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Abstract: Parkinson's disease (PD) is an age-related neurodegenerative disorder affecting millions of elderly people 

world-wide. The early and accurate diagnosis of PD with available treatment might delay neurodegeneration and 

prevent disabilities. The existing diagnosis method such as brain scan is an expensive process. The use of speech 

recognition with machine learning technologies for the diagnosis of PD patients could be less expensive. In this work, 

we have worked with the voice recorded dataset from UCI machine learning repository. Several studies were performed 

to identify PD patients from the healthy individuals by using voice recorded data with machine learning algorithms. In 

this paper, we have proposed an optimized approach of data pre-processing that enhances prediction accuracy for 

diagnosing PD. We obtain 97.4% prediction accuracy with higher sensitivity, specificity, precision, F1 score and kappa 

value by using AdaBoost. These improved performance evaluation metrics indicate, the use of voice recording with our 

optimised machine learning approach is highly reliable in prediction of PD. This approach may have significant 

implications for early stage diagnosis of PD in a cost-effective manner. 

 

Index Terms: Parkinson's disease (PD), voice recording data, machine learning models, normalization, hyperparameter 

tuning. 

 

 

1. Introduction 

Parkinson's disease (PD) is a chronic movement disorder of the nervous system. As the disease progresses, 

complications such as rigidity, tremor, bradykinesia and dementia arise [1]. The PD patients might encounter other 

complications such as imbalance, changes of voice and facial expression, lose sense of smell and have sleep disorders 

[2]. However, early diagnosis of PD with available treatment can slow down this neurodegenerative process. Since there 

is no specific biochemical test to diagnose PD, physicians diagnose PD based on the patients' medical history, signs and 

symptoms. The current gold-standard for diagnosis relies on clinical neurological tests and brain scans which are 

expensive and require high level of expertise [3]. A diagnosis method based on voice recording data of suspected 

patients can be utilized to facilitate early diagnosis of PD. This tactic is cost effective and can be integrated with 

machine learning (ML) approaches for accurate prediction. However, the major challenges of ML are to achieve higher 

predictive accuracy and reliability of the models. The use of several ML models with improved evaluation metrics will 

ensure reliability of the predictions [4, 5]. 

There have been several studies attempted to predict PD by using a variety of machine learning (ML) techniques. 

Sakar et al., used a mutual information-based method called maximum relevance minimum redundancy for feature 

selection [6]. The authors applied Support Vector Machine (SVM) for building a classification model with leave-one-

individual-out cross validation and found 92.75% of accuracy for detecting PD. Canturk et al., applied four feature 

selection algorithms such as LeastAbsolute Shrinkage and Selection Operator, Relief, Local Learning-Based Feature 

Selection, Minimal-Redundancy-Maximal-Relevance to discover highly relevant features for classifications [7]. They 

applied six classifiers including Adaboost, SVM, Neural Network, Naive Bayes, K-Nearest Neighbor and Multilayer 

Perceptron and two validation methods i.e., k-fold and Leave-One-Subject-Out (LOSO). They obtained 68.75% 

accuracy using K-Nearest Neighbor. Dinesh et al., used Microsoft Azure Machine Learning Studio to analyze the data 

for classification and data processing [8]. They applied several ML models in their experiments and obtained the 
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highest accuracy (91-95%) with the Boosted Decision Tree. Abos et al., proposed an approach to discriminate the PD 

patients based on cognitive status with machine learning [9]. They used randomized logistic regression for feature 

selection and SVM model with leave-one-out cross-validation. They achieved 82.6% accuracy and found connection-

wise patterns of functional connectivity for discriminating PD patients. Berus et al., exploited four feature selection 

techniques in [10] such as Filter-based Pearson's correlation, Kendall's correlations, Principal Component Analysis and 

Self-Organizing Map. They used multiple Artificial Neural Networks for classification and the results were validated by 

LOSO cross validation. The authors achieved 86.47% accuracy in detecting PD patients from the dataset. All these 

studies tried to improve the accuracy for early stage identification of PD patients from healthy individuals. Among them, 

Dinesh et al., 2017 achieved relatively higher prediction accuracy of 91.21% with precision and F1 scores. However, 

other ML evaluation matrices such as sensitivity, specificity and kappa values measures were missing from this study. 

Also, none of these studies considered the use of hyperparameter tuning with cross validation, in order to achieve higher 

reliability and accuracy of the ML model, which is getting particular attention in this field [11, 12]. In this work, we 

have utilized supervised ML algorithms with an existing voice recording dataset to predict the PD patient status with 

improved level of accuracy. We have pre-processed the dataset and applied a normalization technique. Then, we have 

trained the normalized dataset with hyperparameter tuning and evaluated the performance of the models.  

