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Abstract: Code clone detection plays a vital role in both industry and academia. Last three decades have seen more 
than 250 clone detection techniques with lack of single framework that can detect and classify all 4 basic types of code 
clones with high precision. This serious lack of clone classification impacts largely on the universities and online 
learning platforms that fail to validate the projects or coding assignments submitted online. In this paper, we propose a 
complete and language agnostic technique to detect and classify all 4 clone types of C, C++, and Java programs. The 
method first generates the parse tree then extracts the functional tree to eliminate the need for the preprocessing stage 
employed by previous clone detection techniques. The generated parse tree contains all the necessary information for 
detecting code clones. We employ TF-IDF cosine similarity for the proper classification of clone types. The proposed 
technique achieves incredible precision rate of 100% in detecting the first two types of clones and 98% precision in 
detecting type-3 and type-4 clones for small codes of C, C++, and Java containing an average line count of 5. The 
proposed technique outperforms the existing tree-based clone detection tools by providing the average precision of 
98.07% on the C, C++, and Java programs crawled from Github with an average line count of 15 which signifies that 
cosine similarity measure on ANTLR functional tree accurately detects all 4 types of small clones and act as proper 
validation tools for identifying the learning level in the submitted programming assignment. 
 
Index Terms: Clone types, functional tree, TF-IDF, cosine similarity, Code plagiarism. 
 
 

1. Introduction 

Code cloning is the process of creating functionally similar codes with syntactic modifications. It can also be 
defined as semantically similar code fragment pairs with or without syntactical change [1]. Many researchers refer this 
process with different terms like similar code [2], identical code [3] or duplicate code [4]. Large systems contain 10-15% 
and 20-50% of duplicate code in the codebase [5]. Based on the milestone, literature like [6,7, 8, 9], and based on the 
study of Wang, W. L. (2020) [1], the code clones are of 4 types that can be categorized into Type-1 which is also called 
as exact clones, Type-2 which is also called as renamed clones and Type-3 which is also called as near-miss clones. 
Semantically similar codes that are implemented differently are called as Type-4 clones.  

Language agnostic code clone detection has a great role to play in building reliable code plagiarism detection. In 
order to provide justification to academic integrity, an attempt to code plagiarism detection has already started in late 
1976. Based on the survey conducted by Chivers [10] The code plagiarism detection is based on the 3 different 
techniques a) attribute-based b) structure-based c) hybrid technique.  Attribute counting technique was first conducted 
by Ottenstein [11] The study was based on metrics of Halstead [12] considering the number of unique operators and 
operands. In the year 1981 Grier [13] added 16 new attributes to the existing metrics of Ottenstein [11] that include 
looping statements, conditional statements, and tokens like white space, line. A study by J. L. Donaldson et al [14] is 
based on counting the programming constructs like looping and conditional statements. An empirical approach 
proposed by Faidhi and Robinson [15] for detection of program similarity is based on 24 metrics. These initial studies 
were completely based on the text or strings and counting the attributes present in the program. In a comparative study 
made by Whale [16] argue that more application-specific metrics and structural features of code need to be considered 
for accurate detection of code plagiarism. 
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Existing plagiarism detection tools like MOSS, JPag calculates similarities in terms of percentage which can 
present the amount of similarity between two codes but fail to validate the submitted coding assignment when they are 
implemented differently with type 4 clones. Correlating clone type classifications (type 1, 2, 3, and 4) will give a better 
understanding of learning of students from submitted programming assignments. Type 1 and 2 are ugly practices that 
breach academic integrity. Type 3 is bad practice and type 4 is good practice as it increases the level of learning by 
making students implement functionally similar codes using different syntax. This research paper contributes in 
following way. 
 

• We use the capability of freely available ANTLR parser generator to extract functional tree by providing 
corresponding grammar files for the input programs. Extraction of functional tree eliminates the need for the 
preprocessing phase employed by earlier clone detection techniques.  

• Vector representation of the functional tree using TF-IDF is given as input to cosine similarity which proved 
to be a more accurate classification of all 4 clone types for the micro programs with line count of 5, 15 and 32.  

• Existing code plagiarism detection tools that work on similarity matching and report type 4 clones as 
plagiarism but with respect to academia, it is a good learning practice.   We relate clone detection to academic 
code plagiarism to identify the good, the bad and ugly practices of students.   

