
I.J. Modern Education and Computer Science, 2021, 4, 28-41
Published Online August 2021 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijmecs.2021.04.03

This work is open access and licensed under the Creative Commons CC BY 4.0 License. Volume 13 (2021), Issue 4

GNVDF: A GPU-accelerated Novel Algorithm
for Finding Frequent Patterns Using Vertical Data
Format Approach and Jagged Array

P. Sumathi
Research Scholar, Nehru Memorial College (Affiliated to Bharathidasan University), Puthanampatti, Tiruchirappalli-Dt,
Tamil Nadu, India - 621007
Email:sumiparasu@gmail.com

S.Murugan
Associate Professor, Nehru Memorial College (Affiliated to Bharathidasan University), Puthanampatti, Tiruchirappalli-
Dt, Tamil Nadu, India - 621007
Email:murugan_nmc@hotmail.com

Received: 01 June 2021; Revised: 28 June 2021; Accepted: 24 July 2021; Published: 08 August 2021

Abstract: In the modern digital world, online shopping becomes essential in human lives. Online shopping stores like
Amazon show up the "Frequently Bought Together" for their customers in their portal to increase sales. Discovering
frequent patterns is a fundamental task in Data Mining that find the frequently bought items together. Many
transactional data were collected every day, and finding frequent itemsets from the massive datasets using the classical
algorithms requires more processing time and I/O cost. A GPU accelerated Novel algorithm for finding the frequent
patterns using Vertical Data Format (GNVDF) has been introduced in this research article. It uses a novel pattern
formation. In this, the candidate i-itemsets is divided into two buckets viz., Bucket-1 and Bucket-2. Bucket-1 contain all
the possible items to form candidate-(i+1) itemsets. Bucket-2 has the items that cannot include in the candidate-(i+1)
itemsets. It compactly employs a jagged array to minimize the memory requirement and remove common transactions
among the frequent 1-itemsets. It also utilizes a vertical representation of data for efficiently extracting the frequent
itemsets by scanning the database only once. Further, it is GPU-accelerated for speeding up the execution of the
algorithm. The proposed algorithm was implemented with and without GPU usage and compared. The comparison
result revealed that GNVDF with GPU acceleration is faster by 90 to 135 times than the method without GPU.

Index Terms: Frequent Patterns, GNVDF, Graphical Processing Unit, Novel Pattern Formation, Vertical Data Format,
and Jagged Array.

1. Introduction

Data Mining (DM) is a part of Knowledge Discovery in Databases (KDD) [1] and explores the hidden patterns for
business people. It is associated with many fields such as database systems, data warehousing, statistics, machine
learning, information retrieval, and high-level computing [2,3]. It is also supported by other sciences like neural
networks, pattern recognition, spatial data analysis, image databases and signal processing [2,3]. There are several
techniques in data mining like classification, clustering, association rule mining and regression [4]. Frequent Pattern
Mining (FPM) is a computationally crucial step in data mining [5]. It is used to determine the frequent patterns and
associations from databases such as relational and transactional databases and other data repositories. The Apriori is one
of the most important algorithms for finding frequent itemsets. It has many problems such as more database scan and
I/O cost, a large amount of time etc., for finding frequent itemsets. So the researchers have made several refinements to
Apriori in the last two decades.

However, enhancing speed and reducing memory requirements are the essential parameters while determining the
frequent patterns nowadays because of the rise of big data in various domains and sources in human endeavour. Also,
when the transactional database size increases, demand for storage is increased and requires high-speed algorithms to
find frequent patterns. But with a single-threaded approach, it's tough to minimize time. The GPU accelerated
computing employs GPUs along with CPUs. It enables superior performance by supporting a parallel programming
paradigm with multiple cores. It saves time and cost in scientific and other high computing tasks [6]. So, researchers

GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data
Format Approach and Jagged Array

Volume 13 (2021), Issue 4 29

were utilized GPUs in FPM based research. Some research works based on GPUs that motivate this article's proposed
work were discussed here.

W. Fang et al. [7] have introduced two implementations for Apriori using GPUs with Single Instruction, Multiple
Data (SIMD) architectures. Both methods use a bitmap data structure. They executed the first one on the GPU, avoiding
the intermediate data transfer between the GPU and CPU memory. The second one uses both the CPU and GPU for
processing with trie structure. They proved that both implementations speed up the processing than the classical Apriori
algorithm. S. M. Fakhrahmad et al. [8] have developed different parallel versions of a novel sequential mining
algorithm for finding frequent itemsets. The methods are i) assigning each partition to a processor, ii) assigning each
column to a processor, and iii) devoting the kth processor to mine the kth-itemsets. These methods were compared
experimentally using time complexity, communication rate, and load balancing and proved that the proposed methods
outperformed the existing sequential algorithms.

The authors J. Zhou et al. have designed [9] a GPU-based Apriori algorithm with OpenGL to accelerate association
rules mining. The experiment proved that the proposed algorithm provides better performance than the classical
algorithms. A new pattern-based algorithm called HSApriori has been suggested by D. William Albert et al. [10], and it
is based on the parallel processing nature of GPU. In this, the proposed method was tested using both the tidset and
bitset representation of the dataset and found that the bitset is more appropriate for parallel processing. Further, they
proved from the experiment that the speed of HSApriori is substantially more when compared with traditional
HorgeltAprirori.

