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Abstract—We present a new criterion to determine the 
stability of polynomial with real coefficients. Combing with 
the existing results of the real and negative roots 
discrimination, we deduced the explicit conditions of 
stability for any real polynomial with a degree no more than 
four. Meanwhile, we discussed the problem of controls 
system stability and inertia of Bezout matrix as the 
applications of the criterion. A necessary and sufficient 
condition to determine the stability of the characteristic 
polynomial of the continuous time control systems was 
proposed. And also, we discussed a pathological case of the 
bilinear transformation, which can convert the stability 
analysis of a given discrete time system to the corresponding 
continuous time system, and brought forward an alternative 
one.  
 
Index Terms—Hurwitz polynomial, stability, control system, 
inertia of Bezout matrix. 
 

I.  INTRODUCTION 

Let ( ) 1
0 1 1...n n

n nf a a a aω ω ω ω−
−= + + + +       (1) 

is a polynomial of degree n  with real coefficients, then it 
is said to be a stable or a Hurwitz polynomial if and only 
all its roots lie in the open left half of the complex plane. 

i.e. ( ) 0 Re 0f ω ω= ⇒ < .  

The well-known Routh-Hurwitz Theorem provides a 
powerful tool to check if a real polynomial is stable or not. 

The Routh-Hurwitz Criterion. (See [1].) The 
polynomial (1) is stable if, and only if, the following 

inequalities holds: 1 20, 0,..., 0n∆ > ∆ > ∆ > , where 
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usually, ( )1,2,...,k k n∆ = named as the Hurwitz 

determinant. Whereas the inequalities 

( )0 1,2,...,k k n∆ > =  can be simplified when all of the 

coefficients of polynomial (1) are positive. The relative 

result was deduced by Li nard and Chipart in 1914. 

The Li nard-Chipart Criterion. (See [2].)Consider a 

real polynomial
1 2

1 2( ) ...n n n
nf x x c x c x c− −= + + + + , it 

is stable if and only if the one of following cases holds: 

(1) 2 1 30, 0,...; 0, 0,...n nc c −> > ∆ > ∆ >  

(2) 2 2 40, 0,...; 0, 0,...n nc c −> > ∆ > ∆ >  

(3) 1 1 30, 0,...; 0, 0,...n nc c −> > ∆ > ∆ >  

(4) 1 2 40, 0,...; 0, 0,...n nc c −> > ∆ > ∆ >  

Polynomial stability problems of various types arise in 
a number of problems in mathematics and engineering. 
We refer to [1, Chapter 15] for deep surveys on the 
classical stability theory and [3,4,5,6,7] of recent results. 

In this paper, we present a new criterion for 
determining the Hurwitz polynomial.  

The rest of this paper is organized in the following 
ways with the next section stating the main result. And 
also, we present some computation examples; deduce the 
explicit criterion for stability of real polynomials with 
degree no more than four, which is expressed by 
polynomials in the coefficient of the given polynomial. 

In section III, two problems are discussed as the 
application of our criterion. The first problem is relative 
to the stability of the control system. In classical theory of 
control systems stability analysis, determining the 
stability of a given discrete time system can be converted 
to the stability of the corresponding continuous time 
system through a bilinear transformation. We introduced 
a necessary and sufficient condition to determine the 
stability of the characteristic polynomial of the 
continuous time control systems in subsection A. In 
subsection B, we discussed a pathological case of the 
bilinear transformation used widely, and brought forward 
an alternative one. The second problem, which is relative 
to the inertia of Bezout matrix, was discussed in 
subsection C. An algorithm named as INER was brought 
forward.  

II.  A CRITERION  FOR HURWITZ POLYNOMIALS 
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A.  Criterrion  

Without loss of generality, supposed that the real 

polynomial ( ) 1
1 ...n n

nf a aω ω ω −= + + +  is monic. We 

construct ( ) ( ) ( ) ( )1 2, ,f f x iy f x y i f x yω = + = + ⋅ , and 

get two real polynomials ( ) ( )1 2, , ,f x y f x y .  