2. Background and Related Work 

In this section, we present the examples to understand the various clone types, literature on clone detection and 
literature on code plagiarism. To justify our understanding of clone types, we present the examples based on [6]. 
According to [8], there are 9 types of clones. Based on the editing taxonomy there exist 4 basic clone types [6].  

2.1 Background  

In the following section we present small programs of our data set to define clone types. 
 

Type-1 clone: Syntactical and semantically similar codes with a change in white space and comments [1]. 
 
main()    // addition program 
{ 
int first=10, second=20, sum; 
sum= first+ second; //logic 
printf(“sum of two numbers=%d”, sum); 
} 
                 Code-1 
 
/* addition program */ 
main()     
{ 
int first=10, second=20, sum; 
sum= first+ second; //logic 
printf(“sum of two numbers=%d”, sum); 
} 
                  Code-2 

 
Code-1 and Code-2 are an example of type 1 clones. These are also called as exact clones or copy/paste clones. 

This practice of copying the program as it is from the peer needs to be detected to stop the ugly practice of learning in 
students and also breach software integrity in industry. 

 
Type-2: syntactically similar codes with a change in variable, function, and class name. 
 
main() 
{ 
int i=1,fact=1,n; 
printf("Enter the number"); 
scanf("%d",&n); 
while(i<=n) 
{ 
      fact=fact*i; 
       i++;
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} 
    printf("factorial of number is=%d", fact); 
        }             Code-3 
  
main() 
{ 
    int x=1,res=1,n; 
    printf("Enter the number"); 
    scanf("%d",&n); 
    while(x<=n) 
  { 
       res=res*x; 
       x++; 
   } 
 printf("factorial of number is=%d", res); 
 }       
               Code-4 

 
Code-3 and 4 are examples of type 2 clones. These clones are also called as renamed clones. This practice of 

renaming the multiple entities in the program like identifier, method name, and the class name is a bad practice of 
coding by students which breaches academic integrity. 

 
Type 3: types-2 clones with addition and deletion of lines creates type-3 clones. below code-1 and code-5 are 
type-3 
 
main()    // addition program 
{ 
int a=10,b=20,c; 
c=a+b;            //logic 
printf("sum of two numbers=%d",c); 
} 
          Code-1 
 
main()    // addition program 
{ 
 int a=10,b=20,c; 
 c=a+b;            //logic 
 printf(“program find addition”) 
 printf("sum of two numbers=%d", c); 
     } 
      Code-5 

 
Type 3 clones are a matter of interest for many researchers in the past where many tools mentioned in [7] struggled 

to detect type3 clones. In academia, these are just superset of type2 clone which is considered as bad practice by 
students. 

 
Type 4: These are semantically similar codes with change in the syntax [1]. For example, consider following code 
fragments. 
 
int fact(int x) 
{ 
for(i=1;i<=n;i++) 
fact=fact*i; 
printf("factorial of number is=%d",fact); 
}  
              Code-6 
 
int fact(int n) 
{  
if(n==0)
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return 1; 
else 
return n*fact(n-1); 
}  
              Code-7 

 
Code-6 and Code-7 are type 4 clones. Type 4 clones are matter of interest to both industry and academia. Type 4 

clone detection was out of the scope of many great scalable tools mentioned in the introduction. A major issue with 
existing code plagiarism detection tools is that/, they report these codes as clones but with respect to the academic point 
of view it  improve the learning levels in students.                 

2.2 Software clone detection 

Significant research has happened in finding the software clone types. In this section, we present the summary of 
clone detection tools/ techniques. Based on the milestone literature works of [6,8], we group all the clone detection 
approaches into 5 classes like Text-based, Token-based, Tree-based, PDG-based, Metric-based [7] .  

Text-based approaches: Text based approaches compare two code fragments based on the input text or string. The 
tools like Duploc[4], simian[18], EqMiner[19], NICAD[20], DuDe[21]. Except for NICAD none of the tools address 
detecting even small instances of Type 3. Whereas tool proposed by Johnson, Duploc, DuDe, and SDD detect only type 
1 and other tools were meant to find first two clone types.. The work of (Kim, 2018) detects type 1 and 2 of C and C++ 
code. Highly scalable tool VUDDY [22] detects first two clone types of C/C++. The tool CCCD [23] has made an 
attempt to detect type 3 and 4 clones of C language. The tool vfdtect [24] detects type 3 and type 4 clones of Java code. 

