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Abstract—Activation of how and where arithmetic 
operations are displayed in the brain has been observed in 
various number-processing tasks. However, it remains 
poorly understood whether stabilized memory of Boolean 
rules are associated with background knowledge. The 
present study reviewed behavioral and imaging evidence 
demonstrating that Boolean problem-solving abilities 
depend on the core systems of number-processing. The core 
systems account for a mathematical cultural background, 
and serve as the foundation for sophisticated mathematical 
knowledge. The Ebbinghaus paradigm was used to 
investigate learning-induced changes by functional magnetic 
resonance imaging (fMRI) in a retrieval task of Boolean 
rules. Functional imaging data revealed a common 
activation pattern in the left inferior parietal lobule and left 
inferior frontal gyrus during all Boolean tasks, which has 
been used for number-processing processing in former 
studies. All other regional activations were tasks-specific 
and prominently distributed in the left thalamus, bilateral 
parahippocampal gyrus, bilateral occipital lobe, and other 
subcortices during contrasting stabilized memory retrieval 
of Boolean tasks and number-processing tasks. The present 
results largely verified previous studies suggesting that 
activation patterns due to number-processing appear to 
reflect a basic anatomical substrate of stability of Boolean 
rules memory, which are derived from a network originally 
related to the core systems of number-processing. 
 
Index Terms—stability, core system, Boolean rule, stabilized 
memory, fMRI 
 

I.  INTRODUCTION 

Memory stability, the ability to retain the past 
information and to influence future results [1], is thought 
to be due to the persistence of memory information, but 
remains flexible in face of environmental perturbations 
[2]. In an educated human, experiential knowledge could 
provide the foundation for an integration with 
stability-based processing of numbers. Much of advanced 
mathematics is built on basic number-processing skills, 
which is thought to be supported by a distributed network 
of various brain regions, including fronto-parietal (for a 
review, e.g., [3]) and other areas associated with various 
tasks [4]. A wealth of neuroimaging data [5-7] has 
revealed that activity in the fronto-parietal areas 
correlates with task rules in number-processing, which 

was measured either by retrieving a pure arithmetic fact 
or by calculating a memorized multi-fact task [8]. 
Therefore, core systems may serve to process concepts or 
facts, independently of non-numerical or numerical 
symbols. Nevertheless, the basic ability to calculate 
numerical tasks cannot fully explain the extent of human 
mathematical skills. During learning of advanced 
mathematics, a large set of unique human skills emerge, 
which provide a person with the ability to understand 
abstract mathematical rules (such as Boolean rules and 
integral calculus) and perform mathematical operations 
based on core systems of number. 

The present study had two objectives – namely to 1) 
determine cortical activation during retrieval of Boolean 
rules associated with number-processing cognition, and 2) 
to locate the core systems of stabilized memory within 
the brain, in particular, which regions of the brain 
exhibited evidence of the process sources of 
mathematical thinking. The answers to these questions 
will provide a greater understanding for the relationship 
between stable mathematical memory and background 
knowledge. One particular challenge is how to 
distinguish between stable memory and memories 
resulting from memory-related effects. Exact 
small-number calculations in adult number-processing 
systems, for example, are processed differently from 
number-based calculations, a process which allows for 
immediate and accurate retrieval. Stability has been 
proposed to depend on systems that represent and track 
small-number processing [9, 10]. Exact small-number 
arithmetic (arithmetic facts) relies on visuospatial 
representation and linguistic competence [6, 11]. 
Arithmetic facts with stability, such as multiplication 
tables, use linguistic representation, which has been 
associated with memory and sequence execution [12]. 
Moreover, multiplication problems could be solved by 
retrieving the rule strategy from long-term memory, like 
decomposing a problem into smaller facts in counting 
[13]. To overcome the complexities of studying stable 
memory, Boolean rules were used, which differed only in 
the signs expressed. These stimuli are advantageous, 
because they retrieve memory strategies along a single 
dimension. 
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In the present study, according to Ebbinghaus’ 
memory paradigm [14] and the theory of working 
memory capacity[15], the effects of memory stability of 
Boolean rules based on background knowledge, as well 
as the relationship between Boolean rules and core 
systems of number-processing, were investigated. 
Specifically, the possibility of estimating the same 
regions of brain activation patterns for core mathematical 
thinking was analyzed. For each problem of the seven 
kinds of rules in Table 1[16], a set of problems, such as 
P↑Q→P were presented during a 1-week training period 
(Fig. 1B). Training success was measured in decreasing 
reaction times and error rates. The first two kinds of rules 
in Table 1 served as background knowledge. In a 
subsequent fMRI session (day 7), trial retrieval consisted 
of the last five kinds of rules (every kind of rule contains 
4 expressions) in Table 1 (Fig. 1C). Two hypotheses are 
possible. First, it was assumed that the time-dependent 
learning utility had crucial influence, and simultaneously, 
that extensive and repetitive training for the rules in Table 
1 should lead to similar modifications of brain activation. 
Second, it was assumed that characteristics inherent to the 
last five kinds of rules in Table 1 determine the 

