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Abstract: Steganography studies the embedding of messages into cover mediums, while obscuring the fact that any 

message exists. A supplement to encryption, steganographic methods help to avoid attention from adversaries, who may 

take additional measures if made aware of such messages. Common forms of image steganography, such as Least 

Significant Bit steganography, alter the first-order statistics of a cover image, allowing for easier detection by methods such 

as the Wavelet Motion Analyzer. We study steganographic methods based on permutation of pixels in grayscale images, 

which do not share this disadvantage. A generalization of pixel-swapping methods, our algorithm identifies invariant sets of 

pixels and intensities, called Permissible Sets, within an image block, and allow their full permutation in the encoding or 

decoding of messages. This increase in the number of permissible permutations serves to reduce the detectability of our 

method, while increasing the bit-per-pixel embedding rate. Through direct implementation and comparison, we find our 

method to be an improvement over previous swap-based steganography for the Microsoft Research Cambridge dataset of 

general images, and a large improvement for the higher-resolution NoisyOffice dataset of scanned images. 

 

Index Terms: Image, permutation, scanned document, steganography, swap, wavelet motion analyzer 

 

 

1. Introduction 

Digital communications, and the security of the information transmitted through those communications, have become a 

cornerstone of the modern web [1]. Encryption of data has been, by and large, the main defense to ensure the authenticity of 

transmitted or received data, and that secret data is not readable by adversaries. Despite this, increasingly sophisticated and 

oblique attack vectors have been developed to bypass cryptographic solutions. In addition, data breaches are a matter of 

concern, making it preferable that even stored data is not recognized as such [2, 3]. As such, it has become increasingly 

worthwhile to combine encryption with data hiding, further enhancing security via data confidentiality [3]. 

Data hiding techniques may be divided into watermarking and steganography. The former field aims to keep the 

watermark resistant to attacks, but does not necessarily aim to keep the embedded information hidden [4]: the primary 

concern of steganography. Steganography is the embedding of messages in some medium, in some way that makes it non-

obvious that the message exists. A supplement to encryption, steganography prevents an adversary from determining that 

there is any message to decode at all: a fact that, if known, could itself have security implications. Data known to be 

encrypted can be stored en masse for later decryption, in the event some weakness to the protocol is later discovered. More 

immediately, the sender or receiver may be targeted via indirect methods such as malware, deception, various social attacks, 

or through breaching the security of a data storage endpoint (particularly if the data is stored unencrypted). While these 

indirect methods do not break the encryption itself, they may nonetheless obtain its contents through some other weakness 

in the user’s system or data storage. It is advantageous, therefore, to obfuscate the fact that any message exists at all to be 

targeted. 

Though classical forms of steganography related to physical messages, steganography in the era of electronic 

communications relates to information hidden within multimedia files such as text, audio, images, or video [5]. Multiple 
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means of steganography are possible, including small variations in font [6–9] or spacing [7, 10, 11] within a textual 

document. Also studied is the hiding of messages within a cover text [12, 13] or audio [14–16]. The effectiveness of any 

such steganographic method is measured though both detectability (through steganalysis tools), as well as the embedding 

payload size allowed through the method [17]. There is generally a trade-off between these two factors: as detectability 

decreases, so does payload size, and vice versa [18]. Other concerns include transparency and robustness. Transparency 

refers to the lack of noticeable changes between cover and stego-file, while robustness is the resistance of the message 

against compression, scaling, and noise addition [1]. 

Image steganography, in particular, begins with a cover image and encodes a hidden message to produce a stego-image; 

the receiver of the image then decodes the message from the stego-image [1]. This type of steganography sees frequent use; 

the large number of transmitted bits, and difficulty in distinguishing a subtly-modified image, makes this medium 

advantageous for the task [19–22]. Common forms of image steganography, such as Least Significant Bit (LSB) 

steganography, involve the hiding of data within the least significant bits of pixels. While such methods have significant 

advantages—such as their usability in most images while being indistinguishable to the naked eye—they are known to alter 

the statistics of the cover image, allowing for easier detection [23–27]. Approaches relating to modified LSB, along with 

Multi-Level Steganography (MLS), have been explored. Ref. [17] modifies MLS based on dynamic encryption keys with an 

unlimited number of levels. Ref. [28] explores the use of a secret key to determine encoding/decoding positions in LSB 

steganography, while [29] studies an improvement of LSB via the use of a byte replacement table based on a secret key. We, 

however, take a different approach. 