Token-based Techniques: The technique works by performing lexical analysis to extract the tokens from source 
code. These extracted tokens are used to form the suffix tree or suffix array for matching. Tools like Dup[25], 
CCFinder[26], iClones[27], CP-Miner[28]. These tools have detected both type 1 and type 2. The tool Siamese[29] 
detects first three clone types of java code and the tool CP-Miner detects type 3 clones moderately. The work of [30] 
finds the first 3 clone types of IJDataset. The tool CCAligner [31] detects first 3 clone types of C and Java language. 
Higly scalable tool SourcererCC [32] detects first 3 clone types of IJDataset. The language agnostic tool CCfindersw 
[33] detects only first two clone types.  

Tree-based Techniques: Tree based approaches are good for refactoring and increase the precision of clone 
detection [1,34]. Tree based approaches work by parsing the source code to parse tree. tools like Deckard[35], 
CloneDR[36], simScan[37] , Asta[38], CloneDigger[39], sim[40], ClemanX[41], JCCD API[42], CloneDetection[43], 
cpdetector[34]. These techniques did not detect type 4 clones. The methodology by Yang [44] detects functional clones 
of java code. The work of [45] finds the type 3 and type 4 clones of Java. The work of [46] detects all 4 types of clones 
for Java codes.  

PDG-based Techniques These techniques prepare the program dependency graph to represent the control and data 
flow of source code[47]. The technique has addressed the detection of type 4 clones. Tools like PDG-DUP[48], 
Scorpio[49], Duplix[50], Choi[51] concentrate on finding first 3 types of clones. 

Metrics-based Techniques like CLAN/Covet[52], Antoniol[53], Dagenias[54] that counts a number of different 
category of tokens and stores them in a matrix. Both matrixes are matched to get the clones. The tool Vincent [55] 
detects first 3 clone types of Java code. These tools suffer from false positives for detecting type 3 and 4 clones. 

In table 1, we summarize the number of clone detection tools developed to address various clone types and 
language they support. 

Table 1. Number of tools to identify different clone types 

Clone type Number of tool/techniques 

1 71 
2 71 
3 55 
4 19 

All 4 types 12 
Function clones 3 

File clone 1 

 
With having a great number of studies in clone detection, we still find a lack in complete and accurate code clone 

detection techniques. Maximum of 68 tools work on java code, 30 tools work on C code and 13 tools work on C++ code 
for clone detection. We find only 4 language agnostic tools which is the big gap in clone detecion reasearch.   
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2.3 Code plagiarism detection 

In order to provide justification to academic integrity, an attempt to code plagiarism detection was started in late 
1976. From 2005 onwards detection of code plagiarism detection was based on string matching, fingerprinting, and 
tree-based. There are many state-of-art tools for conducting code plagiarism, those include JPlag[56], Marble, SIM, 
Plaggie, MOSS, Sherlock. JPlag works on tokenizing, greedy string tilling, and optimization. It supports C, C++, Java, 
C# and text files. Marble is structure-based tool, it works by the recursive splitting of the file till the top line reaches, 
then removes easily modifiable lexical patterns like class name, function name, identifier name, white space, and 
comments, and finally applies Linux diff to calculate the score of line similarity. Marble supports Java, Perl, PHP, and 
XSLT languages. MOSS works on the Linux platform based on document fingerprinting and supports more number of 
languages like C, C++, Java, C#, Python, VB, Javascript FORTRON, MIPS, and Assembly languages. Plaggie is the 
command line java application to find plagiarism in java codes. Tool SIM works by tokenizing the source code file then 
apply forward reference table for matching. It supports C, Java, pascal, Modula-2, Lisp, Mirad and text files. A 
comparative study made by (Hage et al, 2010) gives many insights a) Jplag, MOSS, and Marble perform better on java 
code. b) they are sensitive to small refactoring c) they present the similarity in terms of the percentage of similarity.d) 
MOSS supports 23 languages c) Plaggie works only for Java programs. 