acquisition process extensive and repetitive training 
should be based on number-processing and lead to an 
identical core of activation patterns. Based on previous 
studies [9, 10], these predictions could be applied to 
Boolean rules. Trained rules exhibited identical activation 
in the left parietal and left inferior frontal regions, and 
serve to process the simple arithmetic operations 
(arithmetical facts), while the trained rules exhibited a 
significant focus of activation around the fronto-parietal 
region [12]. These experimental effects have not been 
previously shown. The present study summarized the 
experimental analysis of behavior analysis and then 
reported the fMRI results for the stability of Boolean 
rules association with the core systems of 
number-processing. 

TABLE I.  BOOLEAN RULES 

C1  C2   AND   OR   IMP    EQU   NAND   NOR   XOR 
P   Q    P∧Q   P∨Q  P→Q   P←→Q   P↑Q    P↓Q   P▽Q 
0    0     0      0     1       1       1       1      0 
0    1     0      1     1       0       1       0      1 
1    0     0      1     0       0       1       0      1 
1    1     1      1     1       1       0       0      0 

 
Fig. 1. The experimental set-up. (A) Experimental scheme. (B) Training scheme. (C) Recall test phase. 

 

II.  EXPERIMENTAL PROCEDURES 

A.  Participants 
Eighteen university students (9 females; mean age 

23.2±2.5 years) participated in the study. All participants 

were informed about the procedure and gave written 
consent to participate in the experiment. The study was 
approved by the Ethical Commission of the Xuanwu 
Hospital of Capital Medical University. Six subjects had 
to be discarded from the analysis due to technical 
problems with the unsuccessful data collection (n=5) or 
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excessive motion of the head (n=1). Thus, fMRI image 
analysis is based on the data from 12 participants [16]. 

B.  References Training procedure 
To examine the stable processes underlying 

learning-dependent memory, Boolean arithmetic tasks 
were utilized, with two operator symbols that served as 
trained tasks (Fig. 1B). fMRI test tasks were similar to 
those of adults’ learning artificial Boolean rules [17]. 
Subjects were trained on Boolean tasks until they were 
perfectly mastered. The subjects were tested by fMRI on 
the day before day 1, day 1 and day 7 (Fig. 1A). On the 
practice days, participants took part in seven training 
sessions on consecutive days and were trained on twenty 
Boolean arithmetic problems. Each problem comprised of 
two operator symbols in a set of twenty problems. The 
problem remained visible until the subject finished typing 
the solution. When the problems were presented on a 
computer, subjects entered the answer (1 or 0) using the 
number key on the computer keyboard. Reaction times 
were timed starting with the presentation of the problem 
until the answer was provided. Incorrect (correct) 
response times and average percent correct feedback were 
provided. If accuracy was < 80%, the subjects were tested 
on a new task set. Within a series of behavior 
experimental conditions, the overtime criterion was 14 s. 

During the recall session, fMRI data were acquired. 
Subjects solved 40 Boolean problems (eight problems for 
each rule). Forty tasks were presented to the subject 
during each fMRI session. Stimuli were presented in a 
randomized, non-stationary, probabilistic sequence. 
Elements of each trial were presented in sequential order: 
red fixation star, conditions items of Boolean task, 
Boolean task, and white cross (duration of star, 
conditions, rule, and cross stimuli presentation was 2 s, 2 
s, RT≤6 s, (8+6–RT) s, respectively)[16]. The task 
presentation participants were asked to retrieve the 
correct answer from stable memory, and press “1” or “0” 
on two button boxes using the right index and middle 
fingers (Fig. 1C). Reaction times were obtained for each 
trial. Subsequent to pressing the button, the next trial took 
place following an inter-trial interval. Stable memory 
tasks were assumed to primarily involve the hit retrieval 
of mathematic facts and template knowledge stored in 
long-term memory, without online calculation. Therefore, 
a white cross was utilized as a baseline condition. 