Swap-based methods have been previously studied, and have shown some promise in resisting the analyses that detect 

LSB steganography [30]. They—and, more generally, permutational methods—have the advantage of, unlike LSB, not 

modifying an image’s first-order statistics, as pixels are only permuted, not modified. This obviates the entire class of 

detection methods that rely on said statistics. 

Ref. [31] examines the characteristics of scanner noise with the aim of embedding hidden information within said noise. 

Their methodology involved the embedding of a noise signal into partially de-noised scans and, according to their analysis, 

could be detected with an accuracy of 0.862. One of their findings was that, at least for some models of scanner, the pixel 

values adhere to a normal distribution. Our permutational algorithm avoids, by construction, one of the stated limitations of 

theirs’: that the color histogram is changed, and risks detection. Another approach of a similar paradigm, in which the cover 

source was modified based on knowledge of camera noise, was taken in [32]. 

A slight variation of the pixel-swapping algorithm is described in [33]. Their algorithm resists the Sample Pair 

Analysis [25], which estimates the embedding rate of a hypothetical message in any given image, but is detected by the 

Wavelet Motion Analyzer [34]. The approach of [33] is largely superseded by [35], which describes a variant block-based 

pixel-swapping algorithm based partially on comparisons with the block’s mean value. Said algorithm was implemented, 

and evaluated based on detection by the Wavelet Motion Analyzer, for the purpose of comparison. In addition to the 

Wavelet Motion Analyzer, we also use additional methods to compare the algorithms: the Sample Pair Analysis [25] and 

Peak Signal Noise Ratio (PSNR) [3]. For both the NoisyOffice dataset [36–38] of scanned documents, and the MSRCv2 

dataset [39] of more general images, Wavelet Motion Analyzer results indicate that the algorithm of [35] is outperformed by 

our own, while the other measures are either roughly comparable or improved. 

This paper is organized as follows. Section 2 details our methodology: Section 2.1 describes the algorithm, with the 

exception of the permutation-to-bitstring (or vice versa) subprocedures, which are described in Section 2.2. Section 2.3 

examines the time complexity of the algorithm and its major subprocedures, while Section 2.4 details the actual 

computation time under testing. Section 2.5 describes the training and testing methodology. Section 3 describes the results 

of the testing, comparing our algorithm with that of previous work. Finally, we detail our conclusions in Section 4.  

2. Methodology 

This section describes first our encoding/decoding algorithm, followed by the experimental method for testing its 

detectability. We study the embedding of messages within 8-bit, grayscale images. We do so both for general images and a 

type of grayscale image of interest: scanned documents. Noise in scanned backgrounds is already expected, and provides a 

certain degree of plausible deniability. 

We study steganographic methods based on permutation of pixels in grayscale images. The original studied methods 

were based on pixel-swapping, but said methods were generalized to allow for permutations within 2×2, regions. Eventual 

generalizations to n×n regions are forthcoming. 

2.1. Algorithm 

Both encoder and decoder may be conceptualized as having in common a deterministic image reader subroutine. Said 

subroutine divides an image into a grid of n×n blocks (some rows/columns may be left over if n does not divide the image 
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size), then loops through the blocks using the order given by a base 2 van der Corput sequence [40]. (For example, denote 

by B the total number of blocks in the image. The fifth member of the van der Corput sequence is 
5

8
, so the fifth block 

traversed would be the block whose index, in lexicographic order, is ⌊
5

8
B⌋. Any repeating indices would be skipped in this 

traversal.) Within each block, the permissible sets of intensities are determined, for use within the encoder/decoder. Because 

the permissible sets are, by design, an invariant, both encoder and decoder read the same ones. After the permissible sets 

have been read, the encoder permutes said sets based on the encoded data. The decoder, on the other hand, deduces which 

permutation was used in order to decode the encoded message. 

