 
interest because they form the basic graph patterns of 
SPARQL, and are extensively used to compose more 
complex queries. The selectivities of these queries (Q1 to 
Q4) are 20.02%, 17.27%, 0.22% and 8.28% respectively. 
The SPARQL and SQL code of all queries is given in the 
appendix. 

C.  Results 
Fig. 5 shows the performance results of our approach, 

PostgreSQL and RDF-3X. From Fig. 5 (a), we can see 
that the data set load times of our approach as well as 
RDF-3X are about one order of magnitude smaller than 
that of PostgreSQL. As shown in Fig. 5 (b), the database 
size of our approach is comparable to the size of the raw 
RDF data in N-Triples format, and RDF-3X requires less 
disk space because of its dedicated compression 
mechanism for the native RDF store. 

 Fig. 5 (c)-(f) show the execution times of Q1 to Q4 
respectively with the data set size increasing. We observe 
that our approach is much more efficient than the 
PostgreSQL approach due to our column-oriented triples 
table and sextuple indexing scheme with the compact 
dictionary encoding. For Q1 and Q2, our approach even 
outperforms the row-oriented PostgreSQL approach by 
about one order of magnitude. For Q3 and Q4, our 
approach still outperforms PostgreSQL on average by 
5.76 and 2.24 times respectively. Moreover, our approach 
is competitive to RDF-3X that is known to be the best 
state-of-the-art native RDF store. As a result, our CHex 
approach not only takes advantages of the column-

oriented data model to implement the sextuple indexing, 
but also avoids the prematurity of native RDF stores. 

TABLE II. 
CHARACTERISTICS OF DATA SETS 

Data sets #Triples #Subjects #Objects 

LUBM(20) 2,782,126 437,556 327,102 

LUBM(40) 5,495,742 864,223 644,016 

LUBM(60) 8,287,974 1,302,465 970,222 

LUBM(80) 11,108,166 1,744,927 1,299,760 

LUBM(100) 13,879,970 2,179,767 1,623,319 

 

TABLE III. 
LOAD TIME OF EACH APPROACH 

Approach
Time (sec) 

LUBM 
(20) 

LUBM 
(40) 

LUBM 
(60) 

LUBM 
(80) 

LUBM 
(100) 

CHex 28.28 63.4 108.54 148.32 275.9 

RDF-3X 39.46 84.93 127.84 181.54 231.08 

PostgreSQL 650.82 1272.64 1939.7 2644.05 3458.8 

 

TABLE IV. 
DATABASE SIZE OF EACH APPROACH 

Approach
Size (GB) 

LUBM 
(20) 

LUBM 
(40) 

LUBM 
(60) 

LUBM 
(80) 

LUBM 
(100) 

N-Triples 0.46 0.91 1.4 1.9 2.3 

CHex 0.43 0.85 1.4 2 2.4 

RDF-3X 0.13 0.26 0.4 0.53 0.67 

PostgreSQL 0.73 1.5 2.2 2.9 3.6 

 

VI.  CONCLUSION 

In this paper, we have proposed the CHex RDF storage 
and indexing scheme that applies sextuple indexing 
techniques to the RDF triples table using a column-
oriented relational database system. CHex makes full use 
of the triple nature of RDF to build indexes over all 6 
permutations of the 3 columns of the triples table. We 
also devise a compact dictionary encoding for the triples 
table to save storage space effectively. Our CHex 
indexing scheme not only provides efficient single triple 
pattern lookups, but also allows fast merge-joins for any 
pair of two triple patterns. We have carried out extensive 
experiments using the LUBM benchmark to evaluate the 
performance of our approach. The experimental results 
have shown that our CHex approach, with satisfactory 
load time and database size, outperforms the row-oriented 
PostgreSQL approach by upto an order of magnitude, and 
is competitive to RDF-3X that is widely known as the 
best state-of-the-art native RDF store. 

In the future, we intend to examine more RDF-specific 
query processing and optimization techniques based on 
our CHex scheme. In particular, we plan to investigate 
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how to design and implement the efficient execution of 
the property path patterns that are proposed by the latest 

SPARQL 1.1 working draft [6]. 