There are many plagiarism detection tools like one proposed by Birov, T. C. (2015) [57], it works only on java 
code, another tool proposed by M. Iwamoto, S. O. (2013.)[58] that works on C and Java codes. CPDP[59] works on 
Java to find copy/paste activities. This tool can be used in finding type 1, type 2 software clones. The study by [60] 
works on binary code to check file similarity, [61] works on any language to find file similarity. BCFinder [60] works 
on C/CP++. A tool PlaGate[62] uses Latent semantic analysis to improve the performance of current plagiarism 
detection tools. A more detailed and analytical comparative study was conducted by[55], which includes 30 code 
similarity analyzers including fuzzywuzzy and jellyfish. in his discussion he concludes by saying, the code similarity 
tools behave differently on pervasive code modification and boiler-plate code. Often used tool ccfx, and Python string 
matching algorithm, fuzzywuzzy work better on pervasive code modification. The experiment conducted on SOCO data 
sets for boilet-plate codes ranks jplag-text plagiarism detector followed by simjava, simian, jplag-java, and Deckard[55].  

3. Proposed Methodology 

Proposed work is based on the generation of ANTLR functional trees from the source code using corresponding 
language grammar. The proposed method works in 4 phases.  

 
1. Repository Building and parse tree generation. 
2. Functional tree generation.  
3. Vector representation. 
4. Measuring the functional tree similarity and displaying clone types.  
 
Before we start explaining the methodology we present a brief introduction to ANTLR and similarity metrics. 

3.1 Introduction to ANTLR (Another Tool for Language Recognition)  

Terence Parr is the man behind ANTLR who is working with ANTLR since 1989. ANTLR is LL (*) parser 
generator that generates the parse trees for the program according to language freely available grammar [63].  Even 
though ANTLR is written in java, it generates lexer and parser that respectively perform lexical and semantic analysis 
to build the parse tree from the input files. In this research work, we generate the parse tree by using formal language 
description called grammar, along with lexer and parser. ANTLR generates various files like grammar tokens, lexer 
tokens, BaseListner, Listener, parse tree visitor and parse tree walker that can be used to process the parse tree 
according to our needs[64]. 

 

 
Fig. 1. Char stream to produce the parse tree 
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ANTLR parser creates lexer and parser based on the language grammar that later parses the input file based on the 
grammar. For example, we can write a grammar and include as file.g4 to parse the simple arithmetic expression like 
100+2*34 as 
 

 
 

Upon installing the latest ANTLR 4.8-v4 version and java (JDK) classpath set in the system, we have following 
ANTLR tutorial available at ANTLR site to generate parse tree for the arithmetic expression 2+3*4+(7-2).  

 
• Execute the antlr command as “antlr file.g4” at command prompt we get various files such as file.tokens, 

fileBaseListener.java, fileLexer.java, fileListener.java, fileParser.java, file.interp. 
• Compile all the generated java files to get the class files using the javac compiler. 
• Run the java org.antlr.v4.gui.TestRig for the input file to obtain the parse tree as follows. 
 
All the 3 steps have to be performed manually at the command prompt or in memory compilations can be done by 

using the automated APIs of “inmemantlr-tool” which has 14 releases so far and available at Github (Thome). Once we 
perform step 2 and get class files, using tree Listener class we can implement our own application to process the parse 
tree by creating the methods like getFirstChild(), getLastChild(), deChild(), getSubtree(), replaceSubtree() to access the 
basic ANTLR tree class. 

 

 
Fig. 2. Parse Tree for expression 2+3*4+(7-2) 

3.2 Introduction to similarity metrics 

According to [65] there exist several similarity metrics to find the similarity of the documents. Table 2 presents 
various similarity measures that classify the documents based on the data. 

Table 2. Similarity metrics for document comparison 

Sl.No  Name of algorithm  Concept used 

1 Smith-Waterman  
 
 

Edit Based 

2 Levenstein distance 
3 Jaro 
4 Hamming 
5 Jaro 
6 Smith-Waterman 
7 Damerau-Levenstein 

8 Jaro-wrinkler  
Token-based 9 Cosine similarity 

10 Jaccard 
11 Dice 
12 Word/N-gram 
13 Monge-Elkan Hybrid 
14 Soft –TFIDF 

grammar E;  
start: (E NEWLINE)* ; 
E:  E ‘*’ E | E ‘/’ E  | E ‘+’ E | E ‘-’ E  | INT    | (E); 
NEWLINE : [\r\n]+ ; 
IN     : [0-9]+ ; 
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These algorithms work by string matching or token matching by excluding the consideration about the position of 
tokens in the document hence they do not produce the proper results if applied on the input codes directly. Based on the 
motivation of [66] these metrics behave differently on the compiled and decompiled code.  

