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Abstract: In the modern digital world, online shopping becomes essential in human lives. Online shopping stores like 
Amazon show up the "Frequently Bought Together" for their customers in their portal to increase sales. Discovering 
frequent patterns is a fundamental task in Data Mining that find the frequently bought items together. Many 
transactional data were collected every day, and finding frequent itemsets from the massive datasets using the classical 
algorithms requires more processing time and I/O cost. A GPU accelerated Novel algorithm for finding the frequent 
patterns using Vertical Data Format (GNVDF) has been introduced in this research article. It uses a novel pattern 
formation. In this, the candidate i-itemsets is divided into two buckets viz., Bucket-1 and Bucket-2. Bucket-1 contain all 
the possible items to form candidate-(i+1) itemsets. Bucket-2 has the items that cannot include in the candidate-(i+1) 
itemsets. It compactly employs a jagged array to minimize the memory requirement and remove common transactions 
among the frequent 1-itemsets. It also utilizes a vertical representation of data for efficiently extracting the frequent 
itemsets by scanning the database only once. Further, it is GPU-accelerated for speeding up the execution of the 
algorithm. The proposed algorithm was implemented with and without GPU usage and compared. The comparison 
result revealed that GNVDF with GPU acceleration is faster by 90 to 135 times than the method without GPU.  
 
Index Terms: Frequent Patterns, GNVDF, Graphical Processing Unit, Novel Pattern Formation, Vertical Data Format, 
and Jagged Array. 
 
 

1.  Introduction 

Data Mining (DM) is a part of Knowledge Discovery in Databases (KDD) [1] and explores the hidden patterns for 
business people. It is associated with many fields such as database systems, data warehousing, statistics, machine 
learning, information retrieval, and high-level computing [2,3]. It is also supported by other sciences like neural 
networks, pattern recognition, spatial data analysis, image databases and signal processing [2,3]. There are several 
techniques in data mining like classification, clustering, association rule mining and regression [4]. Frequent Pattern 
Mining (FPM) is a computationally crucial step in data mining [5]. It is used to determine the frequent patterns and 
associations from databases such as relational and transactional databases and other data repositories. The Apriori is one 
of the most important algorithms for finding frequent itemsets. It has many problems such as more database scan and 
I/O cost, a large amount of time etc., for finding frequent itemsets. So the researchers have made several refinements to 
Apriori in the last two decades. 

However, enhancing speed and reducing memory requirements are the essential parameters while determining the 
frequent patterns nowadays because of the rise of big data in various domains and sources in human endeavour. Also, 
when the transactional database size increases, demand for storage is increased and requires high-speed algorithms to 
find frequent patterns. But with a single-threaded approach, it's tough to minimize time. The GPU accelerated 
computing employs GPUs along with CPUs. It enables superior performance by supporting a parallel programming 
paradigm with multiple cores. It saves time and cost in scientific and other high computing tasks [6]. So, researchers 



GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data  
Format Approach and Jagged Array 

Volume 13 (2021), Issue 4                                                                                                                                                                       29 

were utilized GPUs in FPM based research. Some research works based on GPUs that motivate this article's proposed 
work were discussed here. 

W. Fang et al. [7] have introduced two implementations for Apriori using GPUs with Single Instruction, Multiple 
Data (SIMD) architectures. Both methods use a bitmap data structure. They executed the first one on the GPU, avoiding 
the intermediate data transfer between the GPU and CPU memory. The second one uses both the CPU and GPU for 
processing with trie structure. They proved that both implementations speed up the processing than the classical Apriori 
algorithm. S. M. Fakhrahmad et al. [8] have developed different parallel versions of a novel sequential mining 
algorithm for finding frequent itemsets. The methods are i) assigning each partition to a processor, ii) assigning each 
column to a processor, and iii) devoting the kth processor to mine the kth-itemsets. These methods were compared 
experimentally using time complexity, communication rate, and load balancing and proved that the proposed methods 
outperformed the existing sequential algorithms. 

The authors J. Zhou et al. have designed [9] a GPU-based Apriori algorithm with OpenGL to accelerate association 
rules mining. The experiment proved that the proposed algorithm provides better performance than the classical 
algorithms. A new pattern-based algorithm called HSApriori has been suggested by D. William Albert et al. [10], and it 
is based on the parallel processing nature of GPU. In this, the proposed method was tested using both the tidset and 
bitset representation of the dataset and found that the bitset is more appropriate for parallel processing. Further, they 
proved from the experiment that the speed of HSApriori is substantially more when compared with traditional 
HorgeltAprirori. 