The rest of this paper is organized as follows. Section II describes the dataset, pre-processing and normalization of 

data, training and hyperparameter tuning of the ML models. The experimental results are presented and discussed in 

Section III. Section IV concludes the entire work. 

2. Materials and Methods 

2.1. Dataset 

The dataset is based on voice recording data for PD status prediction from University of California Irvine machine 

learning (UCI ML) repository [13]. This dataset is composed of a range of biomedical voice measurements from 31 

people of which 23 from Parkinson’s disease (PD) and 8 from healthy (NP) individuals. The columns of the dataset 

represent the PD patients voice measurement features with the identification and status of the patients. Each row 

corresponds to one of 195 voice recordings from these 31 individuals. There are nearly 6 recordings per patient, the 

name of the patient is identified in the first column. The value of the status column which is set to either NP for healthy 

individuals or PD for Parkinson’s disease. The dataset consists of 23 features of which 22 numeric features are known 

as predictor features and one categorical feature (status) is known as response feature. 

2.2. Data Pre-Processing and Normalization 

In this study, we have used the R statistical environment (version 3.6.1) [14] and the ‘caret’ package (short for 

classification and regression training) to process the model training for classification problems [15]. We have replaced 

the value of the ‘status’ column to NP (healthy person) for 0 and PD (Parkinson disease) for 1. Next, we have applied a 

normalization technique to transform the values of the features. Without normalization, a ML algorithm might 

be dominated by features that have a wider range of values, which adversely affect model performance [16]. We have 

normalized the numerical feature values to the range between 0 and 1. The general formula for a min-max of [0, 1] is 

given as: 

 

min( )

max( ) min( )

x x
X

x x




                                                                             

(1) 

 

where x is an original value and X is the normalized value [17]. We have found the values of the features on the dataset 

are in different ranges. For example, the feature MDVP:Fo(Hz) contain values ranges from 88:333 to 260:105. On the 

other hand, feature MDVP:Jitter(Abs) contain values ranges from 7:0e-06 to 2:6e-04. For ML analysis, the feature 

MDVP:Fo(Hz) will intrinsically influence the result more due to its larger value. But this does not necessarily mean this 

particular feature is more important as a predictor. Thus, we normalize the data to bring all the values of the variables to 

the same range (Fig. 1). Following normalization of the data between 0 and 1, the dataset is separated into training data 

(80%) and testing data (20%). Both training and test data contains 75% of PD and 25% of NP patients. 

 

 

Fig.1. The normalization process that convert all the numeric features to range between 0 and 1. 
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2.3. Training and Tuning of the Models 

We have trained the dataset with several ML models such as Multivariate Adaptive Regression Splines (MARS) 

[18], Support Vector Machine (SVM) with Radial Basis Function Kernel [19], Random Forest (RF) [20], Extreme 

Gradient Boosting (XGBoost) [21] and Adaptive Boosting (AdaBoost) [22]. Among them RF, XGBoost and AdaBoost 

are decision tree-based models whereas MARS is a regression based and SVM is a linear classifier. After training with 

different ML models, we have measured the performance of the models in terms of sensitivity, specificity, precision, 

recall and kappa. All these ML models were used in different studies for the prediction of PD and they achieved an 

accuracy between 68% to 92% [6-9]. In addition, to improve the performance of the models, we have applied 

hyperparameter tuning during training the models. To do hyperparameter tuning we set the tune length parameter, a 

control function with 10-fold cross validation and a summary function. 

2.4. Evaluation Metrics 

To understand the validity and reliability of the selected models, we consider various evaluation metrics of a model 

such as sensitivity, specificity, precision, F1 score, accuracy, and kappa values. Sensitivity (Recall or True positive rate) 

is the ratio of the total number of correctly classified positive values divided by the total number of positive values. 

 

TP
Sensitivity

TP FN


                                                                           

(2) 

 

Where, TP=True Positive, FP=False Positive, FN=False Negative, TN=True Negative. 

Specificity (True negative rate) is calculated as the number of correct negative predictions divided by the total 

number of negatives.  
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TN FP


                                                                           

(3) 

 

Precision is the total number of correctly classified positive values divided by the total number of predicted 

positive values. 

