
I.J.Modern Education and Computer Science, 2011, 2, 51-60
Published Online April 2011 in MECS (http://www.mecs-press.org/)

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 2, 51-60

A Scheme for Evaluating XML Engine on
RDBMS

Guannan Si, Zhengji Zhou, Nan Li, Jing Xu, Jufeng Yang
College of Information Technical Science

Nankai University
Tianjin, China

sign@mail.nankai.edu.cn

Abstract— There are an increasing number of DBMS
vendors thinking of integrating XML data management into
traditional relational database, with wider use of XML. In
this case, a comprehensive evaluation methodology is
needed to evaluate the XML engine in RDBMS correctly. In
this paper, we analyze the characteristics of XML engine
and propose an evaluation strategy of XML engine in a
RDBMS. We believe that the evaluation should include
functional evaluation and performance evaluation, and
cover several major aspects of DB such as storage, query
and update. Then we designed an evaluation scheme for the
XML engine in RDBMS according the strategy. The scheme
describes an evaluation scene and contains a data set,
workload and index set. The data set reflects the
characteristics of both data-centric and document-centric
XML data. The workload covers all of the requirements of
XQuery in W3C. The index set covers the aspects of storage,
indexing, query and update. In the end, we complete an
experiment to test an actual computer system using the
proposal. The result shows that the proposal is proper.

Index Terms—DBMS; XML; W3C; XQuery; Evaluation

I. INTRODUCTION
XML (Extensible Markup Language) is becoming a

standard format for representing and exchanging data with
the development of software communicating via the
Internet. There are a great number of XML documents
that are created by wide application of XML in more and
more area. To manage large-scale XML documents
effectively has been a research subject crying out for
solutions in database research.

The best way to manage a large number of XML data
is to store them into databases. Two main types of
databases are promoted to manage XML data: Native
XML databases and XML-Enabled databases. Native
XML databases, like Software AG Tamino, Apache
Xindice and Wolfgang Meier eXist, are tailored to XML
requirements and thus promise performance benefits and
improved support for specific XML requirements. They
have a storage scheme and a query engine suited for XML,
which can manage XML naturally. But the most important
problem of Native XML databases is that they must
reimplement many fully-fledged theories and technologies
which have been researched and practiced for more than
thirty years in field of database, such as storage
management, transaction management, lock management,

backup and recovery management, etc. On the other hand,
XML-Enabled databases, typically relational databases,
such as DB2, SQL Server, Oracle, provide extensions for
transferring data between XML documents and
themselves. Such databases are generally designed to
store and retrieve data-centric XML documents. For these
systems, XML management modules are integrated with
relational databases in order that they can support existed
relational data and additional XML data, which will make
XML databases more useful applications.

For this reason, a number of database vendors, such as
IBM, Oracle, Microsoft, are committing themselves to
develop the technology of integrating XML engine with
RDBMS, in order to describe XML data model and reuse
existing system module. Nowadays, many new products
have supported XML as well as XPath/XQuery language
and SQL/XML: 2003 standard in various ways.

It is inevitable that special evaluation methods are
used to assess the integrated XML module of RDBMS,
with the development of XML engine in RDBMS and the
requirement of XML data increasing. In this paper we
propose an evaluation scheme according to characteristics
of XML engine on RDBMS, and prove usability of the
scheme.

The rest of the paper is structured as follows: in the
next section we briefly discuss related benchmark work.
We describe the design of the evaluation scheme in
Section 3. In Section 4 we use the proposal to test a real
system and analyze the result. Finally, we indicate the
current directions that we are pursuing in Section 5.

II. RELATED WORK
Benchmark is an accepted method and standard of

assessing performance characteristics of computer in IT
industry. It is the act of running a computer program, a set
of programs, or other operations, in order to assess the
relative performance of an object. It is normally
implemented by running a number of standard tests and
trials against it.

There are many benchmarks for RDBMS, like the
widely used family of TPC benchmarks. But all the
elements of these benchmarks including data and
workload are based on RDBMS, which is unavailable for
XML databases. As XML data is widely used, many

52 A Scheme for Evaluating XML Engine on RDBMS

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 2, 51-60

benchmarks for XML databases have been proposed, such
as: XMark[1], XOO7[2], XBench[3], XMach-1[4],
TPoX[5], XPathMark[6], MBench[7], MemBeR[8]. They
assess XML databases in various aspects.

