
I.J.Modern Education and Computer Science, 2010, 1, 9-16
Published Online November 2010 in MECS (http://www.mecs-press.org/)

A High-Performance Communication Service for
Parallel Servo Computing

Cheng Xin, Zhou Yunfei, Hu Yongbin

State Key Lab of Digital Manufacturing Equipment & Technology, Huazhong Univ. of Science and Technology,
Wuhan 430074, P.R. China

Email: amo.hust@foxmail.com

Kong Xiangbin
school of electrical and electronic engineering hubei univ. of technology, Wuhan 430074, P.R. China

Email: 2405210@qq.com

Abstract— Complexity of algorithms for the servo control in
the multi-dimensional, ultra-precise stage application has
made multi-processor parallel computing technology needed.
Considering the specific communication requirements in the
parallel servo computing, we propose a communication
service scheme based on VME bus, which provides high-
performance data transmission and precise synchronization
trigger support for the processors involved.
Communications service is implemented on both standard
VME bus and user-defined Internal Bus (IB), and can be
redefined online. This paper introduces parallel servo
computing architecture and communication service,
describes structure and implementation details of each
module in the service, and finally provides data
transmission model and analysis. Experimental results show
that communication services can provide high-speed data
transmission with sub-nanosecond-level error of
transmission latency, and synchronous trigger with
nanosecond-level synchronization error. Moreover, the
performance of communication service is not affected by the
increasing number of processors.

Index Terms— Communication service, Parallel computing,
VME bus, data transmission

I. INTRODUCTION

In the 65nm twins-wafer-stages Lithography, three 6-
DOF (Degrees Of Freedom) stages exist and more than
40 axles need to be controlled. The complexity of
algorithms has led to the performance requirement
exceeding the capabilities of a single processor; therefore,
multi-processor parallel computing technology is needed
[1] [2]. The parallel servo computing discussed in the
paper has the following requirements on communication
service: (1) in every parallel computing cycle, a large
number of data need to be transmitted among various
processors. The transmission latency must be low and
accurate otherwise its uncertainty will disorder the timing
sequence of parallel servo calculation; (2) Due to the
complex coupling relations in the movements of related
axes, the inconsistent output delay of control command
will damage control model [2][3][12]. Hence, precise
synchronous trigger is required.

MPI (Message passing interface) is a library
specification for message-passing, used widely on certain

classes of parallel machines, especially those with
distributed memory [4]. The study of MPI and its
improvement is relatively richer. However, the
communication service based on MPI suffers from the
following problem: as the number of processors increases,
the data transmission latency will increase significantly
[5-8]; more importantly, only the estimate instead of the
accurate value of the transmission time of a certain data
packet is available and precise synchronous trigger can
not be provided, which means that MPI is not suitable for
communications service for ultra-high precision parallel
servo computing.

Yan Luxin and Zhang Tianxu [10] investigated a "Δ"
type shared memory architecture based on FPGA, which
achieved accurate transmission latency and relatively
high bandwidth among three DSPs. However, the
architecture of this shared memory is extremely complex
when the complexity of transmission requirements
increases (if more DSPs exist in the parallel architecture).

James Kohout and Alan D. George [11] investigated a
ring-type data transmission architecture, in which it
achieved the bandwidth of 320Mbits/S between
neighboring nodes. A problem of this transmission
architecture is that ring size expands with the increasing
number of nodes; even if pipeline operation is adopted to
optimize data transmission, the transmission time of a
certain data packet will still increase with ring size
expanding.

It is also difficult to achieve precise transmission
latency when using TCP or MPI based on Ethernet link
[13] [14], because the uncertainty caused by the upper
layer protocols (such as data congestion, handshaking and
error handling mechanism) makes it difficult to establish
precise data transmission model. Even if the high
communication bandwidth is achieved, synchronization
performance can only achieve 200ns-level [12] or lower,
which will generate intolerant synchronization position
error that may destroy control model when stage is at
high speed.