To solve the limitations of Apriori, a parallel Apriori Map Reduce model has been presented by M. Tiwary et al.
[11] using high-performance GPU. They have attached a GPU with every node in a Hadoop cluster. Also, they have
used NVIDIA's GPU and JCUDA and JNI for the integration process. From the experiments, it has been proved that it
provides better performance in terms of execution time. The downside of the algorithm is that the extra hardware charge
is associated with the GPUs in each node in the Hadoop cluster. To overcome the drawbacks in the traditional cluster-
based map-reduce, J. Li et al. [12] have designed a multi-GPU based parallel Apriori algorithm to accelerate the
calculation process of Apriori. It has been initiated especially to mine association rules in medical data. The analytical
results have proved that the proposed method significantly improves the execution speed with a lower cost for medical
data.

A novel method called CGMM to suit both sparse and dense datasets has been proposed to mine frequent patterns
has been introduced by L. Vu et al. [13]. To increase the speed of the FPM process, it combines both the CPU and GPU.
In this method, the CPU uses the FP-tree data structure to perform mining, and the GPU converts the data to bit vectors.
The experiments with AMD CPUs and NVIDIA GPU have proved that the performance evaluation of CGMM is faster
than the existing sequential FPM and GPApriori. Y. Li et al. [14] have developed a GPU-based algorithm called Multi-
level Vertical Closed FIM. In this, a multi-layer vertical data structure has been used to minimize the usage of storage.
The implementation is being accelerated with GPU to achieve high-speed computation, mainly on large and sparse
datasets.

K.W. Chon et al. [15] have proposed a novel algorithm called GMiner. It is a GPU-based method for finding
frequent itemsets on large-scale datasets. It determines the patterns from the first level of the enumeration tree rather
than storing and utilizing the patterns at the intermediate levels of the tree. With the computational power of GPUs, the
method achieved fast performance and outperformed significantly than the existing sequential and parallel methods.
The method also eliminates the skewness problem that the parallel algorithms suffer. A Dynamic Queue and Deep
Parallel (D2P) Apriori algorithm was generated by Y. Wang et al. in [16]. In this, the candidate generation process has
been parallelized by using the Graph-join and dynamic bitmap queue. It also uses a vertical bitmap structure with low-
latency memory on GPU. The experiments have explored that the D2P-Apriori obtained high-speed up, i.e. a 23×speed
up ratio compared to the modern CPU methods.

The authors Y. Djenouri et al. [17] have created three High-Performance Computing (HPC)-based versions of
Single Scan (SS) for frequent itemset mining viz., GSS, CSS, and CGSS. The GSS, CSS, and CGSS implement SS with
GPU, cluster architecture, and GPU with multiple cluster nodes. They have also presented three approaches to reduce
cluster load balancing and GPU thread divergence. The experiments have proved that the CGSS performs best in speed
than SS, GSS and CSS.

The authors P.Sumathi et al. [18] have developed a memory-efficient implementation for a vertical data format
approach in finding frequent patterns using jagged array matrix representation. They have formulated mathematical
equations for memory requirements and proved that it reduces the memory requirement than the traditional
multidimensional array.

The numerous GPU based FPM algorithms found in the literature have their own merits. But they have some
performance, data size and scalability issues [19], which provides a more vital lead to the proposed work. The research
article has introduced GNVDF, a novel GPU-accelerated FPM algorithm. It uses a novel pattern generation method to
avoid generating many candidate itemsets as classical algorithms and uses a compact jagged array structure to minimize
storage space [18]. Further, it uses the VDF format of transactional data to reduce the number of disk accesses.

The remaining paper is organized as follows. Section 2 presents the basic terminologies and definitions, vertical
data format, jagged array, and GPU. The description of the proposed methodology with an illustration is presented in

GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data
Format Approach and Jagged Array

30 Volume 13 (2021), Issue 4

section 3. Section 4 illustrates the experimental results and discussion. Finally, the research article ends with a
conclusion in section 5.

2. Basic Concepts

Finding frequent itemsets is essential in mining associations, correlations, and many other relationships among the
data. It is used in data classification, clustering, and other data mining tasks. Thus, FPM is focused on data mining
research, and this section briefs the fundamental concepts associated with FPM and the study.

A. Basic Terminology

An itemset (set of items) that contains k items is said to be a k-itemset. The set of laptop, printer is a 2-itemset.
Frequent patterns are the patterns (itemsets, subsequences, or substructures) that frequently appear in a dataset [2,20].
The support count of the itemset is identified by the number of transactions that contain the itemset. A sequence is an
ordered list of itemsets, i.e. set of items purchased together. A subsequence is a sequence of items bought together and
frequently occurs in a transactional database known as a sequential pattern. A substructure can be represented in
different structural forms, such as subgraphs, subtrees, or sublattices, which may be combined with itemsets or
subsequences [2].

B. Basic Definitions

Let I={I1, I2,…, Im} be an itemset, and D is a transaction database contains a set of transactions T is a non-empty
itemset such that T ⊆ I and each transaction T is associated with a unique identifier TID. Let A be a set of items.
A transaction T is said to contain in A if A ⊆ T. The format of the association rule is AB, where A⊂I, B⊂I, A ≠ Ø,
B≠Ø, and A∩B=Ø [21]. Associations rule AB that holds in the transaction database D with support (s) and
confidence(c) [1].

Support(s): The support of an association rule AB is defined as the percentage of records that contain A ∪ B to the
total number of records in the database [22]. It is noted that the support count is increased when an item present in
numerous transactions in the database D [22].

Confidence: The confidence of a rule A  B is defined as s(AB)/s(A). It is the ratio of the number of
transactions that contain all items in the consequent (B), as well as the antecedent (A) to the number of transactions that
include all items in the antecedent (A) [23].