XMarch-1 is a web-based multi-user benchmark for
XML data management. Its database contains a directory
structure and XML documents. Its query set is made up of
a mix of XML queries and update operations for which
system performance is determined. XMark is a single-user
benchmark. Its database models an Internet auction site. It
provides a more comprehensive set of queries to evaluate
query performance of the system under test. XOO7
derives from OO7, a benchmark for object-oriented
DBMS. Besides mapping the database from OO7, XOO7
also maps the original queries of OO7, and adds some
specific queries for XML database. XBench categorizes
XML databases into four database domains by their
Application characteristics and Data characteristics, and
uses XML Query Use Cases to design separate workloads
for each of them. TPoX is developed by IBM’s DB2
Performance and Development group mainly applied to
their product, DB2. Its scenario is a simplification of a
real-world brokerage application and the workload
consists of a set of queries, inserts, updates, and deletes. In
the benchmarks mentioned previously, XMark, XOO7,
XBench, XPathMark, MBench and MemBeR place more
weight on offering query challenges that are designed
along the lines of XML query algebras, helping to analyze
and improve the underlying query processor. The only
performance metrics of them is response time. These
benchmarks are not enough to evaluate the overall
performance of a full-fledged XML database system.
XMach-1, TPoX are application-oriented benchmarks
which focus on evaluating a complete database system.
More detailed analysis and comparison of the benchmarks
can be found in [9], [10], [11] and hence is not repeated
here.

We find that none of all these benchmarks is designed
for the XML engine in RDBMS. We propose a list of
requirements for a benchmark of XML engine in RDBMS
drawing from our own experience of researching RDBMS,
XML databases and XML engine. Subsequently we
design and implement BenchXE as an attempt to meet
these requirements.

III. DESIGN OF THE SCHEME

A. Evaluation Strategy of XML Engine in RDBMS
A XML engine in RDBMS is a module of RDBMS

that can manage XML data. So the following issues
should be considered, for evaluating the performance of
XML engine in RDBMS correctly.

• Storage management. XML data is semi-
structured. Storage concepts such as tables, rows
and columns are structured. A XML engine
should store both content information and
structure information of XML data in relational
tables nondestructively. When needed, the XML
data, both content information and structure
information should be retrieved from databases
and be reconstructed accurately. So the evaluation

scheme must contain operation of storing,
retrieving and checking XML data.

• Indexing structure. A XML engine should create
various structure indexes based on traditional
indexing structure of RDBMS. These indexes can
be used to locate the nodes which meet the
structural relation indicated quickly. To assess
indexing capability, the evaluation scheme should
have a method to compare throughput of XML
engine with and without indexing.

• Query optimization. A XML engine put XML
data in DBMS environment, and integrates XML
engine in RDBMS seamlessly. On this basis,
Structural Summary Index can play a role in
constructing optimized queries. The evaluation
scheme should design proper queries to evaluate
the query optimization.

• Extending basic SQL grammar, and supplying
XML data management language. A XML engine
should implement SQL/XML, an extension of
SQL standard defined by ISO/IEC 9075-14:2003,
in a relational query module. And it should also
support the statements of embedding
XPath/XQuery in SQL. Queries of the evaluation
scheme should include not only SQL statements
that operate relational data but also
XPath/XQuery statements that operate XML data.

• Update operation and online transaction
processing. For RDBMS, concurrency control
module, being made up of transaction manager
and lock manager, communicates with storage
manager. It ensures the logical correctness when
several transactions update data concurrently. A
XML engine should integrate update operation of
XML data with RDBMS transaction processing
architecture which is fundamentally different in
conceptual model. In this case, the evaluation
scheme should also assess capability of update
operation.

B. Evaluation Scene
The key criteria of a database benchmark are domain-

specific, relevant, portable, scalable and simple. Meeting
the key criteria, we design an evaluation scene that
simulates a literature management system. The evaluation
scene is shown in Fig. 1.

Figure 1. evaluation scene

 A Scheme for Evaluating XML Engine on RDBMS 53

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 2, 51-60

We often search articles we need by various document
retrieval systems, so we can comprehend their
characteristics of data and process. For simplicity we
decided not to simulate all real-world application logic.
But the system is representative in all the aspects of data,
transactions and XML schema. The system can be
recognized from data set, workload and index set.

• Data set. Data set is made up of data information.
Data information defined in the system includes
user information, order information, literature
information and literature content. User
information, order information and literature
information are data-centric XML data. Literature
content contains a lot of XML documents which
are document-centric XML data.

• Workload. Workload comprises four types of
system function: user management, literature
management, literature retrieval and order
management. They simulate common functions of
the system.