Let ( )1 ,f x y and ( )2 ,f x y  be expressed respectively as 

follows: 

( ) 1
1 0 1, ...k k

kf x y y yα α α−= + + + ,                (3) 

( ) 1
2 0 1, ...m m

mf x y y yβ β β−= + + + ,              (4) 

Where ,k m n≤ , 2 1k m n+ = −  and ,i jα β  are all the 

real polynomial with variable x . It is not difficult to 
verify the changes of 

0 0,α β  according ton . 

Table 1 the changes of 
0 0,α β  according to n  

n  2 3 4 5 

0
α  -1 

1
3a x− −  1 

1
5a x+  

0
β  

1
2a x+  -1 

1
4a x− −  1 

n  6 7 8 … 

0
α  1 

1
7a x− −  1 … 

0
β  

1
6a x+  -1 

1
8a x− −  … 

Then we compute the resultant of ( )1 ,f x y  and 

( )2 ,f x y  with respect to y , denoted by ( )1 2, ,res f f y  

marked (5). 
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，，  (5) 

The following lemma gives the relation between the 

real roots of ( )1 2, ,res f f y  and the x − coordinates of the 

solutions of ( )PS Polynomials System : 

( ) ( ){ }1 2, 0, , 0f x y f x y= =                        (6) 

Lemma 1. (See [8].) In general, ( )1 2, ,res f f y  is a 

polynomial in x  whose roots are the x − coordinates of the 
solutions of PS . According to the classical result from 
Algebra, it is well known: 

Lemma 2. (See [9].)  ( )1 2, , 0res f f y = if and only if 

( )1 ,f x y  and ( )2 ,f x y  have a common factor in [ ],x y¡ , 

or
0 0 0α β= = . 

Let ( )1,lc f y and ( )2 ,lc f y , which are all the 

polynomials with real coefficients in x , be the leading 

coefficient of the polynomial ( )1 ,f x y  and ( )2 ,f x y  in y . 

And also we denote the greatest common factor of 

( )1,lc f y  and ( )2 ,lc f y  by ( )1 2,xGLC f f . Obviously, 

( )1 2,xGLC f f  is a polynomial in x , too. 

Theorem 1.  Denote the number of distinct real roots 

of ( )1 2, ,res f f y and ( )1 2,xGLC f f by µ and m , 

respectively, and the numbers of distinct x − coordinates 
of the solutions of PS  byγ , then mγ µ= − . Especially, 

if ( )1 2, 1xGLC f f = , then we haveγ µ= . 

Proof.  It is obvious according to Lemma 1 and 
Lemma 2. 

Denote the set of distinct x − coordinates of the 

solutions of PS  by ( )xZero PS , the distinct roots of 

( )1 2, ,res f f y  by ( )( )1 2, ,Zero res f f y , and the distinct 

roots of ( )1 2,xGLC f f  by ( )( )1 2,xZero GLC f f .  

In general, ( ) ( )( )1 2, ,xZero PS Zero res f f y⊆ .From 

Theorem 1 it is easy to see that: 

Corollary 1.  ( ) ( )( )1 2,x xZero PS Zero GLC f f∪ =   

( )( )1 2, ,Zero res f f y . 

Denote the distinct real roots of ( )1 2, ,res f f y and the 

distinct negative real roots of ( )1 2, ,res f f y  by l  and m , 

respectively. Then we deduce the main result in following: 

Theorem 2. ( ) [ ]f H fω ∈  if and only if 0l m= ≠ . 

Proof. Firstly, 0l m= ≠  implies all the real roots of 

( )1 2, ,res f f y  are negative. Secondly, according to table 

1, ( )1 2, 1xGLC f f = . Combining corollary 1, we deduce 

that ( ) ( )( )1 2, ,xZero PS Zero res f f y= . Thus, all of the 

roots of polynomial ( )f ω  have negative real part. That is 

to say ( ) [ ]f H fω ∈ . 