FPDP (Front Panel Data Port) is probably a good
choice. More details on FPDP are introduced in [16]. The
main drawback with this method is that when redefinition
is needed, all the nodes in the system need

Copyright © 2010 MECS I.J.Modern Education and Computer Science, 2010, 1, 9-16

10 A High-Performance Communication Service for Parallel Servo Computing

reconfiguration. Since no signals are available for
addressing on FPDP, the definition of data transmission
sequence is done before the data transmission starts [16].

Considering the specific need of communication
service, it would be a better choice to adopt hardware
architecture to implement data sending, transmission, and
storage. Once the transmission timing is set, it would be
executed consistently; also both transmission latency and
bandwidth depend only on hardware performances. Such
properties make the data transmission model more
accurate with no extra software overhead. In this paper,
we propose a high-performance communication service
scheme, which provides high-performance data
transmission and precise synchronization trigger support
for multi-DSP parallel computing architecture. We design
IB (Internal Bus) to construct data transmission channel
with high bandwidth and stable transmission performance
by using broadcast transmission. Communication service
is implemented by FPGA (Field Programmable Gate
Array).

II. PARALLEL SERVO COMPUTING ARCHITECTURE AND
COMMUNICATION SERVICE

Parallel computing architecture is designed based on
VME bus, where the upper computer is the only VME
host. On the VME bus, P1connector is defined in the
VME64x specification, while several pins in P2
connector are reserved for users’ definition [15] [17]. IB
has been defined in these reserved pins. Upper computer
can access each processor via standard VME bus (P1) and
IB (P2) has been designed as the high-speed data channel
among the processors. IBMC (Internal Bus Master
Controller) generates bus control signals following the
defined IB timing specification. Under the control of
those signals, IBSC (Internal Bus Slave Controller)
finishes data transmission and generates synchronous
trigger following the defined synchronous timing

specification to synchronize parallel computing of multi-
DSP. VME_Ctrller provides interface to standard
VME64x bus for IBMC, IBSC and DSP. To realize
control and management towards IB, upper computer
configures IBMC via VME interface to define the
“behavior” of IB. The data transmission process on IB
does not involve the participation of DSP software.

The object discussed in this paper is the
communication service composed of VME bus,
VME_Ctrller, IB, IBMC, and IBSC, as shown in dashed
frame in Fig.1. Communication service includes data
transmission and synchronous trigger functions.

Upper
Computer

DSP1

IBMCVME
Ctrller

VME Bus

IBSC VME
Ctrller

FPGA

DSP2 DSPn

Internal Bus (IB)

IBSCVME
Ctrller

FPGA

IBSCVME
Ctrller

FPGA

IBSCVME
Ctrller

FPGA

Communication
Service

Fig.1. Parallel servo computing architecture

Data transmission is implemented on both VME bus
and IB. Data sent by upper computer via VME bus
contain task parameters to DSPs and configuration to
IBMC (or IBSC). Other than sending all the data
simultaneously, the upper computer sends data
successively according to the slave address of each VME
in the address map. Due to handshaking and arbitration
involved in data transmission process on VME bus, it is

Fig.2. Functions of communication service

Copyright © 2010 MECS I.J.Modern Education and Computer Science, 2010, 1, 9-16

 A High-Performance Communication Service for Parallel Servo Computing 11

relatively difficult to calculate precise transmission
latency; moreover, the time difference between data
receiving of different VME slave exists in the data
transmission on VME bus. For these reasons, the data
transmission on VME is defined as relaxed timing
transmission. In contrast, the design for IB transmission
is simple and strict, which happens in every parallel cycle
to implement data exchange among DSPs.

The functions of communication service are described
in Fig.2. Synchronous trigger ensures simultaneous
startup of calculation and simultaneous output of result in
every parallel computing cycle. Trigger 1 is generated at
the moment data transmission sequence begins on IB to
inform DSP that only data-insensitive calculations can be
implemented. Furthermore, the result of previous cycle
will be outputted synchronously under the action of
trigger 1. Trigger 2 is generated at the moment data
transmission ends to start data-sensitive calculation, and
IB remains idle until the end of current parallel
computing cycle. The difference between data-sensitive
and data-insensitive calculation is that for the former, the
access IB data exchange memory is needed, which is not
the case for the latter. For stage has the highest speed at
1m/s and nanometer-level positioning accuracy has been
required [2] [3], synchronous trigger with nanosecond-
level error is required.