A permissible set is understood to include the number of occurrences of each intensity (in short, the permissible set of 

intensities is a multiset), along with the set of pixels corresponding to those intensities. A permutation of a permissible set is 

a permutation of intensities over the same underlying pixels. An intensity value may be shared by more than one pixel, 

allowing for different permutations to yield the same intensities over the permissible set pixels. Such permutations are 

called indistinguishable. 

Permissible sets may have repeated intensities; this allows for a greater number of allowed permutations than a pure 

swap-based method, increasing the bit-per-pixel rate of the encoding. The restriction is that the intensities of any two 

permissible sets must be disjoint; that is, all instances of an intensity value must belong to a single permissible set, to avoid 

ambiguity. 

Other restrictions are also possible: the one we use is to designate an intensity limit L and require that any two 

intensities within the permissible set may be swapped by a sequence of transpositions, each of intensity difference at most L. 

More precisely, we require that: 

Definition 1 (Sequence-Level Intensity Limit). For each two intensities x,y in a permissible set, there must exist a 

sequence x1,...,xj of intensities, also in the permissible set, such that x1 = x, xj = y, and |xi+1 −xi| ≤ L. 

The permissible sets within a single pixel block are found via a greedy algorithm: at each step, find a maximum-sized 

multiset of intensities satisfying the above constraints; the set of pixels of any such intensity forms a permissible set. (The 

Greedy subprocedure is described as Algorithm 1, and the overall procedure summarized in Fig. 1.) When there is more 

than one maximum-sized permissible set candidate, ties are broken by taking the one containing the minimum intensity. 

Finally, a canonical ordering of permissible sets is required, in order to sort them: that ordering is by comparing minimum 

pixel coordinate contained within the set (the coordinates themselves are ordered lexicographically).  

 

 

Fig.1. Process of Permissible Set Search within an Image Block 
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Fig. 2. Process of Encoding/Decoding Data within an Image 

Algorithm 1: Permissible Set Search: Greedy Subprocedure 

 
 

In general, for any multiset {𝑥1
𝑘1 , … , 𝑥

𝑗

𝑘𝑗
}

𝑚𝑢𝑙𝑡𝑖
, the number of distinct permutations is given by [41, 42]: 

 

φ ({𝑥1
𝑘1 , … , 𝑥

𝑗

𝑘𝑗
}

𝑚𝑢𝑙𝑡𝑖
) =  

(𝑘1+⋯+𝑘𝑗)!

𝑘1!⋅…⋅𝑘𝑗! 
                                                               (1) 

 

Denote by 𝑆1, … , 𝑆𝑘 the permissible sets in sorted order, and denote the number of distinct permutations for each 𝑆𝑖  as 

|𝑆𝑖| = φ(S𝑖). Because intensities are (by construction) disjoint between sets, the total number of possible permutations is 

their product, 𝑁𝑝𝑒𝑟𝑚𝑠 = |𝑆1| ∙ … ∙ |𝑆𝑘|. Denote by 𝑛𝑏𝑙𝑜𝑐𝑘  the index of the block the reader is currently looping through, and 

define 𝑏 = ⌊log
2
 𝑁𝑝𝑒𝑟𝑚𝑠⌋ to be the number of digits that may be encoded in this block. 

The encoder receives, as input, a b-digit bitstring, which it interprets as an unsigned integer 𝑥𝑜𝑟𝑖𝑔. We offset by the 

block index to obtain: 
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𝑥𝑜𝑓𝑓𝑠𝑒𝑡 = (𝑥𝑜𝑟𝑖𝑔 + 𝑛𝑏𝑙𝑜𝑐𝑘) mod 𝑁𝑝𝑒𝑟𝑚𝑠 

 

𝑥𝑜𝑓𝑓𝑠𝑒𝑡 is then represented as a multi-radix number, with radixes |𝑆1|, … , |𝑆𝑘|: 

 

𝑑|𝑆1|
1 … 𝑑|𝑆𝑘|

𝑘 = 𝑥𝑜𝑓𝑓𝑠𝑒𝑡 

 

where 0 ≤ 𝑑|𝑆𝑖|
𝑖 <  |𝑆𝑖| is the ith digit. The encoding then proceeds by permuting each 𝑆𝑖, according to Section 2.2: the 

𝑑|𝑆𝑖|
𝑖 th indexed permutation is chosen for 𝑆𝑖, relative to a known base map. 