The minimum support threshold is used to discover the frequent itemsets from the databases. In contrast, the
minimum confidence constraint is applied to those frequent itemsets found previously in determining the best rules.

C. Vertical Data Format

The databases can be represented in FPM algorithms in two data formats. They are i) Horizontal Data Format
(HDF) and ii) Vertical Data Format (VDF). HDF represents the items categorized into particular transactions as stored
in the database. i.e. it is denoted as <TID, Itemset>, where TID is the transaction ID, and Itemset refers to the items
purchased by the customer corresponding to TID. The VDF represents data as transactions categorized into particular
items that mean the TIDs are grouped for each item, i.e. VDF is described by <Item, Tid_set>, where item denotes an
item in the shop and Tid_set contains the TID's where the item occurs. Fig.1. and Fig.2. show the HDF and VDF of D.

Fig. 1. HDF of Transaction Database D

D. Jagged Array

A jagged array data structure is an array whose elements are arrays known as "array of arrays" with varying
columns in each array/row, and it is shown in Fig.3.

TID Itemset
 0: {c,d,e,g,h,i,k,p,m}
 1: {b,e,f,g,h,i,p,m}
 2: {c,e,m}
 3: {a,b,c,d,e,f,g,i,p}
 4: {a,b,c,d,e,p}
 5: {a,b,c,d,f,h,p}
 6: {b,e,f,h,i,p,m}
 7: {a,c,d,e,k,p,m}
 8: {a,c,d,e,f,i,p,m}
 9: {a,c,d,e,f,h,i,p,m}

GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data
Format Approach and Jagged Array

Volume 13 (2021), Issue 4 31

E. Graphical Processing Unit

It is a device specifically designed for graphics processing. It is widely used in large scale hashing and matrix
computations because it supports parallelism and serves as the base for mining and machine learning. CUDA and
OpenCL are two popular GPGPU programming framework tools. NVIDIA has designed a parallel computing platform
and programming called Compute Unified Device Architecture (CUDA) [12,24]. The CUDA-based program can only
be run on the NVIDIA-produced GPU. A typical CPU may contain four or eight cores; an NVIDIA GPU consists of
thousands of CUDA cores and a pipeline that supports parallel processing on thousands of threads, increasing the speed
significantly.

With Numba, the python developer can quickly enter into GPU-accelerated computing. It makes use of both GPU
and CPU to facilitate processing-intensive operations viz., deep learning, analytics, and engineering applications.
The CUDA Python and Numba help to enhance the speed by targeting both CPUs and NVIDIA GPUs. With this
advantage of CUDA python and Numba, the implementation of this proposed work will be GPU accelerated.

Fig. 2. VDF of Transaction Database D

Fig. 3. Jagged array representation

3. Proposed Methodology

The main objective of the proposed work is to find the essential frequent itemsets from the transaction database
with less memory space and time by ignoring the least probable ones. The method used Jagged array storage structure
[16] and GPU to minimize memory usage and execution time. The proposed method first removes the null/void
transactions in the dataset. Null/void transactions are those which contain only one item. Then the dataset is scanned
once and converted into VDF format. The support count (SC) for each item is calculated by counting the number of
transactions that contain each item. Now the candidate 1-itemset C1 is formed. Next, the frequent 1-itemset is formed by
removing the items whose SC˂min_sup(δ) and stored it in Jagged array representation [18] in sorted order based on SC.
From L1 the common transactions among all items are determined either by intersecting or ANDing the transaction in
each item, and it is preserved in the Common Transaction List (CTID_list). The transactions in CTID_list's are removed from
each item in L1, forming the final frequent 1-itemset. The SC for each item in L1 is updated by SC - n, where n is the
number of transactions in CTID_list. Next, the new min_sup (δnew) is determined as δnew = δ - n, and it will be the min_sup
from the 2nd iteration onwards.

.
.
.

arr

.
.
.

arr[n]

arr[1]

arr[0] Element-1 Element-2 Element-n …

Element-1 Element-2 Element-n …

Element-1 Element-2 Element-n …

Item Tid_set
a: {3,4,5,7,8,9}
b: {1,3,4,5,6}
c: {0,2,3,4,5,7,8,9}
d: {0,3,4,5,7,8,9}
f: {1,3,5,6,8,9}
g: {0,1,3}
h: {0,1,5,6,9}
i: {0,1,3,6,8,9}
k: {0,7}
m: {0,1,2,6,7,8,9}
p: {0,1,3,4,5,6,7,8,9}

GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data
Format Approach and Jagged Array

32 Volume 13 (2021), Issue 4

Before finding the frequent 2-itemset, the final frequent 1-itemset is divided into two logical buckets, LB1 and LB2,
respectively. LB1 contains all the items whose SC = δnew, and the rest will be placed LB2. The itemset combinations
among the items in LB1 are least probable of being a candidate 2-itemset because the SC of each item is equal to δnew. So
it is not considered for generating candidate 2-itemset. The candidate 2-itemsets patterns are generated by combining
each item Ix in LB1 with each item Iy in LB2 and each item Iz in LB2 with Iz+1 in LB2 until the last item in LB2. The itemset
combination that ends with the last item in LB2 will be placed in C2_2 and the rest in C2_1. From C2_1 and C2_2, the
items whose SC below the δnew is removed as infrequent and formed L2_1 and L2_2.