C.  Image acquisition and analysis 
Data acquisition. Imaging was performed on a 

3.0-Tesla Siemens Scanner with a receive-only whole 
head coil. Prior to anatomic imaging, BOLD data were 
acquired by an echo-planar imaging (EPI) sequence and 
with AC-PC (anterior commissure-posterior commissure) 
on the twelfth slice from the bottom. Imaging parameters 
were as follows: slices=30, TR/TE=2000/31 ms, slice 
thickness=4 mm, slice gap=0.8 mm, flip angle=90°, 
FOV=256×256 mm2, matrix= 64×64, 0.8×0.8×4.8mm3 
spatial resolution. For each subject, the fMRI scan during 
run state lasted for 12 min10 s and 362 volumes were 
obtained. In a structural session, whole head T1 weighted 
images were acquired (TR/TE/TI=130/2.89/800 ms, 

slices=30, flip angle=70°, matrix=320×320, slice 
thickness= 4mm, slice gap=0.8 mm, FOV =256×256 mm2) 
in the same position as the functional images. 

Image preprocessing was conducted using SPM2 
package (www.fil.ion.ucl.ac.uk/spm) implemented in 
Matlab 6.5. The first 2 volumes (10 s) of each subject 
were discarded to allow for magnetic saturation effects. 
The remaining 360 functional scans were first corrected 
for differences in slice acquisition time and realigned to 
the first volume to correct for inter-scan movements [18]. 
Movement parameters during spatial realignment were 
not greater than 3 mm and 3° for the more analysis. 

Data analysis. The structural T1-weighted volumes 
were co registered to the mean EPI volume and spatially 
normalized to a standard T1 template in the space of 
Talairach. These normalization parameters of 
normalizing the structural volume were reapplied to the 
T2*-weighted volumes for performing spatial 
normalization. The functional volumes were spatially 
normalized to a standard EPI template. During 
normalization, all volumes were resampled in 3×3×3 
mm3 voxels. Finally, all T2*-weighted volumes were 
smoothed with a 6-mm full width at half-maximum 
isotropic Gaussian kernel after spatial normalization. 

The fMRI data were statistically analyzed using the 
general linear model (GLM) and statistical parametric 
mapping. Since the Boolean tasks were trained in a time 
scheme, including seven different training sessions to 
consolidate rule memory, practice-related changes 
collapsed these trials in a range of seven days as the 
stabilized condition. The explanatory variables 
(stability-based hits, trials of no interest comprising of all 
trials that took longer than 6 s, and intertrial intervals) 
were temporally convolved with the canonical 
hemodynamic response function (HRF) along with its 
temporal derivatives provided by SPM2. Regressor of the 
intertrial interval was used as the explicit baseline 
activation. Temporal filtering was achieved using 
autoregressive modeling (AR1) to model high-frequency 
noise, and a high pass filter was implemented using a 
cut-off period of 128 s in order to remove the 
low-frequency effects from the time series. These 
first-level results from SPM{t} contrast images were used 
in second-level random-effects analyses. At the second 
level, initially a one-sample t-test was calculated with a 
threshold of P < 0.05 (FWE (family-wise 
error)-corrected), and then the cluster-size statistics were 
used as the test statistic applying a threshold of P < 
0.00001 (corrected, minimum cortex volume≥ 80 voxels 
cluster size). This analysis was limited to the brain cortex 
that was active for the stabilized condition. For the 
anatomical location of significant clusters, we 
transformed MNI (Montreal Neurological Institute) 
template Talairach space [19]. The Talairach atlas as 
implemented by the Talairach Daemon [20] was used as 
reference template for corresponding Brodmann’s Areas. 
Finally, we performed a region of interest (ROI) analysis 
in the parietal and the frontal associative cortex volume 
described above, in each of the task conditions compared 
to the average baseline.
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Ⅲ.  RESULTS 

A.  Behavioral data 
Table 2 shows probabilities of correct responses and 

reaction time (RT) for the hit trials of pre-test 
(non-memory), post-test (labile memory) and long-test 
(stabilized memory) in three fMRI Experiments 1 , 2 and 
3 (Fig. 1A). In the study phase, accuracy in detecting 
stability (Boolean rules) was high, with mean rates of 
97.78% in long-test (the stabilized memory test) and 
95.97% in post-term test (the labile memory test). 
Accuracy was not significant different between the 
long-test (stabilized) and post-test (labile). 

Demands may have been relatively greater in the labile 
test (post-test), given that there was a greater need to 
encode the rules. In line with this idea, stability detection 
was significantly less reaction time in long-test (the 
stabilized memory test) than in post-test (the labile 
memory test) (2.35 s vs.1.66 s, respectively, t =4.22, 
p<0.001). 