We perform code similarity on the source code and corresponding ANTLR generated parse tree using a widely 
used code similarity metric cosine similarity which return 0 for no similarity and 1 for high similarity. The results of 
both similarity measures are shown in tables 3. Application of cosine similarity directly on two source codes addc and 
add1c gives matching similarity as 0.28 whereas we get similarity of 0.93 on the corresponding parse trees of addc and 
add1c. This significant difference is because of the fact that parse trees provide the syntactic and semantic information 
about the source code which provides evidence that application of cosine similarity on generated parse trees or subset of 
parse tree will work as accurate code clone detection technique. 

Table 3. Similarity measures on source code and parse tree using cosine similarity. 

Sl.No Source file Destination file Cosine similarity on source code Cosine similarity on parse tree (dot file) 

1 addc  addc 1.0 1.0 
2 addc add1c 0.28 0.93 
3 factdowhilec factwhilec 0.67 0.94 
4 factdowhilec factforc 0.45 0.87 
5 factforc factwhilec 0.45 0.87 
6 addcpp  addcpp 1.0 1.0 
7 addcpp add1cpp 0.30 0.97 
8 factdowhilecpp factwhilecpp 0.68 0.95 
9 factdowhilecpp factforcpp 0.54 0.94 
10 factforcpp factwhilecpp 0.54 0.93 
11 addjava  addjava 1.0 1.0 
12 Addjava add1java 0.21 0.94 
13 factdowhilejava factwhilejava 0.84 0.90 
14 factdowhilejava factforjava 0.57 0.71 
15 factforjava factwhilejava 0.69 0.71 

3.3 Repository Building and parse tree generation 

Figure 3 presents the architecture of parse tree generation. It is the automated process of running the ANTLR tool 
through the java application that performs all the manual work explained in generating figure 2 from the input 
expression 2+3*4+(7-2). We have used “inmemantlr-tool-1.6” APIs available at maven central [67] to generate the 
parse tree in dot file. Since ANTLR provides grammars to parse all the language, the proposed method is language 
agnostic. We explain the clone detection and classification for C, CPP and Java codes that act as a evidence to language 
agnostic nature of the work. ANTLR tool generates various token and java files like Grammar.Tokens, Lexer.tokens, 
Lexer.java, Parser.java, Listner.java, BaseListner.java. All the java files are then compiled to get class files. Upon 
generation of java class files one has to provide input file (.C/.C++/.Java) files to generate the parse tree. This process 
can be done by writing the java application to read the grammar files and input file then calling the Listner class 
generated in the previous stage of ANTLR processing. This application can be made to work on the generated parse tree 
to extract the nodes of our interest. 

Parse tree generation: as a case study we have considered small academic programs containing 135 C programs, 
99 CPP programs and 33 codes of Java stored in a separate directory. The proposed method makes total of 9180 pair 
wise matching for C codes, 4950 comparisons for CPP codes and 561 comparisons for Java codes.  

 
 

 
 
 
 
 
 
 
 
 

 
 

1.#include<stdio.h> 
2.//prints hello 
3.main() 
4.{ 
5.printf("Hello World");   
6.} 
7.//end of program 
      
                   
       C-Code 

1.#include <iostream.h> 
2.//prints hello 
3.main() 
4.{   
5.cout << "Hello World!";      
6.return 0; 
7.} 
8.//end of program 
 
         CPP-code 
 

1.import java.util.Scanner 
2.//prints hello 
3.class Hello 
4.{ 
5.public static void main(String[] args)  
6.{ 
7.System.out.println(“Hello World”); 
8.} 
9.} 
10.//end of program.         Java-Code        
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The advantage of using functional tree extraction is that, it automatically performs pre-processing step adopted by 
previous clone detection techniques to eliminate program header, and comments. Since the size of generated functional 
tree is very long, we take small example of printing “hello world” from our data set. The basic principle of ANTLR is to 
generate the complete parse tree that includes the node information of all the lines present in the input code. Functional 
tree is the subset of parse tree that includes the generation of nodes only for the line number 4 to 6 for the above C-code, 
line number 4-7 for above CPP-code and line number 4-8 for above Java-code. These are the statements that represent 
the main functionality of the code, and hence the tree generated by including all the information in the main function of 
C and CPP code and the class body of java code is named as functional tree.  