B.  Explicit condition of stability for any real polynomial 
with degree no more than four 

In this subsection, we will deduce the explicit 
condition of stability for any real polynomial with a 
degree no more than four. According to Theorem 2, it is 
important to analyze the number of distinct real roots and 
distinct negative real roots of a real polynomial. Let’s 
introduce the relative results from [10], [11] and [12]. 

Definition 1. Given a polynomial with real coefficients 

( ) ( )0
0

0
n

n i
i

i

f x a x a−

=

= ≠∑ ,                 (7) 

The following ( ) ( )2 1 2 1n n+ × +  matrix is called the 

discrimination matrix of and denoted by ( )Discr f .



40 A Criterion for Hurwitz Polynomials and its Applications  

Copyright © 2011 MECS                                                                           I.J.Modern Education and Computer Science, 2011, 1, 38-44 

 

0 1 2

0 1 1

0 1 1

10 2

1 20

0 1 1

0 1 2

( 1)

0 2

( 1)0

n

n

nn

nn

n

n

n

a a a a

na n a a

aa a a

ana a

a aa a

na n a a

a aa a

−

−

−−

−

 
 

− 
 
 
 
 
 
 
 
 
 −
 
 

L

L

L

L

L L

L L

L

L

L

     (8) 

Definition 2. Let
2k kD d= for 1, 2,...k n= , We called 

n − tuple ( ) ( ) ( ){ }1 2, ,... nD f D f D f  the discrimination 

sequence of polynomial ( )f x . 

Definition 3. By{ }1 2 2 1, ,..., nd d d +
denote the principal 

minor sequence of ( )Discr f , we call the 2n − tuple 

{ }1 2 2 3 2 2 1, ,..., n nd d d d d d +
the negative root discrimination 

sequence, and denote it by ( ). .n r d f . 

Definition 4. We call ( ) ( )1 2{ , ,...,sign D sign D  

( )}nsign D  the sign list of a given sequence ( )1{ ,D f  

( ) ( )2 ,... }nD f D f , where ( )sign ⋅ is a sign function. 

Definition 5. Given a sign list  [ ]1 2, ,..., ns s s , we 

construct its revised sign list, [ ]1 2, ,..., nt t t , as follows: 

1) if 
1, ,...,i i i js s s+ +

    is a section of given list, where 

1 10 0 0i i i j i js s s s+ + − +≠ = ⋅⋅ ⋅ = = ≠， ， , then we replace the 

subsection 1 2 1[ ]i i i js s s+ + + −⋅ ⋅ ⋅， ， ，  by the first terms of 

[ ]i i i i i i i is s s s s s s s− − − − ,⋅ ⋅ ⋅ .， ，， ， ， ，，  

2) Otherwise, let k kt s= , i.e. no changes for the others. 

Lemma 3. Given a polynomial ( )f x with real 

coefficients, if the numbers of the sign changes of the 

revised sign of  ( ) ( ) ( ){ }1 2, ,... nD f D f D f  is µ , then the 

number of the pairs of distinct conjugate imaginary roots 

of ( )f x equals to µ . Furthermore, if the number of non-

vanishing members of revised sign list is l , then, the 

number of the distinct real root of ( )f x  equals 2l µ− . 

Lemma 4. Let { }1 2 2 1, ,..., nd d d +
 be the principal minor 

sequence of ( )Discr f , the discrimination matrix of 

polynomial ( )f x  with ( )0 0f ≠ . Denote the number of 

sign changes and the number of non-vanishing members 

of revised sign of sequence { }1 2 2 3 2 2 1, ,..., n nd d d d d d +
by µ  

and 2m , respectively. Then, the number of distinct 

negative roots of ( )f x  equals to 2mµ − . 

According to the Lemma 3 and Lemma 4, we can give 
the explicit condition to describe the number of the 
distinct real roots and the negative roots.  

Let us consider the following polynomial with real 
coefficients. All the computations are made with the 
Computer Algebraic System MAPLE14. 