Conversely, the decoder reverses these steps. The permutation of each 𝑆𝑖  is read, its index determined (see, again, 

Section 2.2), and set as the digit 𝑑|𝑆𝑖|
𝑖 . From there, construct the multi-radix number 

 

𝑥𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑑|𝑆1|
1 … 𝑑|𝑆𝑘|

𝑘  

 

with radixes |𝑆1|, … , |𝑆𝑘|. Finally, remove the offset: 

 

𝑥𝑜𝑟𝑖𝑔 = (𝑥𝑜𝑓𝑓𝑠𝑒𝑡 − 𝑛𝑏𝑙𝑜𝑐𝑘) mod 𝑁𝑝𝑒𝑟𝑚𝑠 

 

and interpret 𝑥𝑜𝑟𝑖𝑔  as a b-digit bitstring, to yield the bitstring stored in this block. 

See Fig. 3 for an overview and example of this encoding process, and Fig. 4, similarly, for the decoding process. 

 

 

Fig. 3. Process of Encoding Data into Image Block 
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Fig. 4. Process of Decoding Data from Image Block 

The only remaining detail is that the encoder must pre-encode the message length, as a fixed-length integer, prior to the 

actual message (at the beginning of the image block loop). Conversely, the decoder reads said length, prior to decoding the 

message. In this manner, the stopping point of the message is known by both. 

2.2.  Permutation Subprocedures 

In the sequel, we consider the pixels of an image to be lexicographically ordered by coordinate: (x1,y1) ≤ (x2,y2) ⇐⇒ (x1 

< x2)∨(x1 = x2 ∧y1 ≤ y2). A bitstring can be encoded into a permissible set using the following high-level algorithm: begin 

with a known base map of pixel to intensity; the simplest such map is the one that arises from sorting the intensities of a 

permissible set from lowest to highest among the [lexicographically-ordered] pixels. From there, various possible 

permutations are possible. One can describe a permutation-lexicographic ordering over all such permutations: 𝜎 ≤ 𝜏 if, 

on the minimum pixel p where 𝜎(𝑝) ≠ 𝜏(𝑝), one has 𝜎(𝑝) ≤ 𝜏(𝑝). 

Given any permissible set S, one may thereby create a permutation-lexicographically sorted list R of all such 

permutations—or, more accurately, of all distinct permutation results; as permissible sets may contain multiple instances of 

the same intensity, different permutations may result in indistinguishable mappings of pixel-to-intensity. 

The list R can then be used to encode a number i (where 0 ≤ i < |S|): starting from the known base map, enact the 

permutation result corresponding to index i. Conversely, the decoder determines the index of the permutation result used, 

thereby extracting the number i. 

In practice, the list R of sorted permutation results is purely conceptual: it is far more efficient for an encoder or 

decoder to compute the index matching a permutation result indirectly. 

Let φ, the formula for the number of unique permutations of a generic multiset, be as in Equation (1). Denote by PS the 

set of all possible permutation results on S. For the decoder, we define the permutation-result-to-index function 𝜙 ∶ 𝑃𝑆 →
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 {0, … , |𝑆| − 1}, where ϕ (σ) is the index of the permutation result σ in R. It can be computed as follows: let σ1,...,σn = σ be 

the intensity values of σ, where σi is the intensity corresponding to the ith pixel (in lexicographic order). Then, 

 

𝜙(𝜎) = 𝜙(𝜎1, … , 𝜎𝑛) 

=  ∑ number of permutations 𝜏 with prefix 𝜎1 … 𝜎𝑘 such that τk+1 < 𝜎𝑘+1

𝑛−1

𝑘=0

 

=  ∑ [ ∑ φ({𝜎𝑘+1, … , 𝜎𝑛}𝑚𝑢𝑙𝑡𝑖 − {𝐼}𝑚𝑢𝑙𝑡𝑖)

𝐼∈{𝜎𝑘+1,…𝜎𝑛},𝐼<𝜎𝑘+1

]

𝑛−1

𝑘=0

 

 

In pseudocode, 𝜙 is written as Algorithm 2. 