Only relaxed timing transmission is implemented on
VME bus during the system initialization, whereas strict
timing transmission is implemented on IB after the
configuration and start up of IBMC. The alternate
appearance of trigger 1 and 2 provides a strict timing
reference for parallel computing. Unavoidably certain
loss of efficiency exists: a DSP has to wait for next
following synchronous trigger to start a new cycle of
calculation after finishing the current one. This is
necessary because otherwise the asynchronous output of
result will damage control model. Moreover, the parallel
cycle time can be reasonably set to reduce efficiency
losses caused by waiting.

According to the previous discussions, four features of
communication service are presented below. (1) High
speed and stable bandwidth are required. (2) Precise data
transmission latency is necessary. For the reason that
data-sensitive calculation starts after the end of data
transmission; if data transmission latency changes
dynamically, it is difficult to ensure that data–sensitive
calculation has been finished in every parallel cycle when
next data transmission begins. For this reason, a strict IB
protocol has been designed to implement stable
performance and uncertain factors such as routing,
congestion and bus arbitration, etc are forbidden. (3) The
length, source and destination addresses of data that are
to be transferred in each cycle are all fixed. In every
parallel servo cycle, only a data transmission sequence
with fixed data length is needed, and every datum in the
sequence has its own IB address and is transmitted
regardless of the actual need in the current parallel
computing cycle. It is indeed a tradeoff - efficiency is
sacrificed for transmitting data that are not used to get
fixed data length in the transmission sequence in return.

Moreover, a “bonus” from this is that every datum in
transmission sequence has its source and destination
address because of its private location in IB address map.
（ 4 ） For stage has the highest speed at 1m/s and
nanometer-level positioning accuracy is required [2] [3],
synchronous trigger with nanosecond-level error is
required. The design of communication service that are
introduced in section 3~5 are based on these 4 features.

III. REALIZATION OF THE COMMUNICATION SERVICE

A. Structure of distributed memory
Distributed memory structure is adapted for data

storage and exchange in parallel computing architecture.
Every DSP has its related distributed memory, which has
been divided into two parts, one for VME bus, and the
other one for IB. DSP accesses the two parts via EMIF
[9]. The memory for IB is discussed in this section. More
details on memory for VME are introduced in [15].

In IBSC, DPRAM (Dual Ported RAM) is used for
Memory (refers to distributed memory for IB, same in
later context) with one port connected to IB, and one
connected to DSP. The depth of Memory is 64K * 32bit,
which is divided into 16 blocks.

 Rules for Memory access are as follow: (1) Every
DSP holds a private memory block whose base address is
related to the number of VME slot where DSP is located.
For example, The DSP2 installed in No.2 slot holds block
at 0x2000-0x2fff corresponding to DSP side address:
0xc000, 8000 - 0xc000, cffc. (2) For its own private block,
each DSP can perform both read and write access; while
for other blocks, only read access is valid. For every
IBSC, definition of Memory is the same and the
responsibility of IB data transmission is to realize the data
exchange between different Memories in different IBSC.
What DSP does is only to write the to-be-exchanged data
into its private Memory block.

B. Definition of IB protocol
IB provides a real-time and fast medium for

transferring data among IBSC. It consists of a 16-bit
address bus, 32-bit data bus and 2 control lines. The
relevant definition is described in table I.

TABLE I.
DEFINITION OF IB SIGNALS

Signals
IBSC

IBMC Description Output
Side

Input
Side

ADD
[15:0]

In In Out
Driven by IBMC.
IBSC uses these address
lines to determine
whether this cycle is to
be a read or a write cycle
for itself.