( ) 2
1 1 2f a aω ω ω= + +  

( ) 3 2
2 1 2 3f a a aω ω ω ω= + + +  

( ) 4 3 2
3 1 2 3 4f a a a aω ω ω ω ω= + + + +  

Using the method discussed above, it is not difficult to 
establish the explicit criterion for stability, which is 
expressed by polynomials in the coefficient of the given 
polynomial. 

1) ( ) [ ]1f H fω ∈  if and only if 
1 20, 0a a> > . 

2) ( ) [ ]2f H fω ∈  if and only if 
1 1 2 3 30, , 0a a a a a> > > . 

3) ( ) [ ]3f H fω ∈  if and only if 2
1 1 3 2 40, 4a a a a a> + −  

2 2
1 2 3 1 4 3 40, 0, 0a a a a a a a> − − > > . 

III.  APPLICATIONS 

A.  The stability of control system 

The stability analysis is one of the most important 
aspects in the design of control systems. A discrete time 
system is called stable if all the zeros of the system 
characteristic polynomial lie in the unit circle. There are 
some methods to check the stability of a given discrete 
time system [13][14]. However, in some cases, instead of 
direct analysis on the discrete time system, it is more 
convenient to perform stability analysis on an equivalent 
continuous time system. The stability of a continuous 
time system is determined by the root locations of the 
system characteristic polynomial with respect to the 
imaginary axis, the system being stable if and only if all 
roots lie in the open left half complex plane. The 
characteristic polynomial of a discrete time system is 
called Schur stability if the corresponding discrete system 
is stable, and the same as Hurwitz stability of a 
continuous system characteristic polynomial. There exist 
also many methods to check the stability of a given 
continuous time system [1][2][15]. Using a bilinear 
transformation, the determination of Schur stability can 
be converted to the determination of Hurwitz stability of 
an equivalent polynomial. As a matter of convenience, 

we marked ( ) [ ]f z S f∈ if ( )f z  being Schur stability, 

and ( ) [ ]g w H g∈  if ( )g ω being Hurwitz stability. 

Now we can describe our algorithm for determining 
the Hurwitz stability of the characteristic polynomial of a 
continuous time system as follows. The correctness of the 
algorithm is guaranteed by the above discussion. Without 
loss of generality, we assume that the polynomials in 
following algorithm have no multiplicative roots. 
Otherwise, we may use the algorithm [11][16] to 
determine the multiplicities of real roots for a given 
polynomial. 

Step 1. Input the monic polynomial ( )f ω , and then 

obtain the polynomial ( )1 ,f x y and ( )2 ,f x y  by acting the 

substitution x i yω = + ⋅  upon ( )f ω . 
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Step 2. Compute the resultant ( )1 2, ,res f f y , and then 

analysis the distinct real roots of ( )1 2, ,res f f y , which 

denoted by l , by using Lemma 3. Analysis the distinct 

negative real roots of ( )1 2, ,res f f y , which denoted bym , 

by using Lemma 4. 
Step 3.  Deduce the conclusion by the Theorem 2. 
Our method has been implemented by using Computer 

Algebraic System MAPLE14 for numerical and algebraic 
manipulations. The following example illustrated our 
approach. 

Example 1. Consider the determination of Hurwitz 
stability of the following continuous time polynomial 

( ) 3 1f ω ω ω= − + .                                (9) 

It is not difficult to deduce that 2l =  and 1m = . Thus, 

according to Theorem 2, the polynomial ( )f ω  is not 

Hurwitz stability. That is to say, the corresponding 
continuous time system is not stable. 