TP
Precision

TP FP


                                                                            

(4) 

 

The F1 Score is used to measure a test’s accuracy. Here the two measures (Precision and Recall) help to have a 

measurement that represents both of them. The calculation of F1-measure which uses Harmonic Mean in place of 

Arithmetic Mean.  
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The accuracy is the ratio of the number of correct predictions to the total number of input samples. 
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Accuracy
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Finally, the Kappa is a value that compares an observed accuracy with an expected accuracy (random chance). The 

kappa statistic is used not only to evaluate a single classifier, but also to evaluate classifiers amongst themselves. In 

addition, it considers random chance (agreement with a random classifier), which generally means it is less misleading 

than simply using accuracy as a metric. If Kappa = 1, perfect agreement exists; Kappa < 0, agreement is weaker than 

expected by chance; Kappa close to 0, the degree of agreement is the same as would be expected by chance. 
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
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(7) 

3. Result & Discussion 

First, we trained the models without hyperparameter tuning and predicted on test data. The comparative 

performance outcomes of different models for prediction of PD patients are shown in Table 1. We have considered 

classification accuracy, sensitivity, specificity, precision, F1 score and kappa values for each model. As it can be seen 

from Table 1, model XGBoost and AdaBoost have showed same result for each performance measure with accuracy of 
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97.4% and sensitivity of 100%. However, we have observed relatively lower prediction accuracy for other three models. 

We have achieved 89.5% accuracy for both MARS and SVM where we have obtained 94.7% in the case of RF. 

Additionally, other parameters such as sensitivity, specificity, precision, F1 score and kappa values are also relatively 

lower for MARS, SVM and RF models compared to XGBoost and AdaBoost.  

Table 1. The Performance of the Models before Hyperparameter Tuning 

Model Accuracy Sensitivity Specificity Precision F1 Kappa 

MARS 0.8947 0.931 0.7778 0.931 0.931 0.7088 

SVM 0.8947 1 0.5556 0.8788 0.9355 0.6561 

RF 0.9474 0.9655 0.8889 0.9655 0.9655 0.8544 

XGBoost 0.974 1 0.8889 0.9667 0.983 0.9243 

AdaBoost 0.974 1 0.8889 0.9667 0.9831 0.9243 

 

Next, we have applied hyperparameter tuning with 10-fold cross validation to train all these models and observed 

the performance of the models. The tuning parameters for model MARS are ‘nprune’ and ‘degree’. These two 

parameters represent the maximum number of terms and the maximum degree of interaction respectively where nprune 

= 22 and degree = 1. In the case of SVM, the tuning parameters are ‘sigma’ and ‘C’. The values of these parameters 

used for the model are sigma= 0.06140776 and C = 4. The parameter for RF is ‘mtry’ and the optimized value we have 

obtained for the model when mtry is 5. The parameters for model XGBoost are ‘nrounds’, ‘max_depth’, ‘eta’, ‘gamma’, 

‘subsample’, ‘colsample_bytree’, ‘rate_drop’, ‘skip_drop’ and ‘min_child_weight’. The parameter ‘eta’ scales the 

contribution of each tree by a factor of 0<eta<1 when it is added to the current approximation. It is used to prevent 

overfitting by making the boosting process more conservative. Other parameters such as ‘gamma’ is the minimum loss 

reduction required to make a further partition on a leaf node of the tree; ‘max_depth’ is the maximum depth of a tree; 

‘min_child_weight’ is the minimum sum of instance weight needed in a child; ‘subsample’ is the ratio of the training 

instance; ‘colsample_bytree’ is the ratio of columns when constructing each tree; ‘nrounds’ is the maximum number of 

boosting iterations; ‘rate_drop’ is the dropout rate and ‘skip_drop’ is the probability of skipping dropout . The final 

values of the parameters such as ‘nrounds’, ‘max_depth’, ‘eta’, ‘gamma’, ‘subsample’, ‘colsample_bytree’, ‘rate_drop’, 

‘skip_drop’ and ‘min_child_weight' are 100, 2, 0.4, 0, 0.75, 0.8, 0.01, 0.05 and 1, respectively. Finally, for model 

Adaboost the parameters are ‘nIter’ (number of iteration) and ‘method’. The final values used for the model were nIter 

= 50 and method = Adaboost:M1. The comparative performance of the models after hyperparameter tuning are 

represented in Table 2. As mention previously in Table 1, we again computed the model's performance in terms of 

accuracy, sensitivity, specificity, precision and F1 score. As shown in Table 2, 97.4% accuracy is achieved for MARS, 

AdaBoost and SVM models whereas 94.7% level of accuracy is achieved for Random Forest and XGBoost. Model 

AdaBoost and SVM achieved the highest sensitivity of 100% whereas the sensitivity of model MARS, RF and 

XGBoost is 96.5%. The specificity is achieved 88.9% for model RF, XGBoost, AdaBoost and SVM. But we obtain the 

highest specificity 100% for model MARS. The F1 score is between 96.6-98.2% for all the models and the kappa value 

is between 85-93%. 