AEn In In Out
Driven by IBMC.
Indicating that
ADD[15:0] are valid for
low level;

DATA
[31:0]

Out In Not
care

During each IB cycle
these lines are driven by
exactly one IBSC and all
the other IBSCs store
this data into DPRAM;

DTACK Out In
Not
care

Indicating that DATA
are valid for low level;

Copyright © 2010 MECS I.J.Modern Education and Computer Science, 2010, 1, 9-16

12 A High-Performance Communication Service for Parallel Servo Computing

IB is a non-multiplexed synchronous broadcast bus for
the following reasons: (1) although there is no
synchronous clock signal, ADD and AEn signals are both
triggered by the same internal global synchronous clock
(DATA and DTACK are provided by IBSC), and no
handshaking is involved in data transmission; (2) unlike
shared address / data signal lines of multiplexed bus, the
Address and data are given at the same time on separate
address and data signal lines. (3) IBMC provides address
and control signals, and the selected IBSC provides the
data while all other IBSCs stores the data. Considering
the requirement of strict data transmission latency, it is
impossible to adapt complex handshaking protocol to
determine which IBSC is the data sender. ADD and AEn
signals are used to address the data sender (a certain
IBSC). Once the ADD signals are valid (AEn valid), the
identities of sender and receiver are determined.

In every IB cycle, IBMC drives ADD and AEn signals
and IBSC monitors those signals. If ADD [15:12]
matches the number of slot in which IBSC is located, the
current IBSC is selected. Obviously, during each cycle,
there is always exactly one IBSC for sender, which puts
data on the data lines, and then drives DTACK signal to
confirm the validity of data. IBMC is the only IB master,
while the quantity of IBSC is the same as that of DSP.

C. Data exchange among Memory blocks
In each parallel computation cycle, a data transmission

sequence is to realize data exchange among different
Memories. Data transmission sequence is composed of
several IB cycles, and 32-bit data transmission is
implemented in each IB cycle. As discussed above, the
ADD signals in each IB cycle contain the definition of
sender and receiver, so that it can set the data
transmission sequence by setting IB address.

Fig.3 Data transmission sequence

Fig.3 demonstrates a data transmission sequence. The
setting of the sequence depends on the actual data
requirement among DSPs, and can be reconfigured by
setting the relevant registers in IBMC. It is very
important to downsize the sequence because it can
significantly reduce the data transmission time, and
meanwhile increase the ratio of data-sensitive computing
in parallel cycle, which is indeed the efficiency of data
transmission.

Memory before data exchange is shown in Fig.4 (a).
Upper computer stores raw data (or parameters) as the
shared data into locations at address of 0x0000 to 0x0ffff,
and each DSP stores data that are to be shared into its
private block. Fig 4 (b) shows the Memory status when

all defined IB addresses are traversed and data
transmission is completed. All data that are planned to be
transmitted are shared by all DSPs without taking into
account the specific need of a certain DSP. One potential
problem is that, during data transmission, the access of
DSP to its private block may lead to conflict on IB.
Considering the strict timing requirement of IB, once the
conflict happens, transmission failure will occur, which is
undoubtedly unacceptable. Therefore, the DSP
calculation is divided into data-sensitive and data-
insensitive ones. In this way, the access conflict on IB is
effectively avoided.

Fig.4 Memory before and after data transmission

D. Structure of IBSC and synchronous trigger
Fig.5 illustrates the structure of IBSC, and its functions

are described as follow: (1) providing address decoding
function for DSP to access DPRAM, which is
implemented in EMIF_Adapter module; (2) realizing IB
data transmission. After the IB address is validated, BTC
(Bus Timing Controller) will determine whether the IBSC
is a sender or receiver in the current IB cycle, and then
switch the direction of data bus and provide control
signals (Addr, AWEn, AOEn) to execute data sending or
storage; (3) generating an interrupt signal for DSP to
provide synchronous trigger, when a certain IB address is
validated.