• Index set. When the literature management
system is running on a SUT (system under test), a
set of data can be record. These data are the index
to assess performance of the SUT. They constitute
the index set.

All these three parts of the evaluation scheme are
presented in detail in next sections.

C. Design of Data Set
XML documents are characterized to two classes:

data-centric documents and document-centric documents.
Data-centric documents are documents that use XML as a
data transport. They are characterized by fairly regular
structure, fine-grained data, and little or no mixed content.
They are designed for machine consumption. Examples of
data-centric documents are sales orders, flight schedules,
scientific data, and stock quotes. Document-centric
documents are documents that are designed for human
consumption. They are characterized by less regular or
irregular structure, larger grained data, and lots of mixed
content. They are usually written by hand in XML or
some other format, such as RTF, PDF, or SGML, which is
then converted to XML. Examples of document-centric
documents are books, email, advertisements, and almost
any hand-written XHTML document.

A XML engine can operate both data-centric
documents and document-centric documents. So, data set
of the evaluation scheme also includes these two classes
of documents. The data set contains entities of User,
Category, Order, Databases and Literature. There are
references between entities, for example, Order has
references of Database, Category and User. They are
database--id, category—id and user—id elements. Fig. 2
shows the hierarchy of entities. The figure doesn’t show
attributes of entities due to limited space.

Figure 2. hierarchy of entities

User, Database, Category and Order are simulated
data-centric documents that are generated by the schema,
as Fig. 2 shows. For instance, Order shows the
characteristic of data-centric XML data because of regular
structure and the focus of data recording. The
characteristic of document-centric XML data is mainly
shown by Literature entities. Contents of Literature
entities are real data which are obtained in various ways
(e.g. real XML documents like websites content, books of
digital library and DBLP documents from internet). All of
the documents are organized to the format that we need.
So the whole data set can have the characteristics of both
data-centric XML data and document-centric XML data.
We believe that the data set can reflect the characteristics
of XML data properly.

D. Design of workload
The workload is defined according to the W3C

standard. Each of the statements embodies some features
of XML data processing, so that the statement set can
cover all the functionalities that are necessary for XML
engine.

1) Queries
We design fourteen queries. Each query performs

certain functionality. Constants in statements are
generated randomly, for example “32655062” in Q4.
Queries are listed as follows:

Q1: Return user information by id, including
databases and categories that he orders.

54 A Scheme for Evaluating XML Engine on RDBMS

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 2, 51-60

Retrieving detail information by id is to verify a XML
engine is able to preserve the identity of items. Listing a
list of databases and categories is a validation of
collections operation. Querying several elements
according to references among User, Order, Database and
Category elements can test that a XML engine is able to
combine related information from different parts of a
given document or from multiple documents. All of the
requirements are defined in XQuery standard.

Q2: Return all of users who order a category (e.g.
agriculture).

This query uses references among Category, Order
and User entities to verify that a XML engine is able to
traverse intra- and inter-document references.

Q3: List databases that are order by a user, and the
results should be separated by certain delimiters.

This query is to verify that a XML engine is able to
express simple conditions on text, including conditions on
text that spans element boundaries. In XQuery, this
requirement is satisfied by the ability of the string ()
function to return the text content of an element, including
text within sub-elements.

Q4: Judge the existence of databases that have more
than 32655062 literatures.

This query is to verify that operations on collections of
a XML engine include support for existential quantifiers.

Q5: Judge if all the databases have more than
32655062 literatures.

This query is to verify that operations on collections of
a XML engine include support for universal quantifiers.

Q6: List all the categories of a level and all of their
immediate children categories.

This query is to verify that a XML engine supports
operations on hierarchy of document structures. The
hierarchy of elements in input documents should be
preserved in results. Additionally, the function of intra-
documents is tested by this query.

Q7: List first author of every literatures.

This query is to verify that a XML engine supports
operations on sequence of document structures. The XML
engine need not only retrieve the certain item from a
sequence of document structures, but also return a result
with correct sequence.

Q8: Calculate quantity of orders, the total amount for
the date, maximum amount, minimum amount and
average amount of a date (e.g. 2005-7-22).

This query is to verify that a XML engine is able to
compute summary information from a group of related
document elements (This operation is sometimes called
"aggregation"), and sort query results

Q9: Nested query for new orders that are subscribed
by users who have the account balance of 2981.

A nested query is constructed. Its sub query is used as
an operand to verify that a XML engine supports

expressions in which operations can be composed,
including the use of queries as operands.