Example 2. Consider the determination of Hurwitz 
stability of the following polynomial 

( ) 4 3 22.16 0.42 6.58 0.42 2.16f ω ω ω ω ω= − + − + .   (10) 

2l =  and 0m = . According to Theorem 2, ( )f ω  is 

not Hurwitz stable. 
Example 3. Consider the determination of Hurwitz 

stability of the following polynomial 

( ) 8 71.70396616 4.49238296 12.29115880f ω ω ω= + + ⋅

                 6 5 416 93754704 22 042 34384ω ω ω+ . + . +  
3 216 93754704 12 29115880ω ω. + . +  

4 49238296 1 70396616ω. + . .                          (11) 

2l m= = . According to Theorem 2, ( )f ω  is Hurwitz 

stable. 

B.  The pathological case of the bilinear transformation 

Denote  

                       ( ) ( )
1

1
1

n
g f

ω
ω ω

ω

+ 
= − 

− 
,                    (12) 

Then ( ) [ ]f z S f∈  if and only if ( ) [ ]g w H g∈ . 

However, there exists a pathological case while using 
bilinear transformation to determine the Schur stability 
via the Hurwitz stability.  

Considering the following discrete-time polynomial: 

Example 4. 3 2( ) 1 21 0 20 0 41f z z z z= − . − . + .  

Using the bilinear transformation 

                            ( ) ( )1 1z ω ω= + − ,                          (13) 

We obtain 

( ) ( )
3 21

1 0 76 5 64 1 6
1

w
g w f w w w

w

+ 
= − = . + . + . 

− 
.      (14) 

It has two real roots 

1 0.2954505652w = − ,
2 7.125602066w = − . 

Thus, ( ) [ ]g w H g∈ , furthermore, ( )f z  [ ]S f∈ . 

However, the above polynomial ( )f z  has a root at 1z = , 

which leads to non-Schur stability. Indeed, there exist 

much more examples verifying the pathological case 

while the discrete time polynomial has a root at 1z = . 
Let us introduce an alternative transformation without 

any question. 
Given a polynomial with real coefficients 

( ) ( )0
0

0,1,2,..., ; 0
n

n i
i

i

f z a z i n a−

=

= = ≠∑ .        (15) 

Using the transformation 

( ) ( )2 21 1z ω ω ω ω= + + − + ,                  (16) 

Then we get the polynomial 

( ) ( ) ( )2
0 1

n
g gω ω ω ω= − + ,                 (17) 

Where

( ) ( )2 2 1
0 1 2... , 0,1,2,..., 2m m

m jg b b b b j mω ω ω −= + + + ∈ =¡

and  m n≤ . 
Let x iyω = + , which leads to 

( ) ( )

( ) ( )

22 22 22

2 2 22 2 2

1 212

1 1 2

x x y xy y

x x y xy y
z

ω ω

ω ω

+ + − + ++ +

− + − + − + −
= = .             (18) 

Denote ( ),g x y as the expression when the numerator 

minus the denominator of (18), it is easy to simplify that  

( ) ( )2 2, 4 1g x y x x y= + + .                      (19) 

Combining (18) and (19), we obtain the following 
result 

1) ( )1 , 0 0z g x y x ω< < <É É É  lies in the 

open left half plane; 

2) ( )1 , 0 0z g x y x ω= = =É É É  lies in the 

imaginary axis; 

3) ( )1 , 0 0z g x y x ω> > >É É É  lies in the 

open right half plane. 
According to the discussion above, we obtain the 

following theorem. 
Theorem 3. The transformation (16) maps the 

imaginary axis to the unit circle and vice versa, the open 
left half plane to the inside of unit circle and vice versa, 
the open right half plane to the outside of unit circle and 
vice versa.  

Theorem 4. ( ) [ ] ( ) [ ]f z S f g H gω∈ ∈É , where 

the definitions of ( )f z and ( )g ω  are the same as 

mentioned above. 
According to Theorem 4, determining the stability of 

a given discrete time system can be converted to the 
stability of the corresponding continuous time system 
through the transformation (16). 

Now, we reconsider example 4. By using (16), we 
obtain  

( ) 5 4 3 20.76 5.64 3.12 5.64 0.76g ω ω ω ω ω ω= + + + +  

Obviously, ( )0 0g = , thus ( ) [ ]g H gω ∉ . According to 

Theorem 4, ( ) [ ]f z S f∉ . 