TABLE II.  MEAN RESPONSE ACCURACIES AND LATENCIES FOR 
RULE RETRIEVAL ON THE REPEAT-THREE-TIMES TASK 

 Response accuracy (%)    Reaction time (s) 
Pre-test 45.00(1.7) 2.39(0.05) 
Post-test 95.97(0.7) 2.35(0.04) 

Long-test 97.78(0.5) 1.66(0.04) 

B.  fMRI data 
FMRI was used to investigate memory stability under 

the condition of known background knowledge. The 
fMRI trail (e.g. P→Q) was simpler than the training trail 
(e.g. P→Q↑P), which took place outside of the scanner 
and expected those operations were manipulated. The 
subject performance task in the fMRI scanner comprised 
the stability effects of over-learning responses, which was 
responsible for the effect observed in Experiment 3 
(Table 3). Note that the regions with activity correlated 
with the fact memory task rule. The subjects were not 
required to understand visual objects, but to rather 
retrieve a rule, which was considered related to 
maintenance, and not calculation, processes. 

Consistent with previous studies [21, 22], memory 
stability-dependent activity was obtained for single 
features of rule representation, as well as retrieval in the 
left inferior parietal lobule and left inferior frontal gyrus. 
Activity in the inferior parietal lobule (Fig.2A) was also 
dependent on stabilized memory for all rules. When the 
core systems of number-processing were compared with 
stable memory of Boolean rules, the activation on the 
same regions was observed within the left inferior frontal 
gyrus (Fig. 2B). When retrieval rules the activation 
regions were obtained within whole brain (Fig. 2C). 

Ⅳ. DISCUSSION 

The result of the stabilized memory was consistent 
with that of the arithmetic facts. Thus, activity in the 
same left inferior parietal lobule, as did the activity in the 

inferior frontal gyrus, which was expected to be a stable 
condition included retention of rule information. More 
importantly, there were additional brain areas showing 
stability-dependent activity when features from the rules 
were maintained. Activity in the inferior parietal lobule, 
which has previously been shown to be advantageous to 
stable memory for tasks defined by strategy and rule, was 
load dependent on memory of symbol representation. 

TABLE III.  REGIONS OF ACTIVATION (IN TALAIRACH SPACE) 
DURING ALL THE RETRIEVAL RULES RELATIVE TO REST (INTERTRIAL 

INTERVAL) 

 Region BA x   y   z z-score voxels
L IFG/Insula 47/13 -33  20   -4 5.88 513 
L Th/PG /27 -21  -35   2 5.51  
L Th/Caudate  -18  -20  15 5.37  
R LN  21   -9    3 5.29 266 
R LN  12   -3   -2 5.19  
R IFG 47 36   20   -9 5.14  
L PoG 2/1 -53  -24  51  5.28 537 
L MFG 6 -33   2   47 5.23  
L IPL/PoG 40/2 -48  -27  43 5.12  

R Posterior 
lobe 18 18  -63  -32 5.24 450 

L/R Declive  0   -74  -16 5.12  
R LG 18 9   -79    1 5.11  
R Culmen  21  -47  -15 5.06 90 

R Declive/FG
/PG 19 27  -59   -7 4.94  

R LG/FG 18,19
/19 24  -70   -4 4.91  

L: left; R: right; BA: Brodmann’s regions; IFG: Inferior frontal gyrus; Th: Thalamus; PG: 
Parahippocampal gyrus; LN: Lentiform Nucleus; IFG: Inferior frontal gyrus; PoG: Postcentral 
gyrus; MFG: Middle frontal gyrus; IPL: Inferior parietal lobule; LG: Lingual gyrus. 

The present study provided evidence that 
experience-dependent stability in human mathematics 
was accompanied by modulations within the network of 
regions recruited during encoding. First, abstract 
mathematical rules, which require stronger retrieval 
capacity, and stress symbolic and concrete depictions 
were linked together in the processing regions, which 
should exhibit larger brain activity in fronto-parietal 
regions compared with number-processing tasks that 
merely induce recall of exact arithmetic facts. These 
regions have been repeatedly observed in response to 
relational numerical calculation tasks in adults [22-24], 
and have been shown display differential activation 
depending on the arithmetic problems [25, 26]. Previous 
lesion and imaging studies of arithmetic operations have 
demonstrated the importance of the inferior parietal 
lobule in arithmetic processing [23, 27]. Exact 
arithmetical facts (e.g., 2+3) are stored and maintained in 
same, but have also been associated with inferior frontal 
[28] and subcortical areas [25]. Second, previous studies 
have demonstrated the contribution of language in the 
retrieval of arithmetic facts [29]. Some studies have 
proposed that the parietal brain circuit is associated with 
language production and comprehension for storing and 
retrieving arithmetic facts [3, 30]. Both hypotheses have 
been verified, including similar modifications of brain 
activation for all trained rules and activation associated 
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with core systems of number. When more response 
regions from these rules were compared with arithmetic 
facts, results confirmed that complex tasks proceed 
through more cognitive steps. Boolean rules vs. 
number-processing tasks previous studies were compared 
with identify common activations. fMRI data suggested 
that the partial cortex interacts with other regions to 
format of stabilized memory, which involved the 
extending of processing of arithmetic facts [22]. 
Although former studies did not compare advanced 
mathematics to basic number-processing, the present 