 
Figure 5.  Performance results. 

APPENDIX A 

SPARQL Queries 
 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX ub:<http://www.lehigh.edu/~zhp2/2004/0401/ 

univ-bench.owl#> 
Q1:  
SELECT ?X 
WHERE { ?X rdf:type ?Y . } 
 
Q2:  
SELECT ?X ?Y 
WHERE { ?X rdf:type ub:UndergraduateStudent . 

?X ub:takesCourse ?Y . } 
 

Q3: 
SELECT DISTINCT ?A 
WHERE { ?X ub:publicationAuthor ?Y . 

?Y ub:memberOf ?Z . 
?A ub:subOrganizationOf ?Z. } 
 

Q4: 
SELECT DISTINCT ?X  
WHERE { <FullProfessor0> ?P0 ?O . 

?X ?P1 ?O .  
FILTER (?X != <FullProfessor0>) } 

 
SQL Queries 
 
Q1: 
SELECT a.s  
FROM triples AS a 
WHERE a.p = <rdf:type> 
 
Q2: 
SELECT a.s, b.o 

FROM triples AS a, triples AS b 
WHERE a.p = <rdf:type> 
               AND a.o = <ub:UndergraduateStudent> 

AND a.s = b.s AND b.p = <ub:takesCourse> 
 

Q3: 
SELECT DISTINCT d.s 
FROM triples AS a, triples AS b, triples AS c, triples AS d 
WHERE a.p = <ub:publicationAuthor> AND a.o = b.s  

AND b.p = <ub:memberOf> AND b.o = c.s  
AND d.p = <ub:subOrganizationOf> AND d.o = c.s 
 

Q4: 
SELECT b.s 
FROM triples AS a, triples AS b 
WHERE a.s = <FullProfessor0>  

AND a.o = b.o 
AND b.s <> <FullProfessor0> 

ACKNOWLEDGMENT 

The authors wish to thank Lefteris Sidirourgos for his 
help in our email discussions on RDF data management 
in MonetDB. This work was supported by the National 
Science Foundation of China under grant number 
61070202 and Seed Foundation of Tianjin University 
under grant number 60302010. 

REFERENCES 

[1] F. Manola, E. Miller, and B. McBride, “RDF primer,” 
W3C Recommendation, 10 February 2004. 

[2] G. Klyne, J. J. Carroll, and B. McBride. “Resource 
description framework (RDF): concepts and abstract 
syntax,” W3C Recommendation, 10 February 2004. 

[3] P. Hayes and B. McBride. “RDF semantics,” W3C 
Recommendation, 10 February 2004. 



 CHex: An Efficient RDF Storage and Indexing Scheme for Column-Oriented Databases 61 

Copyright © 2011 MECS                                                                          I.J. Modern Education and Computer Science, 2011, 3, 55-61 

[4] T. Berners-Lee, J. Hendler, and O. Lassila. “The Semantic 
Web,” Scientific American, 284(5):34-43, 2001. 

[5] E. Prud’hommeaux and A. Seaborne, “SPARQL query 
language for RDF,” W3C Recommendation, 15 January 
2008. 

[6] S. Harris and A. Seaborne. “SPARQL 1.1 query language,” 
W3C Working Draft, 14 October 2010. 

[7] S. Harris and N. Gibbins, “3store: Efficient bulk RDF 
storage,” In Proc. PSSS, pp. 1–20, 2003. 

[8] K. Wilkinson, “Jena property table implementation,” In 
Proc. SSWS, pp. 54–68, 2006. 

[9] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach, 
“Scalable semantic web data management using vertical 
partitioning,” In Proc. VLDB, pp. 411–422, 2007. 

[10] L. Sidirourgos, R. Goncalves, M. Kersten, N. Nes, and S. 
Manegold, “Column-store support for RDF data 
management: not all swans are white,” In Proc. VLDB, pp. 
1553–1563, 2008. 