For generating candidate 3-itemset, each itemset Ix in L2_1 is combined with the next item Iy in LB2 after the last
item in Ix. Similar to the previous iteration, the combinations that end with the last item in LB2 are placed in C3_2 and
rest in C3_1. It is noted that the itemset combinations in L2_2 are not used in the formation of candidate 3-itemsets. The
L3_1 and L3_2 were formed by removing the infrequent itemsets in C3_1 and C3_2. The process is continued until Ln_1 is not
null. Further, to increase the execution speed of the proposed method, it is being accelerated with GPU. The proposed
algorithm (Algorithm 1) is shown below, and the workflow diagram is shown in Fig.4.

Algorithm 1 Algorithm for finding frequent itemsets
 Input : D - a dataset with n transactions;

 δ - minimum support threshold;
 Output : Frequent patterns;
1: D  eliminate_null(D);
2: vdf  scan D and convert it in vertical data format;
3: L1 one_frequent_itemset(vdf, δ);
4: CTID_list  find_common_TID(L1);
5: L1 remove the transactions in CTID_list for each item in L1;
6: δnew  δ - number of transactions in CTID_list;
7: LB1  {∀frequent 1-itemset | SC=δnew };
8: LB2  {∀frequent 1-itemset | SC > δnew};
9: L2_1, L2_2  find_two_freq_itemset(LB1,LB2,δnew);
10: i=2;
11: while Li_1 ≠ Ø do
12: Li+1_1,Li+1_2  n_frequent_itemset(Li_1,LB2,δnew);
13: i=i+1;
14: end while

procedure eliminate_null(D - a dataset with n transactions)
1: for each Ti ∈ D do
2: cntcount the number of items in Ti;
3: if cnt == 1 then
4: remove Ti from D;
5: end if;
6: end for;
7: return D;

procedure one_frequent_itemset(D: Dataset after removing null
transactions; δ :minimum support threshold)
1: L1Ø;
2: for each itemi in D do
3: TIDlisttransactions in which itemi occurs;
4: SCcount the number of transactions in TIDlist
5: if SC ≥ δ then
6: add {itemi, TIDlist, SC}into L1;
7: end if
8: end for
9: sort L1 and store it in jagged array format;
10: return L1;

procedure find_common_TID (L1: frequent 1-itemset)
1: nfind the number of items in L1;
2: CTID_list{TIDlist1 ∩ TIDlist2 ∩… ∩ TIDlistn};
3: return CTID_list;

GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data
Format Approach and Jagged Array

Volume 13 (2021), Issue 4 33

procedure two_freq_itemset (LB1: frequent 1-itemset1, LB2: frequent 1-
itemset2, δ:minimum support)
1: last_itemfind last item in LB2;
2: for each itemi in LB1 do

3: for each itemj in LB2 do

4: new_pattern  <itemiitemj>;

5: new_tidTIDs(itemi)∩TIDs(itemj);

6: new_sccount the transactions in new_tid;

7: if new_pattern contains last_item then

8: append{new_pattern,new_tid,new_sc} in C2_2;

9: else

10: append{new_pattern,new_tid,new_sc} in C2_1;

11: end if

12: end for

13: end for
14: L2_1{C2_1 | SC(C2_1) ≥ δ};
15: L2_2{C2_2 | SC(C2_2) ≥ δ};
16: return L2_1, L2_2

procedure n_frequent_itemset(Li_1: frequent i-itemset1, LB2: frequent 1-
itemset2, δnew: minimum support)
1: for each itemi in Li_1 do
2: last_itemfind the last item in itemi;

3: for each itemj in LB2 after last_item do

4: new_item{<itemiitemj>};

5: new_tidTIDs(itemi)∩ TIDs(itemj);

6: new_sccount the transactions in new_tid;

7: if new_item contains last element in LB2 then

8: append{new_item,new_tid,new_sc}in Cn_2;

9: else

10: append{new_item,new_tid,new_sc}in Cn_1;

11: end if

12: end for

13: end for
14: Ln_1{Cn_1 | SC(Cn_1) ≥ δ};
15: Ln_2{Cn_2 | SC(Cn_2) ≥ δ};
16: return Ln_1,Ln_2

The main advantage of the proposed method is that it reduces the number of candidate itemsets to be generated in

each iteration because the itemsets in Li_2, for i ≥ 3 will not be considered for creating candidate itemsets and removal of
items in CTL in final L1. Additionally, GPU and Jagged array enhance the performance in terms of speed and usage of
memory.

A. Memory Requirement Calculation

From [25,18], it was observed that the memory requirement using a jagged array structure for the frequent itemsets
could be calculated based on the following equation.

1
iitemset

i ii
TM TM rbytesφ≠

=
= −∑ (1)

where, TMi is the total memory required for the candidate i-itemset, and rbytesi is the memory occupied by the
infrequent/rare items in the candidate i-itemset. By subtracting rbytesi from TMi, the memory for Li i.e., frequent i-
itemsets can be found.

TMi and rbytesi were calculated using equations 2 and 3, respectively.

GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data
Format Approach and Jagged Array

34 Volume 13 (2021), Issue 4

{ }
() ()

i

i item
item itemset

TM SC sizeof tid sizeof item
∀ ∈

= × +∑ (2)

{ }
() ()

i

i item
item in frequent

rbytes SC sizeof tid sizeof item
∀ ∈ −

= × +∑ (3)

Fig. 4. Workflow of GNVDF

As in [25], the GNVDF also used the same jagged storage structure for storing frequent itemsets, and the amount
of memory requirement was calculated as follows. It first fetches the common transactions among items in the frequent
1-itemsets and then removes them from frequent 1-itemsets. Suppose if the frequent 1-itemset contains n items say
item1, item2, item3,…, itemn and the corresponding TID lists say TID-List1, TID-List2, TID-List3,…,TID-Listn, then the
common TIDs(CTID) among the n items were found by set intersection operation using equation (4) shown below.