In reverse, an encoder uses as its main subprocedure the index-to-permutation assignment function 𝜌 ∶ {0, … , |𝑆| −
1} → 𝑃𝑆 which, given a target index integer, computes the permutation in the list R corresponding to said index. It avoids a 

full linear search by treating the possible permutation results as a multi-level tree, the level i nodes corresponding to the 

possible intensities of the ith pixel of a permutation result (with previous pixels fixed via the ancestor nodes). φ, from 

Equation (1), computes the total number of permutations down any particular ith-level node, without requiring actual 

traversal. Thus, by looping through the ith level nodes in order of increasing intensity, and stopping before the cumulative 

number of permutations has exceeded the target index, the tree traversal corresponding to said index is recursively 

computed. The pseudocode description of this subprocedure is Algorithm 3. 

Algorithm 2: 𝜙, the function that computes the index in R of a given permutation result 

 
 

Algorithm 3 is presented in a simpler form; various optimizations are possible. Notably, rem𝑢𝑛𝑖𝑞
𝑠𝑜𝑟𝑡𝑒𝑑  can be precomputed 

once, and passed on to all recursive calls, so that a sort need not be performed each recursive call. The loop would then skip 

any instance where τ is no longer present in rem𝑎𝑙𝑙  . A similar optimization would result if the multiset rem𝑎𝑙𝑙  were 

implemented as a sorted, mutable array of intensities and counts, in which case line 8 would be made redundant. 
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Algorithm 3: ρ, the function that computes a permutation result of a given index in R 

 

2.3 Time Complexity 

We estimate the time complexity of the various algorithms. Let B denote the block size in pixels (for example, B = 4 

for a 2×2 block). 

The formula ϕ, given by Equation (1), plays a part in several algorithms. If we define n = k1 +...+ kj, the time 

complexity is O(n), which in practice is O(B). In the numerator, the number of terms being added is at most n, attained 

when k1 = ... = kj = 1. Since k1 +...kj = n, the number of terms multiplied to attain the factorial is at most n as well. For the 

denominator, since again, k1 +...kj = n the number of terms being multiplied in all the ki! terms is at most n, as is the product 

itself. 

For Algorithm 1, note that O(m) = O(B). The costliest operation is the computation of p in line 9, which has an outer 

loop (with outer variable w) of size m. The contents of each loop include the computation of M (p), costing O(m), along with 

a summation of O(m) terms, each sum term of which costs O(1) when the multiset is implemented as a hash set. Overall, the 

total cost is O(m
2
) = O(B

2
). Note that Algorithm 1 is only a greedy subprocedure of the permissible set search. In the worst 

case, a block may consist of permissible set singletons, forcing O(B) calls to this subprocedure, and making the total time 

complexity of the permissible set search O(B
3
). 

For Algorithm 2, note that O(n) = O(B). Within an outer loop of size n, the costliest operation is the inner loop of size 

O(n). Within this inner loop is an application of ϕ costing O(n). Overall, the total time complexity is O(n
3
) = O(B

3
). 

For Algorithm 3, note that the original size of remall is O(B), with at least one element removed per recursive call: this 

can be treated as an outer loop of size O(B). The actual loop, thought of as an inner loop, is over rem
sorted

uniq , which is of 

size O(B). The costliest operation in this actual loop is an O(B) call to ϕ. Overall, the total time complexity is O(B
3
). 

Finally, we address the time complexity for the steganographic algorithm as a whole. Let M denote the message size. 