To solve the limitations of Apriori, a parallel Apriori Map Reduce model has been presented by M. Tiwary et al. 
[11] using high-performance GPU. They have attached a GPU with every node in a Hadoop cluster. Also, they have 
used NVIDIA's GPU and JCUDA and JNI for the integration process. From the experiments, it has been proved that it 
provides better performance in terms of execution time. The downside of the algorithm is that the extra hardware charge 
is associated with the GPUs in each node in the Hadoop cluster. To overcome the drawbacks in the traditional cluster-
based map-reduce, J. Li et al. [12] have designed a multi-GPU based parallel Apriori algorithm to accelerate the 
calculation process of Apriori. It has been initiated especially to mine association rules in medical data. The analytical 
results have proved that the proposed method significantly improves the execution speed with a lower cost for medical 
data. 

A novel method called CGMM to suit both sparse and dense datasets has been proposed to mine frequent patterns 
has been introduced by L. Vu et al. [13]. To increase the speed of the FPM process, it combines both the CPU and GPU. 
In this method, the CPU uses the FP-tree data structure to perform mining, and the GPU converts the data to bit vectors. 
The experiments with AMD CPUs and NVIDIA GPU have proved that the performance evaluation of CGMM is faster 
than the existing sequential FPM and GPApriori. Y. Li et al. [14] have developed a GPU-based algorithm called Multi-
level Vertical Closed FIM. In this, a multi-layer vertical data structure has been used to minimize the usage of storage. 
The implementation is being accelerated with GPU to achieve high-speed computation, mainly on large and sparse 
datasets. 

K.W. Chon et al. [15] have proposed a novel algorithm called GMiner. It is a GPU-based method for finding 
frequent itemsets on large-scale datasets. It determines the patterns from the first level of the enumeration tree rather 
than storing and utilizing the patterns at the intermediate levels of the tree. With the computational power of GPUs, the 
method achieved fast performance and outperformed significantly than the existing sequential and parallel methods. 
The method also eliminates the skewness problem that the parallel algorithms suffer. A  Dynamic Queue and Deep 
Parallel (D2P) Apriori algorithm was generated by Y. Wang et al. in [16].  In this, the candidate generation process has 
been parallelized by using the Graph-join and dynamic bitmap queue. It also uses a vertical bitmap structure with low-
latency memory on GPU. The experiments have explored that the D2P-Apriori obtained high-speed up, i.e. a 23×speed 
up ratio compared to the modern CPU methods. 

The authors Y. Djenouri et al. [17] have created three High-Performance Computing (HPC)-based versions of 
Single Scan (SS) for frequent itemset mining viz., GSS, CSS, and CGSS. The GSS, CSS, and CGSS implement SS with 
GPU, cluster architecture, and GPU with multiple cluster nodes. They have also presented three approaches to reduce 
cluster load balancing and GPU thread divergence. The experiments have proved that the CGSS performs best in speed 
than SS, GSS and CSS. 

The authors P.Sumathi et al. [18] have developed a memory-efficient implementation for a vertical data format 
approach in finding frequent patterns using jagged array matrix representation. They have formulated mathematical 
equations for memory requirements and proved that it reduces the memory requirement than the traditional 
multidimensional array.  

The numerous GPU based FPM algorithms found in the literature have their own merits. But they have some 
performance, data size and scalability issues [19], which provides a more vital lead to the proposed work. The research 
article has introduced GNVDF, a novel GPU-accelerated FPM algorithm. It uses a novel pattern generation method to 
avoid generating many candidate itemsets as classical algorithms and uses a compact jagged array structure to minimize 
storage space [18]. Further, it uses the VDF format of transactional data to reduce the number of disk accesses. 

The remaining paper is organized as follows. Section 2 presents the basic terminologies and definitions, vertical 
data format, jagged array, and GPU. The description of the proposed methodology with an illustration is presented in 
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section 3. Section 4 illustrates the experimental results and discussion. Finally, the research article ends with a 
conclusion in section 5. 

2.  Basic Concepts 

Finding frequent itemsets is essential in mining associations, correlations, and many other relationships among the 
data. It is used in data classification, clustering, and other data mining tasks. Thus, FPM is focused on data mining 
research, and this section briefs the fundamental concepts associated with FPM and the study. 

A. Basic Terminology 

An itemset (set of items) that contains k items is said to be a k-itemset. The set of laptop, printer is a 2-itemset. 
Frequent patterns are the patterns (itemsets, subsequences, or substructures) that frequently appear in a dataset [2,20]. 
The support count of the itemset is identified by the number of transactions that contain the itemset. A sequence is an 
ordered list of itemsets, i.e. set of items purchased together. A subsequence is a sequence of items bought together and 
frequently occurs in a transactional database known as a sequential pattern. A substructure can be represented in 
different structural forms, such as subgraphs, subtrees, or sublattices, which may be combined with itemsets or 
subsequences [2]. 