Q10: List users who have no order.

If a user has no order, database and category elements
of the User entity are both NULL. Therefore, all operators,
including logical operators, should take NULL values into
account. It is verified that a XML engine include support
for NULL values.

Q11: Return information of a database by database
name.

A XML engine should be able to operate on literal
fragments of an XML document such as

 <name><first>Joe</first><last>Doe</last></name>.

This query constructs a XML literal fragment that
contains database name. The literal fragment is used as a
condition to be compared with information in database.
The query tests performance of a XML engine to operate
literal fragment.

Q12: Create a function that receive user id and date
and return information of an eligible order.

A XML engine should support the use of externally
defined functions. The interface to such functions should
be defined by the XML engine, and should distinguish
these functions from functions defined in query language.
It means that the implementation of externally defined
functions is not part of the query language. This query
defines a simple query, and put it in a user-defined
function. It can test extensibility of the XML engine.

Q13: Calculate number of users for each age group.

A XML engine should provide access to information
derived from the environment in which the query is
executed, such as the current date, time, locale, time zone,
or user. The function is tested by a query which contains
a condition that system time minus birthday of a user.

Q14: Retrieve literatures that include a certain key
word (e.g. customer).

This query is to verify that a XML engine supports
full-text search.

2) Insert, Update, Delete
There are five update/delete/insert statements defined

in this paper.

U1: Update a user’s account balance by user id when
he orders something.

This update is to verify that a XML engine is able to
change the properties of existing nodes while preserving
their identity. The XML engine should also be able to
create a new copy of a node with a specific set of changes
and change the value returned by the typed-value
accessory for a node.

U2: Delete <new—order> tag after executing an order.

This update is to verify that a XML engine is able to
delete nodes. The XML engine should also be able to
modify some of the properties of a node such as the name,
type, content, knelled, base-URI, etc.

 A Scheme for Evaluating XML Engine on RDBMS 55

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 2, 51-60

U3: Insert child categories into a category.

This update is to verify that a XML engine is able to
insert new nodes in specified positions.

U4: Update database and category of a user after his
subscribing.

This update is to verify that a XML engine is able to
replace a node according to certain condition. The XML
engine should also be able to compose update operators
with other update operators.

U5: Update the category that a user orders by a
received parameter.

This update is to verify that a XML engine provides a
means to parameterize update operations. Updating
functions and external variables are both used to
parameterize update operations.

TABLE I. MAPPING BETWEEN WORKLOAD STATEMENTS AND
W3C REQUIREMENTS

Requirements Statements
Supported Operations Q1, Q2
Text and Element Boundaries Q3
Universal and Existential Quantifier Q4, Q5
Hierarchy and Sequence Q6, Q7
Combination Q1, Q2
Aggregation Q8
Sorting Q8
Composition of Operations Q9
NULL Values Q10
Structural Transformation Q3, Q6, Q7
References Q2, Q6
Identity Preservation Q1
Operations on Literal Data Q11
Operations on Names Q3, Q6
Extensibility Q12
Environment Information Q13
Full-Text Search Q14
Locus of Modifications U1
Delete U2
Insert U3
Replace U4
Changing Values U1
Modifying Properties U2
Conditional Updates U4
Iterative Updates Multi-Statements
Validation Schema Validation
Compositionality U4
Parameterization U5

Table 1 lists the mapping between workload
statements and W3C requirements. It shows that every
requirements of W3C standard can be implemented by a
statement or an operation like schema validation and
concurrent load.

E. Design of the index set
The index set can be used for evaluating functionality

and performance of a XML engine. It covers the aspects
of storage, indexing, query and update, as Table 2 shows.

TABLE II. DESIGN OF INDEXES

Evaluation
Interests

Evaluated
Functions

Indexes

Storage
ability

Storage of XML data
in RDBMS

Time cost of loading data
Space cost of loading data

XML index structure Time cost of indexing
Space cost of indexing
Time cost of index
maintenance

Query
ability

Coverage of query
functionality

Coverage of all the
requirement

Ability of basic
query: simple query
to values, attributes,
etc.