Copyright © 2010 MECS I.J.Modern Education and Computer Science, 2010, 1, 9-16

 A High-Performance Communication Service for Parallel Servo Computing 13

DPRAM
DSP Bus

Timing
Ctrl

In
te

ra
l B

us
 (I

B
)

Data_dir
Ctrl

EMIF
Adapter

DATA

DTACK

ADD

AEn

AWEn

AOEn

Addr

Data

AWEn

AOEn

IBSC

EM
IF

In
te

rf
ac

e

Busy

INTn

Data

Addr

Busy
INTx

VME Ctrller

Fig.5. IBSC structure

Conflict caused by simultaneous memory location
access can not be ignored. The common solution is “busy
flag arbitration” provided by DPRAM, which can hold
the later access until the end of the previous access.
However, IB should have a higher priority to preempt the
access of DSP because of the uninterruptible data
transmission on IB. Therefore, the busy signal provided
by DPRAM is not enough to exempt IB data transmission
from conflict, and the solution to this problem is the strict
scheme for Memory access of DSP, as discussed in
section 2.

Synchronous trigger based on IB is an additional
function for specific IB address. Each IBSC provides
synchronous trigger for the associated DSP, and IB data
broadcasting provides an excellent platform to make
triggering with negligible synchronous error possible.
The IB address of 0x0ffe (0x0fff) is chosen as the address
for trigger 1 (2). IBSC monitors address lines, and BTC
generates the INTn signals to interrupt DSP when the IB
address matches the setting, as shown in Fig.5.

Two aspects of the trigger that need address are: (1)
apparently trigger is controlled by IB address, so
triggering time depends on configuration of data
transmission sequence in IBMC. As introduced in section
2, the first and last addresses in the sequence are 0x0ffe
and 0x0fff respectively, and thus trigger 1 and 2 are
generated at the beginning and end of IB data
transmission respectively; (2) Triggering timing is
defined in IBSC by upper computer. Triggering timing
requirement of DSP varies as clock frequency changes, so
it is necessary to adjust the triggering timing during IBSC
initiation to suit for different type of DSP in different
clock frequency.

E. Structure of IBMC and mechanism of reconfiguration
online

Fig.6 illustrates the structure of IBMC. Two types of
data are transmitted to IBMC by upper computer via
VME_Ctrller module - the contents for Addr_FIFO and
configurations of IBMC_Regs. The defined IB addresses
are stored in Addr_FIFO and every IB address
corresponds to an IB cycle while all the IB cycles form
the IB transmission sequence. During every execution of
data transmission sequence, the defined IB addresses are
outputted consecutively until FIFO is empty, then IB

keeps idle until the next execution of sequence, as
described in section 2. IBMC_Regs controls the actions
of IBMC, including control of Addr_FIFO (enable or
clear), definition of IB timing and a base-clock. Base-
clock is the reference clock of the parallel cycle, and on
its raising edge, data transmission sequence is activated
and synchronous triggers occur alternatively. The base-
clock frequency determines the time interval of parallel
computation cycle, and this reference clock hidden in IB
timing control offers "heartbeat" reference for the whole
parallel computing architecture.

Addr_FIFO

VME Ctrller

IB Timing
Ctrl

IBMC Ctrller
Regs

FIFO Output
 Trigger

IB Timing
Parameter

FIFO
Pointer

Base Clk

Fifo_status

Enable
Clear

Servo Clk
Generator

Servo Clk
Parameter

Access to
Regs

AEn

ADD

IBMC

Access to
Addr_FIFO

Fig.6. Structure of IBMC

Details for IB are defined as registers in VME slave
(IBMC), and upper computer can redefine the “behavior”
of IB by configuring the IBMC online. The redefinition
of Addr_FIFO makes it easy to provide new data
transmission function online without changing hardware
architecture even when the data exchange requirement
changes. The redefinition of IB timing means
transmission rate can be customized according to the
need in actual application, if necessary, new type of
device can be used on IB without suffering from
compatibility problem. The redefinition of base-clock
makes the computing cycle interval adjustable to provide
reasonable size of time slot for different computing load.
The flexibility brought by online reconfiguration is the
main reason to adopt the scheme of user-defined internal
bus, and FPDP is given up because of this as well.
IBMC_Regs are listed in Table II.

TABLE II.
REGISTERS LIST IN IBMC

Register Name Description

IBMC_Control_Reg Definition of control signal to IBMC and
its Addr_FIFO.