B. Basic Definitions 

Let I={I1, I2,…, Im} be an itemset, and D is a transaction database contains a set of transactions T is a non-empty 
itemset such that T ⊆ I and each transaction T is associated with a unique identifier TID. Let A be a set of items.                       
A transaction T is said to contain in A if A ⊆ T. The format of the association rule is AB, where A⊂I, B⊂I, A ≠ Ø, 
B≠Ø, and A∩B=Ø [21]. Associations rule AB that holds in the transaction database D with support (s) and 
confidence(c) [1].    

Support(s): The support of an association rule AB is defined as the percentage of records that contain A ∪ B to the 
total number of records in the database [22]. It is noted that the support count is increased when an item present in 
numerous transactions in the database D [22]. 

Confidence: The confidence of a rule A  B is defined as s(AB)/s(A). It is the ratio of the number of 
transactions that contain all items in the consequent (B), as well as the antecedent (A) to the number of transactions that 
include all items in the antecedent (A) [23]. 

The minimum support threshold is used to discover the frequent itemsets from the databases. In contrast, the 
minimum confidence constraint is applied to those frequent itemsets found previously in determining the best rules. 

C. Vertical Data Format 

The databases can be represented in FPM algorithms in two data formats. They are i) Horizontal Data Format 
(HDF) and ii) Vertical Data Format (VDF). HDF represents the items categorized into particular transactions as stored 
in the database. i.e. it is denoted as <TID, Itemset>, where TID is the transaction ID, and Itemset refers to the items 
purchased by the customer corresponding to TID. The VDF represents data as transactions categorized into particular 
items that mean the TIDs are grouped for each item, i.e. VDF is described by <Item, Tid_set>, where item denotes an 
item in the shop and Tid_set contains the TID's where the item occurs. Fig.1. and Fig.2. show the HDF and VDF of D. 

 

 
Fig. 1. HDF of Transaction Database D 

D. Jagged Array 

A jagged array data structure is an array whose elements are arrays known as "array of arrays" with varying 
columns in each array/row, and it is shown in Fig.3. 

TID             Itemset 
  0: {c,d,e,g,h,i,k,p,m} 
  1: {b,e,f,g,h,i,p,m} 
  2: {c,e,m} 
  3: {a,b,c,d,e,f,g,i,p} 
  4: {a,b,c,d,e,p} 
  5: {a,b,c,d,f,h,p} 
  6: {b,e,f,h,i,p,m} 
  7: {a,c,d,e,k,p,m} 
  8: {a,c,d,e,f,i,p,m} 
  9: {a,c,d,e,f,h,i,p,m} 
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E. Graphical Processing Unit 

It is a device specifically designed for graphics processing. It is widely used in large scale hashing and matrix 
computations because it supports parallelism and serves as the base for mining and machine learning. CUDA and 
OpenCL are two popular GPGPU programming framework tools. NVIDIA has designed a parallel computing platform 
and programming called Compute Unified Device Architecture (CUDA) [12,24]. The CUDA-based program can only 
be run on the NVIDIA-produced GPU. A typical CPU may contain four or eight cores; an NVIDIA GPU consists of 
thousands of CUDA cores and a pipeline that supports parallel processing on thousands of threads, increasing the speed 
significantly.  

With Numba, the python developer can quickly enter into GPU-accelerated computing. It makes use of both GPU 
and CPU to facilitate processing-intensive operations viz., deep learning, analytics, and engineering applications.                  
The CUDA Python and Numba help to enhance the speed by targeting both CPUs and NVIDIA GPUs. With this 
advantage of CUDA python and Numba, the implementation of this proposed work will be GPU accelerated. 