Table 2. The Performance of the Models after Hyperparameter Tuning 

Model Accuracy Sensitivity Specificity Precision F1 Kappa 

MARS 0.974 0.96552 1 1 0.98246 0.93 

SVM 0.974 1 0.888889 0.966667 0.98305 0.924303 

RF 0.947 0.96552 0.888889 0.965517 0.96552 0.854406 

XGBoost 0.947 0.96552 0.888889 0.965517 0.96552 0.854406 

AdaBoost 0.974 1 0.888889 0.966667 0.98305 0.924303 

 

From Table 1 and Table 2 we can see the difference in performances of the models before and after 

hyperparameter tuning. In comparison to Table 1, the accuracy of models MARS and SVM is increased from 89.47% to 

97.4%. However, the accuracy of model XGBoost gets lower and the accuracy of AdaBoost and RF stay the same even 

after hyperparameter tuning. 

In Table 3, we compare our result with other studies. In our work, we consider metrics such as accuracy, sensitivity, 

specificity, precision, F1 score and kappa values. However, some of these model evaluation metrics are missing in other 

studies.  
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Table 3. Comparison with Previous Studies 

Author Model 
Accuracy 

 (%) 

Sensitivity  

(%) 

Specificity  

(%) 

Precision  

(%) 

F1  

(%) 

Kappa  

(%) 

Berus et al., 2019 ANN 86.47 88.91 84.02 * * * 

Abos et al., 2017 SVM 82.60% * * * * * 

Dinesh et al., 2017 
Boosted 

Decision Tree 
91.21  * * 93.57 94.23 * 

Canturk et al., 2016 K-NN  68.75 70.57 66.92 * * * 

Sakar et al., 2010 SVM 92.75% * * * * * 

This Study MARS 97.4 96.6 100 100 98.2 93 

  AdaBoost  97.4 100 88.9 96.7 98.3 92.4 

  SVM 97.4 100 88.9 96.7 98.3 92.4 

* value missing 

By comparing the result, we achieve the higher accuracy, sensitivity, specificity, precision, F1 score and kappa 

value than others (Table 3). We obtain 97.4% prediction accuracy by MARS, AdaBoost and SVM model after 

hyperparameter tuning. The sensitivity is higher for AdaBoost and SVM model than MARS. This indicate that, both 

AdaBoost and SVM is better model for predicting true positive results. However, the specificity and precision are 

higher for MARS model in compare to AdaBoost or SVM (Table 3). This indicate that, model MARS is better for 

prediction false positive results.  

From the above result, we can say some of the models performing better during prediction of PD and NP 

individuals. The way of normalization and training the models with hyperparameter tuning helps us to acquire higher 

performance measures for the models. We can see before hyperparameter tuning (Table 1), model AdaBoost and 

XGBoost have achieved the highest accuracy of 97.4%, but after hyperparameter tuning (Table 2) model MARS, 

AdaBoost and SVM have obtained the highest accuracy of 97.4%. By comparing the results of the models, we can say 

AdaBoost works better with or without hyperparameter tuning for predicting Parkinson's Disease.  

4. Conclusion 

In this paper, we have presented the results of evaluation of various algorithms for predative analysis of PD in 

voice recorded data. The algorithms are evaluated and compared with previous findings for their effectiveness in 

predicting PD patients from healthy individuals. It appears that all models provided >90% accuracy with improved 

range of ML matrices. Even with AdaBoost, MARS and SVM, we have obtained ~98% accuracy which is higher than 

the similar studies performed by Dinesh et al., [8]. This indicates that, our optimised machine learning approach based 

on voice recording is highly consistent in predicting PD from healthy individual. However, there are two major 

challenges remain for which this approach can be evaluated. First, the scalability of algorithms for growing data sizes 

[23] and second, further performance evaluation, if the features size grows. Additional optimization might require 

introducing feature selection with deep learning algorithms to tackle the growing data sizes. 

We have pre-processed and normalized the Parkinson's dataset and have used five popular ML models with 

hyperparameter tuning to analyze the normalized data. The performance evaluations are demonstrated using accuracy, 

specificity, sensitivity, kappa, precision and F1 score. By applying these optimized models to the voice recorded data of 

patients will help to predict whether a person has Parkinson's disease or not at an early stage in a cost-effective manner. 

The future work for Parkinson's disease prediction based on voice recording will be to incorporate more data for 

analysis to improve the scalability and prediction accuracy of Parkinson's disease. 
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