Figure 4, 5 and 6 respectively shows the ANTLR parse tree for the above case studies of C, CPP and java code. 
Functional tree for both C and CPP code starts with the node name statementseq that contains node information for line 
number 5 for C and line number 5 and 6 for CPP. Sub tree generated by extracting only the lines of function definition 
is termed as functional tree in our paper. The parse tree of java code starts with node name compilationunit followed by 
left subtree importDeclartion that corresponds to importing the packages. A class definition starts from the right subtree 
with node name typeDeclartion followed by classDeclaration, classBody, classBodyDeclaration. The left children of 
this node correspond to modifier public static. The class definition starts from the rightmost child memberDeclaration 
followed by methodDeclaration. So far all the nodes of the parse tree represent in building the header information for 
the java class. These nodes just bring structural information of java code.  

We first allow ANTLR to generate the complete parse tree by calling the base class method of antlr tree on the 
listener variable dt. 

TreeListner dt; 
dt.getParseTree() creates the ANTLR parse tree. We use common grammar file CPP14.g4 to parse C and CPP 

code to get parse tree. Parse tree for C and CPP code starts with node name translationunit followed by declarationseq, 
declaration, functiondefinition, functionbody and so on.  
 

 
Fig.. 3. Repository Building and functional tree generation 
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Fig. 4. Parse tree of C-code 
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Fig. 5. Parse tree of CPP-code 
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Fig. 6. Parse tree of Java-code 
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3.4 Functional tree generation 

This section provides the technical details to extract the functional tree from the parse tree. From the figure 4 and 5 
we find that parse tree of C and CPP code starts with the node name translation unit followed by declarationseq, 
declaration, functiondefintion along with all these nodes till the left descending children of functiondefintion 
corresponds to C/CPP header. These rules do not contribute to finding the functional similarity of any program. The 
main computation or functionality of the code starts from line number 5 which corresponds to the the node name 
“statementseq” in the parse tree. Hence we generate the functional tree by extracting the subtree with node name 
statementseq for C/CPP parse tree. The code for extracting the functional tree from ANTLR generated parse tree is 
presented below.   

 
parseTree=dt.getParseTree().getSubtrees(n-> n.getRule().equals("statementseq")).iterator().next(); 

 
similarly the parse tree of java code starts with node name compilationunit followed by left subtree importDeclartion 
that corresponds to importing the packages. A class definition starts from the right subtree with node name 
typeDeclartion followed by classDeclaration, classBody, classBodyDeclaration. The left children of this node 
corresponds to modifier public static. The class definition starts from the rightmost child memberDeclaration followed 
by methodDeclaration. So far all the nodes of the parse tree represent in building the header information for the java 
class. These nodes just bring structural information of java code. The functionality of the java code is written inside the 
two curly braces of the main method from the line number 7 of Java code. Hence functional tree for Java code can be 
extracted by passing the argument as node name “block”  to equals method on getRule() as follows. 
 

parseTree=dt.getParseTree().getSubtrees(n-> n.getRule().equals("block")).iterator().next(); 
 
the figures 8, 9 and 10 shows the corresponding functional trees for the parse tree 4, 5 and 6 respectively.   

3.5 Finding the functional tree similarity and displaying clone types 

The parse Functional tree generated in the previous phase can be stored in dot file using the APIs of “inmemantlr-
tool” (Thome) that can be used for comparison using any of the natural language processing techniques such as 
Levenstein distance, Edit distance, Hamming distance, Longest Common Subsequence. By looking at the fact that parse 
tree generates a lot of information through repetitive rules we consider term frequency inverse document frequency with 
cosine similarity to find the similarity between two different parse tree representations in a dot file. The sequence of 
finding the functional tree similarity is shown in the figure 7. 