 

Fig. 2. VDF of Transaction Database D 

 

Fig. 3. Jagged array representation 

3.  Proposed Methodology 

The main objective of the proposed work is to find the essential frequent itemsets from the transaction database 
with less memory space and time by ignoring the least probable ones. The method used Jagged array storage structure 
[16] and GPU to minimize memory usage and execution time. The proposed method first removes the null/void 
transactions in the dataset. Null/void transactions are those which contain only one item. Then the dataset is scanned 
once and converted into VDF format. The support count (SC) for each item is calculated by counting the number of 
transactions that contain each item. Now the candidate 1-itemset C1 is formed. Next, the frequent 1-itemset is formed by 
removing the items whose SC˂min_sup(δ) and stored it in Jagged array representation [18] in sorted order based on SC. 
From L1 the common transactions among all items are determined either by intersecting or ANDing the transaction in 
each item, and it is preserved in the Common Transaction List (CTID_list). The transactions in CTID_list's are removed from 
each item in L1, forming the final frequent 1-itemset. The SC for each item in L1 is updated by SC - n, where n is the 
number of transactions in CTID_list. Next, the new min_sup (δnew) is determined as δnew = δ - n, and it will be the min_sup 
from the 2nd iteration onwards.  
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arr[1] 

arr[0] Element-1 Element-2 Element-n … 

Element-1 Element-2 Element-n … 

Element-1 Element-2 Element-n … 

Item  Tid_set 
a:  {3,4,5,7,8,9} 
b:  {1,3,4,5,6} 
c:  {0,2,3,4,5,7,8,9} 
d:  {0,3,4,5,7,8,9} 
f:  {1,3,5,6,8,9} 
g:  {0,1,3} 
h:  {0,1,5,6,9} 
i:  {0,1,3,6,8,9} 
k:  {0,7} 
m:  {0,1,2,6,7,8,9} 
p:  {0,1,3,4,5,6,7,8,9} 
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Before finding the frequent 2-itemset, the final frequent 1-itemset is divided into two logical buckets, LB1 and LB2, 
respectively. LB1 contains all the items whose SC = δnew, and the rest will be placed LB2. The itemset combinations 
among the items in LB1 are least probable of being a candidate 2-itemset because the SC of each item is equal to δnew. So 
it is not considered for generating candidate 2-itemset.  The candidate 2-itemsets patterns are generated by combining 
each item Ix in LB1 with each item Iy in LB2 and each item Iz in LB2 with Iz+1 in LB2 until the last item in LB2. The itemset 
combination that ends with the last item in LB2 will be placed in C2_2 and the rest in C2_1. From C2_1 and C2_2, the 
items whose SC below the δnew is removed as infrequent and formed L2_1 and L2_2.  

For generating candidate 3-itemset, each itemset Ix in L2_1 is combined with the next item Iy in LB2 after the last 
item in Ix. Similar to the previous iteration, the combinations that end with the last item in LB2 are placed in C3_2 and 
rest in C3_1.  It is noted that the itemset combinations in L2_2 are not used in the formation of candidate 3-itemsets.  The 
L3_1 and L3_2 were formed by removing the infrequent itemsets in C3_1 and C3_2. The process is continued until Ln_1 is not 
null. Further, to increase the execution speed of the proposed method, it is being accelerated with GPU. The proposed 
algorithm (Algorithm 1) is shown below, and the workflow diagram is shown in Fig.4. 

 
 

Algorithm 1 Algorithm for finding frequent itemsets 
 Input   : D - a dataset with n transactions; 

 δ - minimum support threshold; 
 Output : Frequent patterns; 
1: D  eliminate_null(D); 
2: vdf  scan D and convert it in vertical data format;  
3: L1 one_frequent_itemset(vdf, δ); 
4: CTID_list  find_common_TID(L1); 
5: L1 remove the transactions in CTID_list  for each item in L1; 
6: δnew  δ - number of transactions in CTID_list;  
7: LB1  {∀frequent 1-itemset | SC=δnew };  
8: LB2  {∀frequent 1-itemset | SC > δnew};  
9: L2_1, L2_2  find_two_freq_itemset(LB1,LB2,δnew); 
10: i=2; 
11: while Li_1 ≠ Ø do 
12:  Li+1_1,Li+1_2  n_frequent_itemset(Li_1,LB2,δnew); 
13:  i=i+1; 
14: end while 

 
procedure eliminate_null(D - a dataset with n transactions) 
1: for each Ti ∈ D do 
2:  cntcount the number of items in Ti; 
3:  if cnt == 1 then  
4:   remove Ti from D; 
5:  end if; 
6: end for; 
7: return D; 

 
procedure one_frequent_itemset(D: Dataset after removing null 
transactions; δ :minimum support threshold) 
1: L1Ø; 
2: for each itemi in D do 
3:  TIDlisttransactions in which itemi occurs;  
4:  SCcount the number of transactions in TIDlist 
5:  if SC ≥ δ then  
6:   add {itemi, TIDlist, SC}into L1; 
7:  end if 
8: end for 
9: sort L1 and store it in jagged array format; 
10: return L1; 

 
procedure find_common_TID (L1: frequent 1-itemset) 
1: nfind the number of items in L1; 
2: CTID_list{TIDlist1 ∩ TIDlist2 ∩… ∩ TIDlistn}; 
3: return CTID_list; 
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procedure two_freq_itemset (LB1: frequent 1-itemset1, LB2: frequent 1-
itemset2, δ:minimum support ) 
1: last_itemfind last item in LB2; 
2: for each itemi in LB1 do 