IBMC_Status_Reg Current status of IBMC. magnetic
induction

IBMC_Err_Reg Error information.
VME_INT_Control_Reg Setting for VME interrupts – interrupt

enable, priority, and control.
VME_INT_Vector_Reg Setting for interrupt vector.
IB_Addr_FIFO_Reg Writing Addr_FIFO through this address.
IB_Addr_Length_Reg Depth of Addr_FIFO, used to judge

whether data transmission is over.

Copyright © 2010 MECS I.J.Modern Education and Computer Science, 2010, 1, 9-16

14 A High-Performance Communication Service for Parallel Servo Computing

IB_Timing_Reg Definition of IB timing. The setting is
based on Internal global clock in IBMC as
the minimum unit.

BaseClk_Control_Reg Setting for base clock – enable, running
cycle.

BaseClk_Status_Reg Current status of base clock.

IV. DATA TRANSMISSION MODEL AND ANALYSIS
TEMPLATE

The model described in this section is only for data
transmission on IB where only one transmission mode is
involved, as shown in Fig.7 (a). DSP1 is the only source
node, while other DSPs are destination nodes, and
broadcast mode with single host and multi-slave are
adopted. Fig.7 (b) illustrates the analysis of data
transmission model.

Fig.7. Data transmission model

TABLE III.
PARAMETERS LIST IN DATA TRANSMISSION MODEL

Parameter

Description

pT
The length of time for one parallel computing cycle.

_so allT

The length of time the sending processor is engaged
in the data transmission in a parallel computing
cycle; during this time the processor cannot perform
other operations.

soT
The length of time the sending processor is engaged
in the transmission of a 32-bit data.

waT
The length of time spent in waiting execution of
data transmission sequence.

tlT
The length of time spent in the transmission of a
32-bit data from sending to the receiving node.

_tl allT

The length of total time spent in the transmission
network from sending to the receiving node in a
parallel computing cycle.

roT
The length of time the receiving processor is
engaged in the transmission of a 32-bit data.

_ro allT

The length of time the receiving processor is
engaged in the reception of data in a parallel
computing cycle; during this time the processor
cannot perform other operations.

dL
The size of data in transmission sequence, in word
(32-bit), transmitted in a parallel computing cycle.

K The ratio between and , which
indicates the efficiency of data transmission
function.

_tl allT pT

N
The number of processors in the parallel
architecture.

_tl all d tlT L T= × （1）

_ _ _

()
total so all tl all ro all wa

d so tl ro wa

T T T T T
L T T T T
= + + +

= + + +
 （2）

/d tlK L T Tp= × (3)
In formula 1, is the transmission latency of single

datum, in word (32 bit), and its stability only depends on
the network transmission performance. Therefore,

 solely depends on

tlT

_tl allT dL and can be calculated
accurately. In formula 2, soT and are determined by
EMIF Settings, and indicates the total time spent on
waiting for data transmission service. In formula 3,

indicates the efficiency of data transmission service,
and the smaller it is, the less time spent on data
transmission during the parallel computing cycle. The
uncertainty of is mainly caused by DSP software

plan (), but not T . In practical parallel servo

computing, must be accurate and to small

proportion of for the reason that partition of data-
insensitive and data-sensitive computing is based on it.
On the contrary, there is no high requirement for
accuracy.

roT
waT

tl

K

T
totalT

_ all

p

wa _ all

tl

T
T

totalT

V. EXPERIMENT AND RESULT

The time parameters of IB timing mentioned in Fig. 2
are listed in table IV.