1 2{ } { } ... { }

TID nC TID List TID List TID List= − ∩ − ∩ ∩ − (4)

The memory space required for CTID was calculated using equation (5).

()

1
()

TID

i

length C

TID
i

CM sizeof C
=

= ∑ (5)

Since the method removes the CTID from frequent 1-itemsets, the CTID need not be repeated in the subsequent

frequent itemsets, saving memory space considerably. The amount of memory saved (MS) for the entire dataset was
calculated using equation (6).

1 2
2

() { () ()}
iitemset

i i i
i

MS count itemset CM count itemset count itemset CM
φ≠

− −
=

= × + + ×∑ (6)

where, count(itemset1), count(itemseti_1), and count(itemseti_2) refer to the number of items in frequent 1-itemset, first
and the second part of frequent i-itemsets, respectively. Thus, the total memory required for the frequent itemsets of the
entire dataset using the proposed method was calculated using equation (7).

GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data
Format Approach and Jagged Array

Volume 13 (2021), Issue 4 35

1
{ }

iitemset

final i i
i

TM TM rbytes MS
φ≠

=

= − −∑ (7)

B. Proposed Methodology: An Example

The vertical representation of transaction dataset D as shown in Fig. 2 is considered to understand the proposed
methodology. It contains 12 items viz., {a, b, c, d, e, f, g, h, i, k, m, p}. Each item is represented by a row containing the
name of the item and the transactions in which the item occurs (TIDs) [26]. Let δ is 6. From Fig. 2, the candidate
1-itemset is calculated. The candidate 1-itemset contains all the items in D, the TIDs in which the item occurs and the
SC. It is shown in Table 1.

Table 1. Candidate 1-itemset(C1)

Item TIDs SC
a {3, 4, 5, 7, 8, 9} 6
b {1, 3, 4, 5, 6} 5
c {0, 2, 3, 4, 5, 7, 8, 9} 8
d {0, 3, 4, 5, 7, 8, 9} 7
e {0, 1, 2, 3, 4, 6, 7, 8, 9} 9
f {1, 3, 5, 6, 8, 9} 6
g {0, 1, 3} 3
h {0, 1, 5, 6, 9} 5
i {0, 1, 3, 6, 8, 9} 6
k {0, 7} 2
m {0, 1, 2, 6, 7, 8, 9} 7
p {0, 1, 3, 4, 5, 6, 7, 8, 9} 9

From the table above, the items viz., b, g, h and k are removed as infrequent because the items do not satisfied δ.

The frequent 1-itemset is shown in Table 2. Since the common transactions (CTL) are stored in Table 3, they are
removed from each item in L1, the final L1 is formed, and it is shown in Table 4.

Table 2. Frequent 1-itemset(L1)

1- Itemset TIDs
a 3 4 5 7 8 9
f 1 3 5 6 8 9
i 0 1 3 6 8 9
d 0 3 4 5 7 8 9
m 0 1 2 6 7 8 9
c 0 2 3 4 5 7 8 9
e 0 1 2 3 4 6 7 8 9
p 0 1 3 4 5 6 7 8 9

Now the new_min is calculated by removing the number of items in CTL as δnew = δ - n = 6-2 = 4. The logical

buckets from final L1, i.e. LB1 and LB2, are shown in Tables 5 and 6.
To reduce the storage space requirement further, this method finds the common transaction in which the all items

occurs either by AND operation or intersection of the TIDs of all frequent 1-itemset. i.e.{3,4,5,7,8,9} ∩ {1,3,5,6,8,9} ∩
{0,1,3,6,8,9}∩{0,3,4,5,7,8,9}∩{0,1,2,6,7,8,9}∩{0,2,3,4,5,7, 8,9}∩{0,1,2,3,4,5,6,7,8,9}∩{0,1,3,4,5,6,7,8,9} = {8,9}
and it is stored in CTL. The CTL is shown in Table 5.

Table 3. Common Transaction List(CTL)

CTL
8 9

Table 4. Final Frequent 1-itemset(L1)

1- Itemset TIDs
a 3 4 5 7
f 1 3 5 6
i 0 1 3 6
d 0 3 4 5 7
m 0 1 2 6 7
c 0 2 3 4 5 7
e 0 1 2 3 4 6 7
p 0 1 3 4 5 6 7

GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data
Format Approach and Jagged Array

36 Volume 13 (2021), Issue 4

Table 5. Logical Bucket-1(LB1)

Table 6. Logical Bucket-2(LB2)

The 2-itemset combinations viz., ad, am, ac, ae, fd, fm, fc, fe, id, im, ic, ie, dm, dc, de, mc, me, mp, and ce are in

C2_1 and the items viz., ap, fp, ip, dp, mp, cp and ep are stored in C2_2. The possible combinations viz., af, ai and fi need
not be generated. It is shown in Tables 7 and 8 respectively.

Table 7. Candidate 2-itemset - Part I

C2_1 TIDs SC
ad 3, 4, 5, 7 4
am 7 1

ac 3, 4, 5, 7 4
ae 3,4,7 3

fd 3,5 2
fm 1,6 2
fc 3,5 2

fe 1,3,6 3
id 0,3 2

im 0,1,6 3
ic 0,3 2
ie 0, 1, 3, 6 4

dm 0 1
dc 0, 3, 4, 5, 7 5

de 0, 3, 4, 7 4
mc 0,2 2
me 0, 1, 2, 6, 7 5

ce 0, 2, 3, 4, 7 5

Table 8. Candidate 2-itemset - Part II

C2_2 TIDs SC

ap 3, 4, 5, 7 4
fp 1, 3, 5, 6 4
ip 0,1,3,6 4

dp 0, 3, 4, 5, 7 5
mp 0, 1, 6, 7 4

cp 0, 3, 4, 5, 7 5
ep 0, 1, 3, 4, 6, 7 6

The items viz., am, ae, fd, fm, fc, fe, id, im, ic, dm and mc are infrequent in C2_1 and no item is infrequent in C2_2.