results suggested that the fronto-parietal regions may 
serve to increase knowledge based on arithmetical facts. 
For example, Fehr et al. [31] suggested that more difficult 
arithmetic problems require combined arithmetic facts, 
which activates the parietal regions [10]. Based on these 
data, Dehaene et al. [6] proposed that the source of 
mathematical thinking composes of linguistic and 
visual-spatial neural circuits, both of which are necessary 
for arithmetic processing. Activation in the left inferior 
parietal [32] and left parietal regions [33] has been shown 
to be activated in number-processing studies. 

 
Fig. 2. (A) Two-dimensional significant activation in the left inferior frontal gyrus (Talairach: x=−33, y=20, z=−4). (B) Two-dimensional significant 
activation in the left inferior parietal lobule (Talairach: x=−48, y=−27, z=43). (C) Three-dimensional rendering of significant cortical activation for 

the random effects group analyses for memory stability of Boolean rules, p <0.00001. 

Only a few studies have explored the relationship 
between rote arithmetic facts and correlative, different 
arithmetic operations. Fehr et al. [31] determined, 
through the use of fMRI, that the inferior parietal and 
inferior frontal was activated by complex arithmetic 
operations, compared with simple arithmetic facts. In 
addition, all complex arithmetic operations tasks and 
simple arithmetic facts exhibited common activation in 
the fronto-parietal regions. The present data indicated that 
rule retrieval tasks also exhibited the left fronto-parietal 
activations, when compared with simple arithmetic facts. 
These results emphasized the importance of background 
knowledge, especially when studies address complex 
mathematical problems. The present results provided 
evidence for memory stability that relies on core systems 
of number during the mental arithmetic in adults. During 
retrieval of Boolean tasks, for which stabilized memory 

was comparable to systems of number-processing, 
identical and different regions were activated. This 
suggested disparate levels and cortices of functional 
maturation in particular brain regions, based on core 
systems of number-processing. Long-term trained 
subjects exhibited activation in the left inferior parietal 
lobule and left inferior frontal gyrus. These areas have 
been consistently activated, with a fixed effected 
statistical map for sustained activity in the core systems 
of number-processing [34], and have been implicated in 
simple number-processing deficits due to fronto-parietal 
lesions [35]. Long-term trained subjects also exhibited 
activation in the left fronto-parietal, which are thought to 
be important for increased automaticity [36]. These 
findings suggested a process of increased stability of the 
left fronto-parietal regions with core mechanism. 
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This study provides background information about 
potential influences on stability-dependent activation, 
which helps to further emphasize the interpretation of the 
present findings. Stability-dependent functional activation 
clearly involved the core systems, which suggested that 
stability-dependent functions appear to be a consequence 
of maturing neural systems. This study provides evidence 
for stable memory in rule-based Boolean arithmetical 
tasks. Because the core systems are the most fundamental 
stable cognitive systems that adults prossess [37], the 
implications of the present findings are potentially 
wide-ranging. Also, images data help to understand the 
interrelationship between background knowledge and 
new arithmetic knowledge, and elucidate “the laws of 
experience-based learning”[38]. 

Ⅴ. CONCLUDING REMARKS 

The aim of the present study was to investigate 
memory stability of Boolean rules in adults, and to 
determine whether these high-level skills accounted for 
performance based on the core systems of number. 
According to the core systems of number described by [4] 
results were consistent with retrieval of arithmetic facts 
[6, 30]. Consistent with our predictions, analysis of the 
behavioral data revealed that adults with stable memory 
performed better than those under the control of instable 
memory rules. Similarly, adults with stable memory 
executed mental arithmetic strategies significantly faster 
and exhibited increasing automation with regard to 
retrieval of arithmetic facts [38]. In conclusion, adults 
with stable memory exhibited the development of 
mathematical fact knowledge, culture background, and 
conceptual understanding, which were not mutually 
exclusive. Based on the model of Feigenson et al.’s [4] 
model, analyses revealed specific associations between 
rule processing and background knowledge. Based on 
previous studies focused on the cultural abilities of 
number-processing, the present results provided a better 
understanding for the origins of some key domains of the 
human mathematic culture. 
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