Response time with secondary
index
Response time without
secondary index
Response time with schema
Response time without
schema

Ability of complex
query: optimization
of structural join
algorithm in XML
query

Response time with secondary
index
Response time without
secondary index
Response time with schema
Response time without
schema

query optimization Time cost and space cost of
secondary index

Update
ability

Coverage of update
functionality

Coverage of all the
requirement

Basic update ability Response time with schema
Response time without
schema

Ability of
concurrency control

Transaction rollback rate
Transaction waiting time
Transaction response time
System throughput
Occupancy rate of system
resources

Incremental
validation of large
scale XML
documents

Response time with schema
Response time without
schema

The main interests of the index set are storage ability,
query ability and update ability of a XML engine. Each
interest evaluates some functionalities of the engine. The
storage ability evaluates performance of storage and index
functionalities. The query ability evaluates performance of
simple query, complex query and query optimization. The
update ability evaluates performance of common update,
concurrency control and incremental validation of large
scale XML documents. The performance of functionalities
is shown by some indexes. It means that we use some
indexes to evaluate performance of the XML engine in
each aspect. For example, indexes of transaction rollback
rate, transaction waiting time, transaction response time,
system throughput and occupancy rate of system
resources are used to evaluate ability of concurrency
control. The function is an aspect of update ability of a
XML engine.

F. Workload mix
We design three types of workload mix: update (write

only), query (read only) and mixture (read-write). They
are made up of selections from statements mentioned
above. All the workloads assess performance of the
system at different concurrency and amount of data.
Testers can compare the performance of different XML
databases by analyzing their results.

• Update: Large scale XML documents are inserted
into Literature as initial data. The amount of data
can be changed according to hardware

56 A Scheme for Evaluating XML Engine on RDBMS

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 2, 51-60

configuration. And then, five update/delete/insert
statements are executed in different stages in
order to simulate various concurrent operations.
The update workload is mainly to assess storage
ability and update ability of a XML engine.

• Query: It has fourteen query statements that are
mentioned above. The statements have same
weight, and can be executed in different
concurrency. The purpose of this workload is to
assess query ability of a XML engine by an
incremental concurrency.

• Mixture: There are 70% query statements and
30% insert/update/delete statements in the
workload mix. And 20% update, 40% delete and
40% insert statements constitute the
insert/update/delete set. The mixture workload is
to evaluate overall performance of a XML engine
by an index of throughput.

G. Usage of the scheme
In this section, we present process of the scheme. The

process is shown in Fig. 3.

Figure 3. process of the scheme

The process is divided into two main stages:
functional evaluation and performance evaluation. And

there are several relational steps before or after each stage,
as Fig. 3 shows.

The scheme should be deployed to a C/S system. The
server is a RDBMS with the XML engine called SUT.
The client simulates concurrent operation of many users.
It may be multiple terminals or a terminal of multi-process.
After deployment of the C/S system, the database is
created in the server according to schema of the data set.
And the workload is installed to the clients. It is
implemented by SQL with XML extensions. Table 3
shows an example. The implement of other statements are
shown in appendix.

TABLE III. IMPLEMENT U3 BY SQL WITH XML EXTENSIONS

The data set is inserted into the database in the server

for testing. Before evaluation, the database should be
backed up for reuse. After all of the preparation above,
every statements of the workload are executed one after
another for functional evaluation. The evaluation can
verify the XML function coverage of the XML engine.
During the evaluation, the indexing ability can also be
assessed by comparing response time of the XML engine
with and without index. Performance evaluation is after
functional evaluation. The query workload, update
workload and mixture workload are executed respectively.
During the evaluation, the indexes of the XML engine can
be recorded for performance assessment. After the
evaluation, the database should be restored for next round
of evaluation.

IV. A CASE STUDY
We test an actual computer system using the proposal

described before. The server is equipped with 1.6GHz
Inter Pentium Dual processor and 1GB of main memory;
operating system is Ubuntu9.10; DBMS is DB2 V9.7. We
use Toxgene data generator to produce instance
documents for User, Category, Order and Databases
schemas. Every document is between 1KB and 10KB in
size. And the documents of Literature are real XML
documents from DBLP, UW XML Repository, Chinese
Web Information Retrieval Forum and RSS of some
Chinese websites. And the size is between 100KB and
10MB. Scale of initial data is shown in table 4.

Update c_category
set cateinfo = xmlquery('copy $newinfo := $CATEINFO
modify do insert <category><name>new
category</name><literatures></literatures></category>
into $newinfo/category/categorys
return $newinfo')
where xmlexists('$CATEINFO/category[@id=1]');

 A Scheme for Evaluating XML Engine on RDBMS 57

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 2, 51-60

TABLE IV. SCALE OF INITIAL DATA

Size Documents
User Orders Databases Category Literature

10MB 600 3,000 5 500 6,000
100MB 6,000 30,000 10 1,000 60,000
1GB 60,000 300,000 20 2,000 600,000
10GB 600,000 3,000,000 40 4,000 6,000,000

Literature entities are document-centric data, so they
take up the majority of data size. The Database and
Category entities take up little size, and they are used to
maintain data of Literature. So, when Literature multiplied
by 10, Database and Category multiplied by 2.