Therefore, the frequent 2-itemsets are stored in L2_1 and L2_2 in jagged array notation as shown in Tables 9 and 10
respectively. The candidate 3-itemsets from L2_1 and LB2 viz., adm, adc, ade, ace and dce, stored in C3_1 and the
patterns adp, acp, iep, dep, mep, dcp and cep are kept in C3_2 as shown in Tables 11 and 12 respectively. The L3_1 and
L3_2 are shown in Tables 13 and 14, respectively. Similarly, C4_1 and C4_2 are shown in Tables 15 and 16, respectively.
L4_1 and L4_2 are L4_1 = {} and L4_2 is shown in Table 17.

1- Itemset TIDs
d 0 3 4 5 7
m 0 1 2 6 7
c 0 2 3 4 5 7
e 0 1 2 3 4 6 7
p 0 1 3 4 5 6 7

1- Itemset TIDs
a 3 4 5 7
f 1 3 5 6
i 0 1 3 6

GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data
Format Approach and Jagged Array

Volume 13 (2021), Issue 4 37

Table 9. Frequent 2-itemset - Part I

L2_1 TIDs
ad 3 4 5 7
ac 3 4 5 7
ie 0 1 3 6
dc 0 3 4 5 7
de 0 3 4 7
me 0 1 2 6 7
ce 0 2 3 4 7

Table 10. Frequent 2-itemset - Part II

L2_2 TIDs
ap 3 4 5 7
fp 1 3 5 6
ip 0 1 3 6
dp 0 3 4 5 7
mp 0 1 6 7
cp 0 3 4 5 7
ep 0 1 3 4 6 7

Table 11. Candidate 3-itemset - Part I

C3_1 TIDs SC
adm 7 1
adc 3, 4, 5, 7 4
ade 3,4,7 3
ace 3,4,7 3
dce 0, 3, 4, 7 4

Table 12. Candidate 3-itemset - Part II

C3_2 TIDs SC
adp 3, 4, 5, 7 4
acp 3,4,5,7 4
iep 0, 1, 3, 6 4
dep 0, 3, 4, 7 4
mep 0, 1, 6, 7 4
dcp 0, 3, 4, 5, 7 5
cep 0, 3, 4, 7 4

Table 13. Frequent 3-itemset - Part I

L3_1 TIDs
adc 3 4 5 7
dce 0 3 4 7

Table 14. Frequent 3-itemset - Part II

3L _2 TIDs
adp 3 4 5 7
acp 3 4 5 7
iep 0 1 3 6
dcp 0 3 4 5 7
dep 0 3 4 7
mep 0 1 6 7
cep 0 3 4 7

Table 15. Candidate 4-itemset - Part I

C4_1 TIDs SC
adce 3,4,7 3

GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data
Format Approach and Jagged Array

38 Volume 13 (2021), Issue 4

Table 16. Candidate 4-itemset - Part II

Table 17. Frequent 4-itemset - Part II

Now, L4_1 is an empty list, so the algorithm terminates. It is observed from the experiment that the time needed for

finding frequent items for sample dataset D in the example without the use of GPU is 0.8111 sec, whereas the wall time
is 0.0073ms with GPU. The total memory requirement for the frequent itemset for the above dataset using the method in
[18] is TM = 124+210+137+32=503 bytes. By using GNVDF, the memory requirement for the common transaction is
CM = 2+2 = 4 bytes and the amount of memory saved using the proposed method is MS = (8×4) + {(7×4 + 7×4) + (2×4
+ 7×4) + (0×4 + 2×4)} = 32 + 56 + 36 + 8 = 132 bytes. Therefore, the final memory requirement is
TMfinal = 503 - 132 = 371 which is 26.24% of memory saved for this example dataset compared to the memory
requirement in [18]. It is also noted that the number of common transactions is directly proportional to the amount of
memory saved.

4. Experimental Results and Discussion

The proposed algorithm was implemented using Python with CUDA Toolkit with NVIDIA GPU. An extensive
experiment was conducted using four real-time datasets viz., chess, mushroom, t25i10d10k and c20d10k to evaluate the
performance of GNVDF. The datasets and their details were shown in Table 18. They were obtained from the FIMI
repository and an open-source Data Mining Library. The reason for choosing those datasets is that many researchers
used those bench-mark datasets in Frequent Itemset Mining (FIM) and Association Rule Mining(ARM) based research.
The runtime performance of the proposed method without GPU acceleration was obtained for each dataset, with the
minimum threshold values ranging from 20% to 70% and is shown in Table 19. Similarly, the proposed algorithm was
executed with GPU acceleration using the same minimum support range and results were tabulated in Table 20.