Although pathological cases are possible (for example, the algorithm would be unusable on an image consisting of all the 
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same pixel intensity), we expect the number of blocks needed to encode/decode the message to be O(M). Given this, the 

traversal of the blocks also has amortized O(M) time complexity: the elements of a van der Corput sequence can be 

computed in amortized O(1) time, and an optimized hash set to ensure block indices are not repeated can also be populated 

and checked in amortized O(1) time, per element. All other operations on the block level are no worse than the calls to the 

above subprocedures, which cost O(B
3
). Overall, the algorithm’s time complexity amortizes to O(MB

3
), both for encoder 

and decoder. 

2.4 Computation Time 

Table 1 lists the average computation times, both of our algorithm and of [35], for the MSRCv2 [39] and NoisyOffice 

[36–38] datasets. Tests were run on an Intel 7th Generation Core i7 notebook computer. The proposed algorithm is 

approximately 2-3 times slower for the measured datasets, which is a trade-off for its reduced detectability. Both algorithms, 

however, have an acceptable runtime for typical usage, particularly if only a few images need to be processed. 

Table 1. Average computation time per dataset image (in seconds) for the proposed algorithm, as well as [35]. 

Dataset (Median Width, Median Height) Average Time ([35]) Average Time (proposed algorithm) 

MSRCv2 (213,320) 0.16 0.38 

NoisyOffice (1300,1535) 2.37 8.59 

2.5. Training and Testing 

The steganography methods are trained and tested on two datasets: the NoisyOffice [36–38] dataset of scanned 

documents, and the MSRCv2 [39] dataset of more general images. The two datasets are evaluated separately. The 

NoisyOffice dataset contains “RealNoisyOffice” and “SimulatedNoisyOffice” subsets; the former is further partitioned into 

“single resolution” and “double resolution” images. All tests in this paper are run on the “single resolution” images of the 

“RealNoisyOffice” subset. 

For each tested bit-per-pixel rate, the two datasets are augmented with a duplicated copy of the images. A message of 

random bits, simulating encrypted data, is embedded in each duplicate image using the steganography method being tested. 

For each image–with or without an encoded message–the Wavelet Motion Analyzer [34] is used to create a feature. As 

in [35], a Fischer linear classifier is used to discriminate between features resulting from images containing, or not 

containing, a message. 

10-fold cross-validation is used to train and evaluate said classifier. The Area Under the Receiver Operating Curve 

(AROC) is used to evaluate the detectability of the steganography method–the average AROC across the ten folds is taken. 

In addition to the Wavelet Motion Analyzer, the algorithms are also compared using Sample Pair Analysis [25] and 

Peak Signal Noise Ratio (PSNR) [3]. 

3. Results and Discussion 

We measure the detection rates for our algorithm. Results are shown in Table 2 and Table 3, for the NoisyOffice 

dataset of scanned images [36–38] and the MSRCv2 dataset of more generic images [39], respectively. The main 

measurement of detectability is the Area under the Receiver Operating Curve (AROC). The lower the area, the less 

detectable the corresponding steganographic method. Our method has shown low detectability, for given bit-per-pixel 

encoding rates, as well as allowing for higher encoding rates at the cost of detectability. 

We compare our own algorithm with a prior permutational algorithm, of which the best performing is the pixel swap-

based algorithm of [35]. We implement the algorithm of [35] in order to directly compare performance using the same 

sample images. Certain parameters of [35] were open to specification. To ensure that their algorithm effectiveness was 

being favorably estimated, we tested using a range of open parameters for each bit-per-pixel rate, taking the best-performing 

result for each such rate. This comprehensive approach provides an ideal-performance measure, one perhaps even better 

than would ordinarily be realistic (as parameters would ordinarily be fixed, rather than the best-performing ones chosen). 

This approach is not used for our own algorithm, which is left with no unfixed parameters. 

Fig. 5 and Fig. 6 show graphs of AROC results against bit-per-pixel rates, for the respective datasets. Tested in each 

graph is the algorithm of [35] (under the aforementioned optimized parameters) along with our own method, under a 2 ×2 

block size and varying choices of the Max Intensity Difference parameter. (The number of data points varies per 

steganographic method, as some do not support higher bit-per-pixel rates.) 