Fig. 4 and Fig. 5 show a part of the test result. We
select these figures intending to explain the correctness of
this proposal.

Fig. 4 shows response time of update workload. We
execute the statements of update workload in half an hour
randomly, and record their average response time. We
learn the characteristics of all statements from Fig. 4: U3
and U5 are simple statements, and they only operate one
entity, so they have the shortest response time. U1 and U2
are also simple statements, but both of them involve two
entities, therefore their response time is longer. Similarly,
because that U4 deals with four entities, and it’s the most
complex, it needs the longest response time. Consequently,
the proposal is correct from the point of statement.

Figure 4. response time of update workload

We run query workload and mixture workload at
concurrency of 20, 30, 50, 75 and 100 users respectively,
and show throughput of system at various concurrencies
in Fig. 5. We can see that the maximum throughput come
out when the concurrency achieve 75. The throughput of
query workload is 591 and that of mixture workload is
408, and they will never increase with the raise of
concurrency, because that the system reach its utmost.
Additionally, throughput of mixture workload is much
lower than that of query workload. The reason is that
executing write and read transaction may cause deadlock
and rollback, this reduce the whole throughput of system.
Accordingly, the proposal is proper from not only the
point of whole workload but also the point of whole
system.

Figure 5. throughput of system at various concurrencies

V. CONCLUSION AND FUTURE WORKS
In this paper we propose an evaluation scheme of

XML Engine in RDBMS. This evaluation scheme
includes test scene, data set, workload and index set. Its
statements have functions that cover all the criterion of
XQuery of W3C. It focuses on the assessment of storage,
query and update, and considers the aspect of both
function and performance. Then we use the proposal to
test an actual computer system. The testing result
manifests that the proposal is correct. However there is
still something that should be improved. How to optimize
the data manipulating statements to reduce the impact of
the application on testing result is our future work.

APPENDIX: IMPLEMENT OF STATEMENTS

Q1:

xquery

for $y in db2-fn:
xmlcolumn('C_USERS.USERINFO')/user

for $d in db2-fn:
xmlcolumn('C_DATABASES.DATABASEINFO')/datab
ase

where $y/@id =2

and $y/databases/database/id = $d/@id

return ($y ,$d/name)

Q2:

xquery

for $y in db2-
fn:xmlcolumn('C_USERS.USERINFO')/user

where $y//name = 'Agriculture'

order by $y/@id

return

58 A Scheme for Evaluating XML Engine on RDBMS

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 2, 51-60

<user>{$y/firstname/text()}</user>

Q3:

xquery let $u := db2-
fn:xmlcolumn('C_USERS.USERINFO')/user

let $d := db2-
fn:xmlcolumn('C_DATABASES.DATABASEINFO')/dat
abase

where $u/@id = 3 and $u/databases/database/id = $d/@id

return (fn:string-join(($d/name),'------'))

Q4:

xquery

some $x in db2-
fn:xmlcolumn('C_DATABASES.DATABASEINFO')/

database/literature_count satisfies $x>3265506

Q5:

xquery

every $x in db2-
fn:xmlcolumn('C_DATABASES.DATABASEINFO')/

database/literature_count satisfies $x>3265506

Q6:

xquery

for $s in db2-
fn:xmlcolumn('C_CATEGORYS.CATEINFO')/category

return(($s/name),($s/categorys/category/*[1]))

Q7:

xquery

for $lit in db2-
fn:xmlcolumn('C_LITERATURES.LITERATUREINFO')
/literature

where $lit/@id = 61

return $lit/authors/author[1]

Q8:

xquery

let $a := for $t in db2-
fn:xmlcolumn('C_ORDERS.ORDERINFO')/order

where $t/datetime = '2005-7-22'

return $t

return (

<count>{fn:count($a/amount)}</count>,

 <sum>{fn:sum($a/amount)}</sum>,

<max>{fn:max($a/amount)}</max>,

<min>{fn:min($a/amount)}</min>,

<avg>{fn:avg($a/amount)}</avg>

)