[11] T. Neumann and G. Weikum, “RDF-3X: a RISC-style 
engine for RDF,” In Proc. VLDB, pp. 647–659, 2008. 

[12] C. Weiss, P. Karras, and A. Bernstein, “Hexastore: 
sextuple indexing for semantic web data management,” In 
Proc. VLDB, pp. 1008–1019, 2008. 

[13] M. Schmidt, T. Hornung, N. Küchlin, G. Lausen, and C. 
Pinkel, “An experimental comparison of RDF data 
management approaches in a SPARQL benchmark 
scenario,” In Proc. ISWC, pp. 82–97, 2008. 

[14] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A benchmark for 
OWL knowledge base systems,” Web Semantics 3(2), pp. 
158–182, 2005. 

[15] P. Boncz and M. Kersten, “MIL primitives for querying a 
fragmented world,” VLDB Journal, 8(2), pp. 101–119, 
1999. 

[16] X. Wang, S. Wang, P. Du, and Z. Feng. “Storing and 
indexing RDF data in a column-oriented DBMS,” In Proc. 
DBTA, pp. 46-49, 2010. 

 
 

 Xin Wang was born in Tianjin, China, in 
1981. He received his Ph.D. degree in 
Computer Science from Nankai University, 
Tianjin, China, in 2009. 

He is an Assistant Professor of School of 
Computer Science and Technology at Tianjin 
University, Tianjin, China, since July 2009. 

His representative publications include: “Storing and indexing 
RDF data in a column-oriented DBMS” (In Proc. of the 2nd 
International Workshop on Database Technology and 
Applications, 2010), “Efficient XPath evaluation using a 
structural summary index” (In Proc. of the 1st International 
Conference on Computer Science and Software Engineering, 
2008), and “Towards an incremental approach to validation of 
native XML databases” (Journal of Computational Information 

Systems, 2007). His current research interests are semantic data 
management and database implementation. 

Prof. Wang is a member of Association for Computing 
Machinery (ACM) and China Computer Federation (CCF). 

 
 

Shuyi Wang was born in Tianjin, China, in 
1982. He received his Master's degree in 
Computer Science from Tianjin University, 
Tianjin, China, in 2007. 

He is a Ph.D. candidate of Business School 
at Nankai University since July 2008. His main 
publications include: "Storing and indexing 

RDF data in a column-oriented DBMS" (In Proc. of the 2nd 
International Workshop on Database Technology and 
Applications, 2010), "SVM-Based Models for Predicting 
WLAN Traffic" (in Proc. of the IEEE 2006 International 
Conference on Communications, 2006), "Throughput Analysis 
of IEEE 802.11-based Ad hoc Networks in Presence of Selfish 
Node Networks" (In Proc. of International Symposium on 
Information Technologies and Communications, 2006) . His 
current research interests are competitive intelligence and 
information management.He is an Assistant Professor of the 
School of Computer Science and Technology, Tianjin 
University, Tianjin, China, since January 2010. His current 
research interests are bioinformatics and machine learning. 

Mr. Wang is a student member of Association for Computing 
Machinery (ACM) and China Computer Federation (CCF). 

 
 

Pufeng Du was born in Tianjin, China, in 1983. 
He received his Ph.D. degree in Control Theory 
and Engineering from Tsinghua University, 
Beijing, China, in 2010. 

He is an Assistant Professor of the School of 
Computer Science and Technology, Tianjin 
University, Tianjin, China, since January 2010. 

His current research interests are bioinformatics and machine 
learning. 

Prof. Du is a member of Association for Computing 
Machinery (ACM) and China Computer Federation (CCF). 

 
 

Zhiyong Feng was born in Inner Mongolia, 
China, in 1965. He received his Ph.D. degree in 
Machinery Manufacturing from  Tianjin 
University, Tianjin, China, in 1996. 

He is a Professor and Vice-president of the 
School of Computer Science and Technology, 
Tianjin University, Tianjin, China. His current 

research interests are knowledge engineering service computing 
and security software engineering. 

Prof. Feng is a member of Association for Computing 
Machinery (ACM) and China Computer Federation (CCF). 

 