The results corresponding to [35] are shown in Table 4 and Table 5, for the NoisyOffice and MSRCv2 datasets, 

respectively. These may be compared to our own results in Table 2 and Table 3. For both datasets, our method is shown to 
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be less detectable for each tested bit-per-pixel rate, under the tested Max Intensity Difference parameters. For the 

NoisyOffice dataset in particular, our proposed algorithm has proved to be far less detectable, by as much as 49%, as 

measured by AROC. For the MSRCv2 dataset, our algorithm is still less detectable, but the improvement is not to as great a 

degree. 

Both algorithms, we found, are uniformly more detectable under the NoisyOffice dataset. The reasons for this–and, in 

particular, for the high detectability of [35] with this dataset–are unclear, and to be followed up upon. Possibilities range 

from NoisyOffice’s higher resolution, to unexpected sources of noise within the MSRCv2 dataset. An answer to this 

question may help to characterize the images best suited for comparable steganographic methods. 

In addition to the Wavelet Motion Analyzer method, two additional steganalysis systems were tested: Peak Signal 

Noise Ratio (PSNR) and Sample Pair Analysis. PSNR measures the change made to a stego-image [3] and ranges between 0 

and 100; higher values are preferred. Sample Pair Analysis outputs a value estimating the length of a hidden message, as a 

proportion of the image; values closer to zero are preferred. As with the Wavelet Motion Analyzer test, we took the best 

result of [35] for a range of unspecified parameters, in order to favorably estimate their algorithm effectiveness. The 

proposed algorithm has a better PSNR for the same bit-per-pixel embedding rates (the precise difference depending on the 

Max Pixel Intensity Difference parameter). The Sample Pair Analysis results were roughly comparable, both algorithms’ 

estimated hidden message lengths being close to zero. See Table 4 and Table 5, for results corresponding to [35]; our own 

results are found in Table 2 and Table 3. 

As our algorithm improves upon [35], it appears to provide the best detectability results within the class of 

permutation-based steganographic methods. The trade-off is a longer operation time per message length, which may make 

the algorithm less usable for some applications. This is not a concern for a reasonable number of images. (Additionally, 

overly long messages, requiring a large number of cover images, may draw an adversary’s attention regardless). 

 

 
Bit-Per-Pixel Rate 

[19] (Optimized) 

Max Difference 16 

Max Difference 8 

Max Difference 4 

Fig. 5. Area Under the Receiver Operating Curve (AROC) results graphed against bit-per-pixel rate for the NoisyOffice dataset [36-38]. The lower the 

AROC, the less detectable the steganography method. 
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Bit-Per-Pixel Rate 

[19] (Optimized) 

Max Difference 16 

Max Difference 8 

Max Difference 4 

Fig. 6. Area Under the Receiver Operating Curve (AROC) results graphed against bit-per-pixel rate for the MSRCv2 dataset [39]. The lower the AROC, 

the less detectable the steganography method. 

 

Fig. 7. Sample cover image Fontfte_Noisep_RE.bmp (modified Jan 2021 to be a grayscale bitmap) from the NoisyOffice Dataset [36–38] 
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Fig. 8. Sample modified image Fontfte_Noisep_RE.bmp from the NoisyOffice Dataset [36–38] (modified Jan 2021). Parameters: Max Intensity Difference: 

8, Bit-per-pixel rate: 0.30 

 

Fig. 9. Sample cover image 9_1_s.bmp (modified Jan 2021 to be a grayscale bitmap) from the MSRCv2 dataset [39] 

 

Fig. 10. Sample modified image 9_1_s.bmp from the MSRCv2 dataset [39] (modified Jan 2021). Parameters: Max Intensity Difference: 8, Bit-per-pixel 

rate: 0.30
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Table 2. Results for the proposed algorithm, tested on the NoisyOffice dataset [36–38]. The second column contains the result of the Fischer Wavelet 

Motion Analyzer under 10-fold cross-validation, as measured by the Area Under the Receiver Operating Curve (AROC). Peak Signal Noise Ratio (PSNR) 

and Sample Pair Analysis results have also been included. 