Q9:

xquery

for $u in db2-
fn:xmlcolumn('C_USERS.USERINFO')/user

for $o in db2-
fn:xmlcolumn('C_ORDERS.ORDERINFO')/order

where $u/balance = 2981.82 and $o/user_id = $u/@id

return $o

Q10:

xquery

for $u in db2-
fn:xmlcolumn('C_USERS.USERINFO')/user

where (fn:empty($u/databases))

return $u

Q11:

xquery

for $d in db2-
fn:xmlcolumn('C_DATABASES.DATABASEINFO')/dat
abase

where $d/name = " The full text of Chinese doctoral thesis
database "

return $d

Q12:

create function findOrder(id integer)

returns table(orderinfo xml)

specific findorder

begin atomic return select * from c_orders where
xmlcast(xmlquery('$c/order/user_id' passing
ORDERINFO as "c") as integer)=id; end

select * from table(findOrder(3245))

drop function findOrder

Q13:

xquery <age>

<kid>

{count(for $i in db2-
fn:xmlcolumn("C_USERS.USERINFO")/user

where year-from-date(current-date())-year-from-
date(xs:date($i/birthday/text()))<10

return $i)}

</kid>

<teenager>

{count(for $i in db2-
fn:xmlcolumn("C_USERS.USERINFO")/user where
year-from-date

(current-date())-year-from-
date(xs:date($i/birthday/text()))>=10

 A Scheme for Evaluating XML Engine on RDBMS 59

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 2, 51-60

and year-from-date(current-date())-year-from-
date(xs:date($i/birthday/text()))<20 return

$i)}

</teenager>

<middleage>

{count(for $i in db2-
fn:xmlcolumn("C_USERS.USERINFO")/user where
year-from-date

(current-date())-year-from-
date(xs:date($i/birthday/text()))>=20

and year-from-date(current-date())-year-from-
date(xs:date($i/birthday/text()))<50 return

$i)}

</middleage>

<elder>

{count(for $i in db2-
fn:xmlcolumn("C_USERS.USERINFO")/user where
year-from-date

(current-date())-year-from-
date(xs:date($i/birthday/text()))>=50 return $i)}

</elder>

</age>

Q14:

xquery for $i in db2-
fn:xmlcolumn('C_LITERATURES.LITERATUREINFO')
/literature

where contains($i/keywords,"customer")

return $i/title/text()

U1:

update c_users

set userinfo = xmlquery('

 transform

 copy $newinfo := $USERINFO

 modify do replace value of
$newinfo/user/balance

 with $newinfo/user/balance+10.00

 return $newinfo')

where xmlexists('$newinfo/user[@id=1]'passing
c_users.userinfo as "newinfo");

update c_users

set userinfo = xmlquery('

 transform

 copy $newinfo := $USERINFO

 modify do replace value of
$newinfo/user/balance

 with $newinfo/user/balance+10.00

 return $newinfo')

where 1=xmlcast(xmlquery('$newinfo/user/@id'passing
c_users.userinfo as "newinfo") as integer);

U2:

update c_orders

set orderinfo = xmlquery('copy $newinfo := $c

 modify do delete $newinfo/order/new_order

 return $newinfo' passing c_orders.orderinfo as
"c")

where xmlexists(' $m/order[@id=1]' passing
c_orders.orderinfo as "m");

U3:

update c_categorys

set cateinfo = xmlquery('copy $newinfo := $CATEINFO

 modify do insert <category><name>new
category</name><literatures></literatures></category>

 into $newinfo/category/categorys

 return $newinfo')

where xmlexists('$CATEINFO/category[@id=1]');

U4:

update c_users

set userinfo = xmlquery('copy $newinfo := $USERINFO

 modify

 let $dbs:=db2-
fn:xmlcolumn("C_ORDERS.ORDERINFO")/order[@id=
1]/databases

 return

 (do replace $newinfo/user/databases with $dbs)

 return $newinfo')

where xmlcast(xmlquery('$u/user/@id' passing
c_users.userinfo as "u") as integer)=xmlcast(xmlquery('let
$id:=db2-
fn:xmlcolumn("C_ORDERS.ORDERINFO")/order[@id=
1]/user_id

 return $id') as integer);

select * from c_users where
xmlexists('$USERINFO/user[@id=2429]')

U5:

create procedure putneworder(in iuser_id bigint,

 in idatabse_id bigint,

 in icate_id bigint,

 in iamount DECIMAL (5, 2))

LANGUAGE SQL

BEGIN declare i_xml xml; declare itime
timestamp;declare ino bigint;set ino=1; set itime=current
timestamp; set i_xml