Example 5. Consider the determination of Schur 
stability of the following discrete time polynomial 

( ) 2 0.05 1.21f z z z= − + .                        (20) 
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Using the transformation (16), we have  

( ) 4 3 22.16 0.42 6.58g ω ω ω ω= − + −  

[ ]0.42 2.16 H gω + ∉ .                       (21) 

Thus, ( ) [ ]f z S f∉ . 

Example 6. Consider the determination of Schur 
stability of the following discrete time polynomial 

( ) 4 3 20.338 0.28006 0.0800038f z z z z z= + + + +  

0.00590236                                             (22) 
Using the transformation (16), we have  

( ) 8 71.70396616 4.49238296g ω ω ω= + +  

6 512.29115880 16.93754704ω ω+ +  
4 322.04234384 16.93754704ω ω+ +  
212.29115880 4.49238296ω ω+ +  

1.70396616                                            (23) 
The above polynomial has four pairs of conjugate 

imaginary roots which are all own negative imaginary 
part. As a result, the corresponding continuous time 
system is stable. Thus, the discrete time system 
considered is stable, too. 

C.  The inertie of Bezout matrix 

Let ( )u x  and ( )v x  be two polynomial in integer 

domain of degree n  and m , n m≥ , respectively, 

( )
0

n
i

i
i

u x u x
=

= ∑ , ( )
0

m
i

i
i

v x v x
=

= ∑ , ( ), 0n mu v x ≠ . 

A n n×  Bezout matrix ( ),
n n

i jB b ×= ∈¢  associated 

with ( )u x  and ( )v x   is defined by  

1 1
,

, 1

( ) ( ) ( ) ( ) n
i j

i j
i j

u x v y u y v x
b x y

x y
− −

=

−
=

−
∑ .           (24) 

The entries of B  can recursively be computed by 
means of the formula  

, 1 1,i j i j i j j ib b u v u v+ += + − ,                     (25) 

Complemented with the initial conditions
,0 1,i n jb b += =  

0 . This rule clearly shows that the entries of B  are 

polynomials of degree 2 in the coefficients of ( )u x  and 

( )v x . 

Definition 6. (See [17][18].) The inertia of Bezout 
matrix B is defined by a triple 

( ) ( ) ( ) ( )( ), ,In B B v B Bπ δ= ,              (26) 

where ( ) ( ),B v Bπ and ( )Bδ are, respectively, the 

numbers of Eigen values of B  with positive, negative, 
and zero real parts.  

It is well known that all the classical tools for 
investigation of the roots of algebraic equations, such as 
the Sturm theorem and continued-fraction criteria, can be 
proved purely algebraically by computing the inertia of 
Hankel and Bezout matrices associated with suitable real 

polynomial  ( )u x  and ( )v x  of degree n  and less than n , 

respectively[19][20]. In [20], the authors solved certain 
classical zero-location problems with the help of the 
inertia of Bezout and Hankel matrix. 

In [18], the author revealed the relation between the 

inertia of Bezout matrix associated with ( )u x and ( )v x  

and the signs of leading coefficients of every quotient in 
quotient sequence generated by using Euclidean scheme 

to real polynomials ( )u x and ( )v x . 

In [21] the evaluation of the inertia of real Bezout 
matrix is obtained by computing a block LDL t 
factorization where L is a lower triangular matrix with 
unit diagonal entries and D is a block diagonal matrix. By 
Sylvester’s law[19], the factorization preserves the inertia, 
moreover, the diagonal blocks in D are themselves 
Hankel matrices , so their inertia can be computed by 
direct inspection using a set of rules given by Iochvidov’s 
rule[22]. However, it is difficult to control the growth of 
coefficient s in these algorithms. 

A fast and fraction-free procedure for computing the 
inertia of Bezout matrix was presented in [23], and also it 
derived the new method to determining the numbers of 
different real roots and different pairs of conjugate 
complex roots of a polynomial with integer coefficients. 
Yet it depends on a fast method to determine the signs of 
the leading coefficients of every quotient in quotient 
sequence generated by applying Euclid’s algorithm. 