3:  for each itemj in LB2 do 

4:  new_pattern  <itemiitemj>; 

5:  new_tidTIDs(itemi)∩TIDs(itemj); 

6:  new_sccount the transactions in new_tid; 

7:  if new_pattern contains last_item then 

8:   append{new_pattern,new_tid,new_sc} in C2_2; 

9:  else 

10:   append{new_pattern,new_tid,new_sc} in C2_1; 

11:  end if 

12:  end for 

13: end for  
14: L2_1{C2_1 | SC(C2_1) ≥ δ}; 
15: L2_2{C2_2 | SC(C2_2) ≥ δ}; 
16: return L2_1, L2_2 

 
procedure n_frequent_itemset(Li_1: frequent i-itemset1, LB2: frequent 1-
itemset2, δnew: minimum support) 
1: for each itemi in Li_1 do 
2:  last_itemfind the last item in itemi; 

3:  for each itemj in LB2 after last_item do 

4:  new_item{<itemiitemj>}; 

5:  new_tidTIDs(itemi)∩ TIDs(itemj); 

6:  new_sccount the transactions in new_tid; 

7:  if new_item contains last element in LB2 then 

8:   append{new_item,new_tid,new_sc}in Cn_2; 

9:  else 

10:   append{new_item,new_tid,new_sc}in Cn_1; 

11:  end if 

12:  end for 

13: end for 
14: Ln_1{Cn_1 | SC(Cn_1) ≥ δ}; 
15: Ln_2{Cn_2 | SC(Cn_2) ≥ δ}; 
16: return Ln_1,Ln_2 

 
The main advantage of the proposed method is that it reduces the number of candidate itemsets to be generated in 

each iteration because the itemsets in Li_2, for i ≥ 3 will not be considered for creating candidate itemsets and removal of 
items in CTL in final L1. Additionally, GPU and Jagged array enhance the performance in terms of speed and usage of 
memory. 

A. Memory Requirement Calculation 

From [25,18], it was observed that the memory requirement using a jagged array structure for the frequent itemsets 
could be calculated based on the following equation. 

 

1
iitemset

i ii
TM TM rbytesφ≠

=
= −∑                                                               (1) 

 
where, TMi is the total memory required for the candidate i-itemset, and rbytesi is the memory occupied by the 
infrequent/rare items in the candidate i-itemset. By subtracting rbytesi from TMi, the memory for Li i.e., frequent i-
itemsets can be found.  

TMi and rbytesi were calculated using equations 2 and 3, respectively. 
 



GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data  
Format Approach and Jagged Array 

34                                                                                                                                                                       Volume 13 (2021), Issue 4 

{ }
( ) ( )

i

i item
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i

i item
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rbytes SC sizeof tid sizeof item
∀ ∈ −

= × +∑                                                (3) 

 

 
Fig. 4. Workflow of GNVDF 

As in [25], the GNVDF also used the same jagged storage structure for storing frequent itemsets, and the amount 
of memory requirement was calculated as follows. It first fetches the common transactions among items in the frequent 
1-itemsets and then removes them from frequent 1-itemsets. Suppose if the frequent 1-itemset contains n items say 
item1, item2, item3,…, itemn and the corresponding TID lists say TID-List1, TID-List2, TID-List3,…,TID-Listn, then the 
common TIDs(CTID) among the n items were found by set intersection operation using equation (4) shown below.   

 
1 2{ } { } ... { }

TID nC TID List TID List TID List= − ∩ − ∩ ∩ −                                               (4) 
 
The memory space required for CTID was calculated using equation (5). 
 

( )

1
( )

TID

i

length C

TID
i

CM sizeof C
=

= ∑                                                                          (5) 

 
Since the method removes the CTID from frequent 1-itemsets, the CTID need not be repeated in the subsequent 

frequent itemsets, saving memory space considerably. The amount of memory saved (MS) for the entire dataset was 
calculated using equation (6).  