Table 18. Datasets used in experiments with their properties

Datasets No. of
transactions

No. of
items

Average item count per
transaction

chess 3196 75 37.00
mushrooms 8416 119 23.00
t25i10d10k 9976 929 24.77

c20d10k 10000 192 20.00

Table 19. Runtime (in ms) performance of the proposed algorithm without GPU

DS#
MS* chess mushroom t25i10d10k c20d10k

20 10759.6 14501.6 16332.5 16334.2
30 9845.5 13464.2 16225.8 16006.2
40 7972 11103.8 13885.7 15441.2
50 7101.7 10224.4 12645.6 14956.2
60 6293.4 9834 11101.2 13412.4
70 5082.2 8253 9256.4 12035.1

Table 20. Runtime (in ms) performance of the proposed algorithm with GPU-acceleration

DS#
MS* chess mushroom t25i10d10k c20d10k

20 119.5511 145.0160 161.7079 161.7248
30 107.0163 138.0940 156.0173 158.4772
40 83.9158 117.2770 129.7729 131.9761
50 73.2134 104.5091 108.3670 110.6496
60 64.2184 88.8096 102.4380 105.3511
70 53.4968 74.0512 83.6424 92.9924

 #DS-Dataset *MS-min_sup(δ)

L4_2 TIDs
adcp 3 4 5 7

C4_2 TIDs SC
adcp 3, 4, 5, 7 4

GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data
Format Approach and Jagged Array

Volume 13 (2021), Issue 4 39

The graphical representation of the runtime performance of each dataset with and without GPU usage was
illustrated in Fig.5. From tables 19 and 20, it was observed that when the number of items and transactions in a dataset
increases, the time required for finding frequent patterns also increases. In general, there is an inverse relationship
between the min_sup threshold and the time needed to determine the frequent patterns. i.e., when the min_sup threshold
is increased, the number of generated candidate itemsets, followed by frequent patterns, is minimized, consuming less
time for the higher threshold.

Fig.5. showed that the GPU acceleration significantly enables the execution speed of the proposed methodology,
and GNVDF with GPU is faster by 90 to 135 times when compared with GNVDF without GPU acceleration. The
reason for the performance enhancement is that the GPUs have many computing cores that allow the parallel execution
of computation-intensive tasks. Since the GNVDF uses the VDF approach, the number of database scans is restricted to
one [27] for determining each item's support count, which in turn reduces the overtime for finding the frequent patterns.
But, VDF requires more memory for additional information like TID's than HDF [27], so a Jagged array has been used
to minimise memory space is an advantage. Further, the elements in CTL removed from frequent 1-itemset save the
memory space considerably more than the existing classical algorithms.

Fig. 5. Runtime performance of the proposed method with and without GPU acceleration of each dataset

5. Conclusion

A GPU-accelerated novel method for finding the frequent itemset called GNVDF has been proposed in this
research article. It uses an innovative approach to discover the candidate and frequent itemsets by removing
unnecessary itemsets to form the subsequent itemsets. It also utilizes GPU for speeding up the process. It also
empowers the use of a jagged array storage structure and removes the common elements in 1-frequent itemsets. With
GPU-acceleration and innovative way of determining itemsets, the time required is significantly decreased. Similarly,
with a jagged storage structure, the memory requirement is also minimized than the classical algorithms. From the
extensive experiments made, it is observed that the GNVDF with GPU is 90-135 times faster than with GNVDF
without GPU and also proved that it suits both sparse and dense datasets. Further, the use of the VDF approach restricts
the database scan to one.

GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data
Format Approach and Jagged Array

40 Volume 13 (2021), Issue 4

References

[1] H. Hamidi and A. Daraei, "Analysis of Pre-processing and Post-processing Methods and Using Data Mining to Diagnose Heart
Diseases," International Journal of Engineering (IJE), TRANSACTIONS A: Basics, vol. 29, no. 7, pp. 921-930, 2016.

[2] J. Han, J. Pei and M. Kamber, Data mining: concepts and techniques, Morgan Kaufmann Publishers, 2011.
[3] H. Lisnawati and A. Sinaga, "Data Mining with Associated Methods to Predict Consumer Purchasing Patterns", International

Journal of Modern Education and Computer Science(IJMECS), vol. 12, no. 5, pp. 16-28, 2020.
[4] A. Sinha, B. Sahoo, S.S.Rautaray and M. Pandey, "An Optimized Model for Breast Cancer Prediction Using Frequent Itemsets

Mining", International Journal of Information Engineering and Electronic Business(IJIEEB), vol.11, no.5, pp. 11-18, 2019.
[5] L. Vu and G. Alaghband, "A self-adaptive method for frequent pattern mining using a CPU-GPU hybrid model," in

Proceedings of the Symposium on High Performance Computing, 2015.
[6] D. Albert, K. William, Fayaz and D. Veerabhadra Babu, "Exploiting Parallel Processing Power of GPU for High Speed

Frequent Pattern Mining", International Journal of Computer Engineering and Applications, vol. 7, no. 2, pp. 71 - 81, 2014.
[7] W. Fang, M. Lu, X. Xiao, B. He and Q. Luo, "Frequent itemset mining on graphics processors," in Proceedings of

International Conference on Network and Parallel Computing, 2009.
[8] S. M. Fakhrahmad and G. Dastghaibyfard, "An Efficient Frequent Pattern Mining Method and its Parallelization in

Transactional Databases," Journal of Information Science and Engineering, vol. 27, no. 2, pp. 511-525, 2011.
[9] J. Zhou, K. M. Yu and B. C. Wu, "Parallel frequent patterns mining algorithm on GPU", in Proceedings of International

Conference on Systems, 2010.
[10] D. William Albert, K. Fayaz and D. Veerabhadra Babu, "HSApriori: high speed association rule mining using apriori based

algorithm for GPU," International Journal of Multidisciplinary and Current Research, vol. 2, pp. 759-763, 2014.
[11] M. Tiwary, A. K. Sahoo and R. Misra, "Efficient implementation of apriori algorithm on HDFS using GPU," in Proceedings of