60 A Scheme for Evaluating XML Engine on RDBMS

Copyright © 2011 MECS I.J. Modern Education and Computer Science, 2011, 2, 51-60

=XMLDOCUMENT(XMLELEMENT(name
"order",XMLCONCAT(XMLELEMENT(name
"user_id",iuser_id),XMLELEMENT(name
"database_id",idatabse_id),XMLELEMENT(name
"category_id",icate_id),XMLELEMENT(name
"amount",iamount),XMLELEMENT(name
"datetime",itime),XMLELEMENT(name
"new_order",ino)))); insert into c_orders(orderinfo)
values(i_xml);end

drop procedure putneworder

call putneworder(10002,2,3,2.00)

select * from c_orders where
xmlexists('$ORDERINFO/order[user_id=10002]')

values(current date)

values(current timestamp)

REFERENCES
[1] Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu and R.

Busse: “XMark: A Benchmark for XML Data Management”,
Proceedings of the International Conference on Very Large Data
Bases (VLDB), pp 974-985, August 2002.

[2] S. Bressan, G. Dobbie, Z. Lacroix, M. L. Lee, Y. G. Li, U.
Nambiar: “XOO7: Applying OO7 Benchmark to XML Query
Processing Tools”, Proceedings of the ACM International
Conference on Information and Knowledge Management (CIKM),
November 2001.

[3] B. Yao, M. T. Özsu, and J. Keenleyside: “XBench - A Family of
Benchmarks for XML DBMSs”, Proceedings of EEXTT 2002 and
DiWeb 2002, LNCS Vol. 2590, pages 162-164.

[4] T. Böhme, E. Rahm: XMach-1: “A Benchmark for XML Data
Management”, Proceedings of German database conference
BTW2001, pp 264-273, Springer, Berlin, March 2001.

[5] Matthias Nicola, Irina Kogan, Rekha Raghu, Agustin Gonzalez,
Berni Schiefer, and Kevin Xie, “An XML database benchmark:
transaction processing over XML (TPoX)”. IBM Corporation,
June 2008.

[6] M. Franceschet, “XPathMark - an XPath benchmark for XMark
generated data”, International XML Database Symposium
(XSYM), Trondheim, Norway, pp 129-143, August 2005.

[7] K. Runapongsa, J. Patel, H. Jagadish, Y. Chen, and S. Al-Khalifa.
The Michigan Benchmark: A Microbenchmark for XML Query
Processing Systems. In Proceedings of EEXTT, pages 160–161,
2002.

[8] L. Afanasiev, I. Manolescu and P. Michiels: “MemBeR: A Micro-
benchmark Repository for XQuery”, XML Symposium (XSym)
2005.

[9] J. Gray: The Benchmark Handbook. Morgan Kaufmann, San
Mateo, CA, 1993.

[10] L. Afanasiev and M. Marx: “An analysis of the current XQuery
benchmarks”, Experimental Evaluation of Data Management
Systems (EXPDB), 2006.

[11] T. Böhme et al: “Multi-User Evaluation of XML Data
Management Systems with XMach-1”, LNCS Vol. 2590, 2003.

Guannan Si was born in Shandong, China, in
1981. He received the M.S. degree in software
engineering from Shandong University, Jinan,
China, in 2008.

He is currently a PhD candidate at Nankai
University, Tianjin, China. His research interests
are software engineering and software evaluating
technology.

Zhengji Zhou was born in Shandong, China,
in 1985. He received the B.E. degree in
Information Security from Central South
University, Changsha, China, in 2009.He is
currently working toward the M.S. degree in
Computer Software and Theory at Nankai
University, Tianjin, China.

His research interests include software
engineering, software testing and information security.

Nan Li received the B.E. degree in Software
Engineering from Tianjin University, Tianjin,
China, in 2009. He is currently working toward
the M.S. degree in Computer Application
Technology at Nankai University, Tianjin, China.

His research interests are software engineering
and software testing.

Jufeng Yang received the PhD degree in
control theory and engineering from Nankai
University in 2009.

Presently, he is an assistant professor of
Nankai University in the institute of machine
intelligence. His research fields include software
engineering, pattern recognition and computer-
human interaction.

Jing Xu received the PhD degree in control
theory and engineering from Nankai University
in 2003.

Presently, she is a professor of Nankai
University in the institute of machine
intelligence. Her research fields include
software engineering, software testing and
information technology security evaluation.

Prof. Xu is a member of China computer federation, software
engineering technical committee.