TABLE IV.
TIME PARAMETERS OF IB TIMING

Parameter

Value (ns)
Description Min Tpy Max

t1 - 20 - ADD[15:0] valid before AEn
valid

t2 0 10 20 AEn valid to DATA[31:0]
valid

t3 10 10 20 DATA[31:0] valid to
DTACK valid

t4 20 20 30 DTACK low pluse

t5 - 10 - DTACK invalid to
DATA[31:0] high impedance

t6 0 20 20 DATA[31:0] high impedance
to AEn remains valid

t7 10 10 30 ADD[15:0] remain valid after
AEn invalid

Copyright © 2010 MECS I.J.Modern Education and Computer Science, 2010, 1, 9-16

 A High-Performance Communication Service for Parallel Servo Computing 15

Fig.8 (a) plots with respect to using results
from experiment with (=6). Indicators of the goodness
of the fit are: SSE（sum of squared error）=1.19e-005,
RMSE（root mean square error）=0.001992, R-square=
1. From the plot, it is not difficult to see that the linear

dependency of T on is almost perfect.

_tl allT
N

_tl all

dL

dL
Fig.8 (b) plots the value of obtained from

experiment. The error is of sub-nanosecond scale, and the
major part of it is caused by non-uniformity of signal
transmission characteristics in IB backplane and internal
reference clock jitter in IBMC. According to the
experimental results, is accurate enough, so that the

 and can be both calculated accurately using
the value of

tlT

tlT
_tl allT K

dL .

(a) vs , with =6; _tl allT dL N

（b） vs tlT N

Fig.8. Performance of IB data transmission

VI. CONCLUSION

Communication service proposed in this paper is based
on standard VME bus and Internal Bus (IB) in P2, which
provided high-performance data transmission and precise
synchronization trigger support for the processors
involved in parallel computing. Several conclusions can
be drawn from preceding discussion and analysis of
experimental result. (1) The maximum number of
processors is 15 in the communication service. It can be
increased to 19 by modifying the IB protocol, and the
ceiling is 19 because there are only 21 slots in standard

VME rack while two of them are occupied by upper
computer and IBMC. (2) The stable achieved bandwidth
in communication is 10M *32bit/S, and it can be
increased significantly by improving signal transmission
characteristics in IB backplane. (3) The data transmission
latency error is of sub-nanosecond scale and
synchronization error is of nanosecond scale, both of
which are not affected by the number of processors. (4) In
practical application, time spent on data transmission is
only 6.575% in every parallel computing cycle.

However, the assumption, on which the
communication service is built, is that the data
transmission need is clearly specified - only one data
transmission sequence with static source and destination
addresses is needed in every parallel computing cycle.
The over-simplified assumption undermines its universal
applicability to most parallel computing architectures.
What’s more, limited by the number of the number of
slots in the standard VME rack, it’s impossible for it to
support more processors.

Future research would focus on the following two
aspects: (1) Improving the universal applicability of
communication service. The design of a strict and precise
multi-layer communication model based on high-speed
serial link is a potential solution. However, the
transmission model must be strict and precise, and the
communication protocol must avoid the factors such as
handshaking, unfixed routing, data congestion .etc, which
cause the uncertainty of communication performance. We
are developing the research of precise synchronization
based on high-speed fiber channel right now. (2)
Implementation of high performance communication in
multi VME racks. If the number of processors exceeds 19,
right now we can not implement communication service
discussed.

ACKNOWLEDGMENT

This research has been conducted as a part of prototype
design for precise motion control architecture for 65nm
twins-wafer stages lithography, supported by major
national S&T program of china during 11th Five-Year
Plan Period. The authors gratefully acknowledge the
support. Authors also thank Teng Wei, Mu Haihua, Yang
Liangliang and Wan Yao for their invaluable help.

REFERENCES

[1] Fujita Itaru, Sakai Fumio, Uzawa Shigeyuki, Next
generation scanner to sub-100 nm lithography, In
Proceedings of SPIE. Santa Clara, CA, USA, 2003, pp.
811-821.

[2] Yang Liangliang, Zhou Yunfei, Pan Haihong, Luo Fuyuan.
Research on synchronous mechanism of step-scan
projection lithography, China mechanical engineering,
2009(20), pp. 20-23, 43.

[3] Wang Chunhong, Hu Jinchun, Zhu Yu, Yin Wensheng,
Optimal synchronous trajectory tracking control of wafer
and reticle stages. Tsinghua Science and Technology, 2009
(14), pp. 287-292.