International Conference on High Performance Computing and Applications, 2014.
[12] J. Li, F. Sun, X. Hu and W. Wei, "A multi-GPU implementation of apriori algorithm for mining association rules in medical

data," ICIC Express Letters, vol. 9, no. 5, pp. 1303-1310, 2015
[13] L. Vu and G. Alaghband, "A self-adaptive method for frequent pattern mining using a CPU-GPU hybrid model," in

Proceedings of the Symposium on High Performance Computing, 2015.
[14] Y. Li, J. Xu, Y. H. Yuan and L. Chen, "A new closed frequent itemset mining algorithm based on GPU and improved vertical

structure," Concurrency and Computation Practice and Experience, vol. 29, no. 06, pp. 1-12, 2016.
[15] K.W. Chon, S. H. Hwang and M. S. Kim, "GMiner: A fast gpu-based frequent itemset mining method for large-scale data,"

Information Sciences, vol. 439-440, pp.19-38, 2018.
[16] Y. Wang, T. Xu, S. Xue and Y. Shen, "D2P-Apriori: A deep parallel frequent itemset mining algorithm with dynamic queue,"

in Proceedings of 10th International Conference on Advanced Computational Intelligence, 2018.
[17] Y. Djenouri, D. Djenouri, A. Belhadi and A. Cano, "Exploiting GPU and cluster parallelism in single scan frequent itemset

mining," Information Sciences, vol. 496, pp. 363-377, 2019.
[18] P. Sumathi, and S. Murugan, A Memory Efficient Implementation of Frequent Itemset Mining with Vertical Data Format

Approach, International Journal of Computer Sciences and Engineering. 6(2018) 152-157.
[19] W. Gan, J. C. Lin, P. Fournier-Viger, H. C. Chao and P. S. Yu, "Survey of parallel sequential pattern mining," ACM

Transactions on Knowledge Discovery from Data (TKDD), vol. 13, no. 3, pp. 1-34, 2019.
[20] Y. M. Guo and Z. J. Wang, "A vertical format algorithm for mining frequent item sets," in Proceedings of 2nd International

Conference on Advanced Computer Control, 2010.
[21] E. Hashemzadeh and H. Hamidi, "Using a Data Mining Tool and FP-growth Algorithm Application for Extraction of the Rules

in Two Different Dataset," International Journal of Engineering (IJE), TRANSACTIONS C: Aspects, vol. 29, no. 6, pp. 788-
796, 2016.

[22] M. Samoliya and A. Tiwari, "On the Use of Rough Set Theory for Mining Periodic Frequent Patterns", International Journal of
Information Technology and Computer Science, vol.8, no.7, pp.53-60, 2016.

[23] P. Prithiviraj and R. Porkodi, "A comparative analysis of association rule mining algorithms in data mining: a study," American
Journal of Computer Science and Engineering Survey, vol. 3, pp. 98-119, 2015.

[24] F. Wang, J. Dong and B. Yuan, "Graph-based substructure pattern mining using cuda dynamic parallelism," in Proceedings of
International conference on intelligent data engineering and automated learning, 2013.

[25] B. De Alwis, S. Malinga, K. Pradeeban, D. Weerasiri and S. Perera, "Horizontal format data mining with extended bitmaps," in
International Conference of Soft Computing and Pattern Recognition,2011.

[26] P. Suresh, K. N. Nithya and K. Murugan, "Improved Generation of Frequent Item Sets using Apriori Algorithm," International
Journal of Advanced Research in Computer and Communication Engineering, vol. 4, no. 10, pp. 25-27, 2015.

[27] A.Subashini and M. Karthikeyan, "Itemset Mining using Horizontal and Vertical Data Format," International Journal for
Research in Engineering Application & Management, vol. 05, no.03, pp. 534-539, 2019.

https://dl.acm.org/doi/proceedings/10.5555/2872599
https://link.springer.com/conference/npc
https://link.springer.com/conference/npc
https://dl.acm.org/doi/proceedings/10.5555/2872599

GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data
Format Approach and Jagged Array

Volume 13 (2021), Issue 4 41

Authors’ Profiles

P. Sumathi received her B.Sc and M.Sc degrees in Computer Science from Seethalakshmi Ramaswami College,
affiliated to Bharathidasan University, Tiruchirappalli, India in 2001 and 2003 respectively. She received her M.Phil
degree in Computer Science in 2008 from Bharathidasan University. She is presently working as an Assistant
Professor in the Department of Computer Science, Vysya College, Salem. She is currently pursuing a Ph.D. degree
in Computer Science at Bharathidasan University. Her research interests include Data Mining, Data structures and
Database concepts.

Dr. S. Murugan received his M.Sc degree in Applied Mathematics from Anna University in 1984 and M.Phil
degree in Computer Science from Regional Engineering College, Tiruchirappalli in 1994. He is an Associate
Professor in the Department of Computer Science, Nehru Memorial College (Autonomous), affiliated to
Bharathidasan University since 1986. He has 32 years of teaching experience in the field of Computer Science. He
has completed his Ph.D. degree in Computer Science with a specialization in Data Mining from Bharathiyar
University in 2015. His research interest includes Data and Web Mining. He has published many research articles in
reputed National and International journals.

How to cite this paper: P. Sumathi, S.Murugan, "GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns
Using Vertical Data Format Approach and Jagged Array", International Journal of Modern Education and Computer
Science(IJMECS), Vol.13, No.4, pp. 28-41, 2021.DOI: 10.5815/ijmecs.2021.04.03

	References