 
 

1 2
2

( ) { ( ) ( )}
iitemset

i i i
i

MS count itemset CM count itemset count itemset CM
φ≠

− −
=

= × + + ×∑                            (6) 

 
where, count(itemset1), count(itemseti_1), and count(itemseti_2) refer to the number of items in frequent 1-itemset, first 
and the second part of frequent i-itemsets, respectively. Thus, the total memory required for the frequent itemsets of the 
entire dataset using the proposed method was calculated using equation (7). 
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1
{ }

iitemset

final i i
i

TM TM rbytes MS
φ≠

=

= − −∑                                                             (7) 

B. Proposed Methodology: An Example 

The vertical representation of transaction dataset D as shown in Fig. 2 is considered to understand the proposed 
methodology. It contains 12 items viz., {a, b, c, d, e, f, g, h, i, k, m, p}. Each item is represented by a row containing the 
name of the item and the transactions in which the item occurs (TIDs) [26]. Let δ is 6. From Fig. 2, the candidate                    
1-itemset is calculated. The candidate 1-itemset contains all the items in D, the TIDs in which the item occurs and the 
SC. It is shown in Table 1. 

Table 1. Candidate 1-itemset(C1) 

Item TIDs SC 
a {3, 4, 5, 7, 8, 9} 6 
b {1, 3, 4, 5, 6} 5 
c {0, 2, 3, 4, 5, 7, 8, 9} 8 
d {0, 3, 4, 5, 7, 8, 9} 7 
e {0, 1, 2, 3, 4, 6, 7, 8, 9} 9 
f {1, 3, 5, 6, 8, 9} 6 
g {0, 1, 3} 3 
h {0, 1, 5, 6, 9} 5 
i {0, 1, 3, 6, 8, 9} 6 
k {0, 7} 2 
m {0, 1, 2, 6, 7, 8, 9} 7 
p {0, 1, 3, 4, 5, 6, 7, 8, 9} 9 

 
From the table above, the items viz., b, g, h and k are removed as infrequent because the items do not satisfied δ. 

The frequent 1-itemset is shown in Table 2. Since the common transactions (CTL) are stored in Table 3, they are 
removed from each item in L1, the final L1 is formed, and it is shown in Table 4.  

Table 2. Frequent 1-itemset(L1) 

1- Itemset TIDs 
a 3 4 5 7 8 9    
f 1 3 5 6 8 9    
i 0 1 3 6 8 9    
d 0 3 4 5 7 8 9   
m 0 1 2 6 7 8 9   
c 0 2 3 4 5 7 8 9  
e 0 1 2 3 4 6 7 8 9 
p 0 1 3 4 5 6 7 8 9 

 
Now the new_min is calculated by removing the number of items in CTL as δnew = δ - n = 6-2 = 4. The logical 

buckets from final L1, i.e. LB1 and LB2, are shown in Tables 5 and 6.  
To reduce the storage space requirement further, this method finds the common transaction in which the all items 

occurs either by AND operation or intersection of the TIDs of all frequent 1-itemset. i.e.{3,4,5,7,8,9} ∩ {1,3,5,6,8,9} ∩ 
{0,1,3,6,8,9}∩{0,3,4,5,7,8,9}∩{0,1,2,6,7,8,9}∩{0,2,3,4,5,7, 8,9}∩{0,1,2,3,4,5,6,7,8,9}∩{0,1,3,4,5,6,7,8,9} = {8,9} 
and it is stored in CTL. The CTL is shown in Table 5. 

Table 3. Common Transaction List(CTL) 

CTL 
8 9 

Table 4. Final Frequent 1-itemset(L1) 

1- Itemset TIDs 
a 3 4 5 7    
f 1 3 5 6    
i 0 1 3 6    
d 0 3 4 5 7   
m 0 1 2 6 7   
c 0 2 3 4 5 7  
e 0 1 2 3 4 6 7 
p 0 1 3 4 5 6 7 
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Table 5. Logical Bucket-1(LB1) 
 

 
Table 6. Logical Bucket-2(LB2) 

 
The 2-itemset combinations viz., ad, am, ac, ae, fd, fm, fc, fe, id, im, ic, ie, dm, dc, de, mc, me, mp, and ce are in 

C2_1 and the items viz., ap, fp, ip, dp, mp, cp and ep are stored in C2_2. The possible combinations viz., af, ai and fi need 
not be generated. It is shown in Tables 7 and 8 respectively.  