In this section, based on the discussion and results in 
section II, we proposed a new method to compute the 

inertia of Bezout matrix with polynomials ( )u x  and 

( )v x .  

Algorithm: INER 

    Input: two polynomials ( )u x  and ( )v x  with integer 

coefficients. 
    Output: the inertia of Bezout matrix associated with 

( )u x  and ( )v x . 

Step 1. Compute the Bezout matrix B  associated with 

( )u x  and ( )v x  according to the formula (24), then get 

characteristic polynomial ( )f ω  of it. Using the 

transformation x iyω = +  upon ( )f ω , we can get two 

bivarate polynomials ( )1 ,f x y  and ( )2 ,f x y denoted by 

(3) and (4), respectively.  And also, we can deduce 

the ( )1,lc f y , ( )2 ,lc f y and ( )1 2, ,res f f y  mentioned 

above. 
Step 2. Analysis the numbers of zero solution of 

( )1 2,xGLC f f  and ( )1 2, ,res f f y , denoted by 
1,0n and

2,0n , 

respectively.  
Step 3.  Let  

( )
( )

( ) ( )( )( )1 2

1 2

,

1 2 1 2

,

gcd , , , ,

x

f f

x x

GLC f f
GLC x

GLC f f diff GLC f f x
=

  Compute the number of distinct negative roots, denoted 

by
1,n −

, by using Lemma 4 to ( )1 2,xGLC f f . Applying 

Lemma 3, we can obtain the number of distinct roots of 

( )1 2,xGLC f f , denoted by µ . Then, the number of 

positive roots is 
1,nµ −− , denoted by 

1,n +
. 

Step 4. Let  
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( )
( )

( )( ) ( )( )1 2

1 2
,

1 2 1 2

, ,

gcd , , , , , ,
f f

res f f y
res x

res f f y diff res f f y x
=

Then, 
2,n +

 and 
2,n −

 will be obtained, when we apply the 

same method of Step 3 to the polynomial ( )
1 2,f fres x . 

Step 5. Compute the inertia 

( )2, 1, 2,0 1,0 2, 1,, ,n n n n n n+ + − −− − − . 

Our method has been implemented by using the 
routines by MAPLE14 for numerical and algebraic 
manipulations. The following two examples illustrate our 
approach. 

Example 4. (See [24].) Let us consider the 4 4×  
Bezout matrix B associated with the polynomials  

( ) 3 43 4 8u x x x= + + ,                   (27) 

and 

( ) 21 2 4v x x x= + + .                      (28) 

We find that the Bezout matrix associated with ( )u x  

and ( )v x  is  

6 12 4 8

12 4 16 16

4 16 32 32

8 16 32 0

− − 
 −
 
 
 
 

.              (29) 

And the characteristic polynomials is  

      ( ) 4 3 230 1848 3008 176128f ω ω ω ω ω= − − − + .   (30) 

Using transformation x iyω = + , we get the following 

polynomials: 

( ) ( )4 2 2
1 , 6 90 1848f x y y x x y= + − + + +  

4 3 230 1848 3008x x x x− + − +  

176128 ,                                             (31) 
and 

       ( ) ( ) 3
2 , 40 30f x y x y= − + +  

( )3 24 90 3696 3008x x x y− − − .        (32) 

It is obviously that
1, 1,0 1, 0n n n+ −= = = , and the 

polynomial ( )
1 2,f fres x   may get as following: 

4 2 3( 176128 3008 1848 30 )x x x x+ − − − ⋅  
6 2 5( 32848 2625780 45x x x x− − − +  

3 424345 249 5223856)x x− − ⋅           (33) 

It is not difficult to show that
2, 2, 2n n+ −= = ,

2,0 0n = .  

Thus we have that the inertia is ( )2,0,2 , which the 

same as the result in [24]. 
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