[4] Message Passing Interface Forum, MPI: A Message-
Passing Interface Standard, Technical Report CS-94-230,

Copyright © 2010 MECS I.J.Modern Education and Computer Science, 2010, 1, 9-16

16 A High-Performance Communication Service for Parallel Servo Computing

Computer Science Department, University of Tennessee,
1994.

[5] J. Bruck, D. Dolev, C. Ho, M. Rosu, R. Strong, Efficient
message passing interface (MPI) for parallel computing on
clusters of workstations, Journal of Parallel and Distributed
Computing, 1997(40), pp. 19- 34.

[6] M. Lauria, A. Chien, MPI-FM: High performance MPI on
workstation clusters, Journal of Parallel and Distributed
Computing, 1997(40), pp. 4-18.

[7] W. Gropp, E. Lusk, N. Doss, A. Skjellum, A high-
performance, portable implementation of the MPI message
passing interface standard, Parallel Computing, 1996(22),
pp. 89- 828.

[8] R. Hempel, D.W. Walker, The emergence of the MPI
message passing standard for parallel computing,
Computer Standards & Interfaces, 1999(21), pp. 51- 62.

[9] TMS320C6713B floating-point digital signal processor,
http://focus.ti.com.cn/cn/docs/prod/folders/print/tms320c6
713b.html

[10] Yan Luxin , Zhang Tianxu , Zhong sheng, Parallel system
architecture of multi-DSP interconnected by FPGA,
Systems Engineering and Electronics, 2005 (27), pp. 1757-
1759, 1775.

[11] James Kohout, Alan D. George, A high-performance
communication service for parallel computing on
distributed DSP systems, Parallel Computing, 2003(29), pp.
851- 878.

[12] Bai Yucheng, Tang Xiaoqi, Chen Jihong, Hu Huan,
Research on multi-axis synchronous control for network
CNC system, manufacturing technology & machine tool ,
2008 (8), pp. 61-65.

[13] Justin (Gus) Hurwitz, Wu-chun Feng, Analyzing MPI
performance over 10-Gigabit Ethernet, Journal of parallel
and distributed computing, 2005(65), pp. 1253-1260.

[14] Amit Karwande, XinYuan, DavidK. Lowenthal, An MPI
prototype for compiled communication on Ethernet
switched clusters, Journal of parallel and distributed
computing, 2005(65), pp. 1123-1133.

[15] U.S. VMEbus International Trade Association. American
National Standard for Front Panel Data Port Specifications.
U.S. Scottsdale. 1998

[16] Zhang Huachun, Sun Changyu, A New Design Method for
High-Speed Data Acquisition System Based on FPDP,
Systems Engineering and Electronics, 2003(25), pp. 787-
789, 803.

[17] Zhao Chunhui, Yang Shuyuan, Yuan Jianping, Design of
DSP-specific VME-64 bus interface of NUMA multi-
processors systems, Systems Engineering and Electronics
2005 (27), pp. 189-192.

Cheng Xin was was born in P.R. China
in 1982 and received his B.S. and M.S.
degree in information engineering from
Wuhan University of technology, P.R. China
in 2004 and 2007 respectively. He is
currently a doctoral student in state Key Lab
of Digital Manufacturing Equipment &
Technology, Huazhong Univ. of Science and

Technology (HUST), Wuhan, P.R. China.
Cheng Xin’s research interests include networking, parallel

and distributed systems, high-speed and high-precise motion
control systems. He is now developing the research of precise
motion control architecture for 65nm twins-wafer stages
Lithography.

Copyright © 2010 MECS I.J.Modern Education and Computer Science, 2010, 1, 9-16

	I. Introduction
	II. Parallel Servo Computing Architecture and Communication Service
	III. Realization of the communication service
	A. Structure of distributed memory
	B. Definition of IB protocol
	C. Data exchange among Memory blocks
	D. Structure of IBSC and synchronous trigger
	E. Structure of IBMC and mechanism of reconfiguration online
	IV. Data transmission model and analysis Template
	V. Experiment and result
	VI. Conclusion
	Acknowledgment
	References