Table 7. Candidate 2-itemset - Part I 

C2_1 TIDs SC 
ad 3, 4, 5, 7 4 
am 7 1 

ac 3, 4, 5, 7 4 
ae 3,4,7 3 

fd 3,5 2 
fm 1,6 2 
fc 3,5 2 

fe 1,3,6 3 
id 0,3 2 

im 0,1,6 3 
ic 0,3 2 
ie 0, 1, 3, 6 4 

dm 0 1 
dc 0, 3, 4, 5, 7 5 

de 0, 3, 4, 7 4 
mc 0,2 2 
me 0, 1, 2, 6, 7 5 

ce 0, 2, 3, 4, 7 5 

Table 8. Candidate 2-itemset - Part II 

C2_2 TIDs SC 

ap 3, 4, 5, 7 4 
fp 1, 3, 5, 6 4 
ip 0,1,3,6 4 

dp 0, 3, 4, 5, 7 5 
mp 0, 1, 6, 7 4 

cp 0, 3, 4, 5, 7 5 
ep 0, 1, 3, 4, 6, 7 6 

 
The items viz., am, ae, fd, fm, fc, fe, id, im, ic, dm and mc are infrequent in C2_1 and no item is infrequent in C2_2. 

Therefore, the frequent 2-itemsets are stored in L2_1 and L2_2 in jagged array notation as shown in Tables 9 and 10 
respectively. The candidate 3-itemsets from L2_1 and LB2 viz., adm, adc, ade, ace and dce, stored in C3_1 and the 
patterns adp, acp, iep, dep, mep, dcp and cep are kept in C3_2 as shown in Tables 11 and 12 respectively. The L3_1 and 
L3_2 are shown in Tables 13 and 14, respectively. Similarly, C4_1 and C4_2 are shown in Tables 15 and 16, respectively. 
L4_1 and L4_2 are L4_1 = {} and L4_2 is shown in Table 17. 

1- Itemset TIDs 
d 0 3 4 5 7   
m 0 1 2 6 7   
c 0 2 3 4 5 7  
e 0 1 2 3 4 6 7 
p 0 1 3 4 5 6 7 

 

1- Itemset TIDs 
a 3 4 5 7 
f 1 3 5 6 
i 0 1 3 6 
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Table 9. Frequent  2-itemset - Part I 

L2_1 TIDs 
ad 3 4 5 7  
ac 3 4 5 7  
ie 0 1 3 6  
dc 0 3 4 5 7 
de 0 3 4 7  
me 0 1 2 6 7 
ce 0 2 3 4 7 

Table 10. Frequent  2-itemset - Part II 

L2_2 TIDs 
ap 3 4 5 7   
fp 1 3 5 6   
ip 0 1 3 6   
dp 0 3 4 5 7  
mp 0 1 6 7   
cp 0  3 4 5 7  
ep 0 1 3 4 6 7 

Table 11. Candidate 3-itemset - Part I 

C3_1 TIDs SC 
adm 7 1 
adc 3, 4, 5, 7 4 
ade 3,4,7 3 
ace 3,4,7 3 
dce 0, 3, 4, 7 4 

Table 12. Candidate 3-itemset - Part II 

C3_2 TIDs SC 
adp 3, 4, 5, 7 4 
acp 3,4,5,7 4 
iep 0, 1, 3, 6 4 
dep 0, 3, 4, 7 4 
mep 0, 1, 6, 7 4 
dcp 0, 3, 4, 5, 7 5 
cep 0, 3, 4, 7 4 

Table 13. Frequent 3-itemset - Part I 

L3_1 TIDs 
adc 3 4 5 7 
dce 0 3 4 7 

Table 14. Frequent 3-itemset - Part II 

3L _2 TIDs 
adp 3 4 5 7  
acp 3 4 5 7  
iep 0 1 3 6  
dcp 0 3 4 5 7 
dep 0 3 4 7  
mep 0 1 6 7  
cep 0 3 4 7  

Table 15. Candidate 4-itemset - Part I 

 

 

C4_1 TIDs SC 
adce 3,4,7 3 
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Table 16. Candidate 4-itemset - Part II 

 

Table 17. Frequent 4-itemset - Part II 

 
Now, L4_1 is an empty list, so the algorithm terminates. It is observed from the experiment that the time needed for 

finding frequent items for sample dataset D in the example without the use of GPU is 0.8111 sec, whereas the wall time 
is 0.0073ms with GPU. The total memory requirement for the frequent itemset for the above dataset using the method in 
[18] is TM = 124+210+137+32=503 bytes. By using GNVDF, the memory requirement for the common transaction is 
CM = 2+2 = 4 bytes and the amount of memory saved using the proposed method is MS = (8×4) + {(7×4 + 7×4) + (2×4 
+ 7×4) + (0×4 + 2×4)} = 32 + 56 + 36 + 8 = 132 bytes. Therefore, the final memory requirement is                             
TMfinal = 503 - 132 = 371 which is 26.24% of memory saved for this example dataset compared to the memory 
requirement in [18]. It is also noted that the number of common transactions is directly proportional to the amount of 
memory saved. 