Max Pixel 

Intensity 

Difference 

Embedding 

(bit/pixel) rate 

AROC 

(Average Fold 

Result) 
PSNR 

Sample Pair 

Analysis 

16 0.3 1.00 37.4 0.02 

16 0.2 0.99 39.1 0.02 

16 0.15 0.96 40.4 0.02 

16 0.125 0.94 41.2 0.03 

16 0.1 0.88 42.1 0.02 

8 0.3 0.93 41.0 0.02 

8 0.2 0.89 42.8 0.02 

8 0.15 0.80 44.0 0.02 

8 0.125 0.74 44.8 0.02 

8 0.1 0.69 45.8 0.02 

4 0.2 0.65 46.9 0.02 

4 0.15 0.60 48.1 0.02 

4 0.125 0.58 48.9 0.02 

4 0.1 0.51 49.9 0.02 

Table 3. Results for the proposed algorithm, tested on the MSRCv2 dataset [31]. The second column contains the result of the Fischer Wavelet Motion 

Analyzer under 10-fold cross-validation, as measured by the Area Under the Receiver Operating Curve (AROC). Peak Signal Noise Ratio (PSNR) and 

Sample Pair Analysis results have also been included. 

Max Pixel 

Intensity 

Difference 

Embedding 

(bit/pixel) rate 

AROC 

(Average Fold 

Result) 
PSNR 

Sample Pair 

Analysis 

16 0.3 0.69 38.5 0.01 

16 0.25 0.66 39.3 0.01 

16 0.2 0.61 40.3 0.01 

16 0.15 0.58 41.5 0.01 

16 0.125 0.56 42.3 0.01 

16 0.1 0.54 43.3 0.01 

16 0.05 0.50 46.3 0.01 

8 0.15 0.54 45.3 0.01 

8 0.125 0.52 46.1 0.01 

8 0.1 0.50 47.0 0.01 

8 0.05 0.47 50.1 0.01 

4 0.1 0.48 51.1 0.01 

4 0.05 0.45 54.1 0.01 

Table 4. Results for the algorithm of [35], tested on the NoisyOffice dataset [36–38]. The second column contains the result of the Fischer Wavelet Motion 

Analyzer under 10-fold cross-validation, as measured by the Area Under the Receiver Operating Curve (AROC). Peak Signal Noise Ratio (PSNR) and 

Sample Pair Analysis results have also been included. For each embedding rate, the highest score of [35] (across all parameters) is chosen. 

Embedding 

(bit/pixel) rate 

AROC 

(Average Fold 

Result) PSNR 

Sample Pair 

Analysis 

0.2 1.00 36.5 0.02 

0.15 1.00 37.7 0.02 

0.125 1.00 38.5 0.02 

0.1 1.00 39.8 0.02 

0.05 0.99 43.1 0.02 
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Table 5. Results for the algorithm of [35], tested on the MSRCv2 dataset [39]. The second column contains the result of the Fischer Wavelet Motion 

Analyzer under 10-fold cross-validation, as measured by the Area Under the Receiver Operating Curve (AROC). Peak Signal Noise Ratio (PSNR) and 

Sample Pair Analysis results have also been included. For each embedding rate, the highest score of [35] (across all parameters) is chosen. 

Embedding 

(bit/pixel) rate 

AROC 

(Average Fold 

Result) 
PSNR 

Sample Pair 

Analysis 

0.125 0.62 39.2 0.00 

0.1 0.58 40.1 0.00 

0.05 0.53 43.4 0.00 

4. Conclusions 

We study steganographic methods based on permutation of pixels in grayscale images. Our method generalizes from 

pixel swapping to allow for permutations within a region of an image. Through both direct reimplementation and indirect 

comparison, our algorithm was found to be less detectable and to have a higher maximum bit-per-pixel rate, than other 

steganographic methods, noise and swap-based. In particular, reduced detectability was demonstrated against [35] for the 

NoisyOffice and MSRCv2 datasets, using the Wavelet Motion Analyzer-based detector. Both the reduced detectability and 

improved bit-per-pixel rate further the goal of safe, and subtle message-passing via steganography. Detectability was 

particularly reduced for the NoisyOffice dataset, suggesting further follow-up to characterize the kinds of images best suited 

to the various steganographic algorithms.  
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