4.  Experimental Results and Discussion 

The proposed algorithm was implemented using Python with CUDA Toolkit with NVIDIA GPU. An extensive 
experiment was conducted using four real-time datasets viz., chess, mushroom, t25i10d10k and c20d10k to evaluate the 
performance of GNVDF. The datasets and their details were shown in Table 18. They were obtained from the FIMI 
repository and an open-source Data Mining Library. The reason for choosing those datasets is that many researchers 
used those bench-mark datasets in Frequent Itemset Mining (FIM) and Association Rule Mining(ARM) based research. 
The runtime performance of the proposed method without GPU acceleration was obtained for each dataset, with the 
minimum threshold values ranging from 20% to 70% and is shown in Table 19. Similarly, the proposed algorithm was 
executed with GPU acceleration using the same minimum support range and results were tabulated in Table 20.  

Table 18. Datasets used in experiments with their properties 

Datasets No. of 
transactions 

No. of 
items 

Average item count per 
transaction 

chess 3196 75 37.00 
mushrooms 8416 119 23.00 
t25i10d10k 9976 929 24.77 

c20d10k 10000 192 20.00 

Table 19. Runtime (in ms) performance of the proposed algorithm without GPU 

DS# 
MS* chess mushroom t25i10d10k c20d10k 

20 10759.6 14501.6 16332.5 16334.2 
30 9845.5 13464.2 16225.8 16006.2 
40 7972 11103.8 13885.7 15441.2 
50 7101.7 10224.4 12645.6 14956.2 
60 6293.4 9834 11101.2 13412.4 
70 5082.2 8253 9256.4 12035.1 

Table 20. Runtime (in ms) performance of the proposed algorithm with GPU-acceleration 
 

DS# 
MS* chess mushroom t25i10d10k c20d10k 

20 119.5511 145.0160 161.7079 161.7248 
30 107.0163 138.0940 156.0173 158.4772 
40 83.9158 117.2770 129.7729 131.9761 
50 73.2134 104.5091 108.3670 110.6496 
60 64.2184 88.8096 102.4380 105.3511 
70 53.4968 74.0512 83.6424 92.9924 

        #DS-Dataset *MS-min_sup(δ) 

L4_2 TIDs 
adcp 3 4 5 7 

     

 

C4_2 TIDs SC 
adcp 3, 4, 5, 7 4 
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The graphical representation of the runtime performance of each dataset with and without GPU usage was 
illustrated in Fig.5. From tables 19 and 20, it was observed that when the number of items and transactions in a dataset 
increases, the time required for finding frequent patterns also increases. In general, there is an inverse relationship 
between the min_sup threshold and the time needed to determine the frequent patterns. i.e., when the min_sup threshold 
is increased, the number of generated candidate itemsets, followed by frequent patterns, is minimized, consuming less 
time for the higher threshold.  

Fig.5. showed that the GPU acceleration significantly enables the execution speed of the proposed methodology, 
and GNVDF with GPU is faster by 90 to 135 times when compared with GNVDF without GPU acceleration. The 
reason for the performance enhancement is that the GPUs have many computing cores that allow the parallel execution 
of computation-intensive tasks. Since the GNVDF uses the VDF approach, the number of database scans is restricted to 
one [27] for determining each item's support count, which in turn reduces the overtime for finding the frequent patterns.  
But, VDF requires more memory for additional information like TID's than HDF [27], so a Jagged array has been used 
to minimise memory space is an advantage. Further, the elements in CTL removed from frequent 1-itemset save the 
memory space considerably more than the existing classical algorithms.  

 

 
Fig. 5. Runtime performance of the proposed method with and without GPU acceleration of each dataset 

5.  Conclusion 

A GPU-accelerated novel method for finding the frequent itemset called GNVDF has been proposed in this 
research article. It uses an innovative approach to discover the candidate and frequent itemsets by removing 
unnecessary itemsets to form the subsequent itemsets. It also utilizes GPU for speeding up the process. It also 
empowers the use of a jagged array storage structure and removes the common elements in 1-frequent itemsets. With 
GPU-acceleration and innovative way of determining itemsets, the time required is significantly decreased. Similarly, 
with a jagged storage structure, the memory requirement is also minimized than the classical algorithms. From the 
extensive experiments made, it is observed that the GNVDF with GPU is 90-135 times faster than with GNVDF 
without GPU and also proved that it suits both sparse and dense datasets. Further, the use of the VDF approach restricts 
the database scan to one. 
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