 

 
Fig. 7. Finding functional tree similarity using TFID and cosine similarity
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Fig. 8. Functional tree of C-code                             
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Fig. 9. Functional tree of CPP-code                             
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Fig.10. Functional tree of Java-code                              

The Cosine Similarity function 
 

[68] Is widely used to compute the similarity between two given term vectors.  Which is ratio of the inner product 
(v1•v2) to the product of vector length. Similarity between two vectors v1, v2 is given by  

 
 𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣1,𝑣𝑣2) = (𝑣𝑣1 𝑋𝑋 𝑣𝑣2)/||𝑣𝑣1||||𝑣𝑣2||                                              (1)  

 
Where, �|v1|�and ||v2|| are Euclidean norms of vector V.? 
From table 3 results we can easily find the cosine similarity among two documents by inputting the vectors v1 

andv2. 
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𝑣𝑣1 = 𝑇𝑇𝑇𝑇. 𝐼𝐼𝐼𝐼𝑇𝑇 − 𝐴𝐴  and vector  𝑣𝑣2 = 𝑇𝑇𝑇𝑇. 𝐼𝐼𝐼𝐼𝑇𝑇 −𝐵𝐵                                      (2) 
 

Following pseudo code, statements find cosine similarity between vectors v1 and v2 [68]. 
 
𝑇𝑇𝑐𝑐𝐹𝐹 𝑖𝑖 = 1 𝑡𝑡𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡ℎ(𝑇𝑇𝑇𝑇. 𝐼𝐼𝐼𝐼𝑇𝑇 − 𝐴𝐴) 

 { 
     𝑑𝑑𝑐𝑐𝑡𝑡𝑑𝑑𝐹𝐹𝑐𝑐𝑑𝑑𝑑𝑑𝑐𝑐𝑡𝑡 +=  𝑇𝑇𝑇𝑇 − 𝐼𝐼𝐼𝐼𝑇𝑇 −𝐴𝐴[𝑖𝑖]  ∗  𝑇𝑇𝑇𝑇 − 𝐼𝐼𝐼𝐼𝑇𝑇 −𝐵𝐵[𝑖𝑖] 

  𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡𝑑𝑑𝑑𝑑𝑙𝑙1 +=  𝑀𝑀𝑚𝑚𝑡𝑡ℎ.𝑝𝑝𝑐𝑐𝑝𝑝(𝑇𝑇𝑇𝑇 − 𝐼𝐼𝐼𝐼𝑇𝑇 −𝐴𝐴 [𝑖𝑖], 2);   
   𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡𝑑𝑑𝑑𝑑𝑙𝑙2 +=  𝑀𝑀𝑚𝑚𝑡𝑡ℎ.𝑝𝑝𝑐𝑐𝑝𝑝(𝑇𝑇𝑇𝑇 − 𝐼𝐼𝐼𝐼𝑇𝑇 −𝐵𝐵 [𝑖𝑖], 2); 
 } 

𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡𝑑𝑑𝑑𝑑𝑙𝑙1 = √𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡𝑑𝑑𝑑𝑑𝑙𝑙1 
𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡𝑑𝑑𝑑𝑑𝑙𝑙2 = �𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡𝑑𝑑𝑑𝑑𝑙𝑙2 

 
Finally, we get similarity between Doc A and Doc B as   
 

           𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑙𝑙𝑙𝑙(𝑇𝑇𝑇𝑇 − 𝐼𝐼𝐼𝐼𝑇𝑇 −𝐴𝐴,𝑇𝑇𝑇𝑇 − 𝐼𝐼𝐼𝐼𝑇𝑇 −𝐵𝐵) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚1∗𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚2

                        (3) 

4. Vector Representation 

The Term Frequency Inverse Document frequency (tf.idf) [69] is a hash map-like data structure that finds 
frequencies of term occurrence in a document with the relative location. It is the SVM based metric that is used for 
document processing and comparison. Term frequency gives the count of each token in a document and inverse 
document frequency gives the uniqueness of each token in a document. The advantage of using this approach is it gives 
the relative position of every token in a document.  

Equation (1) shows the use of TFIDF in our work. TF-IDF is used to find how relevant a term is in a document  
(Goel, 2014). Where TF measures how frequently a term occurs in a document and IDF gives log (number of 
documents/ number of documents with the term in it)  (Elhadad, 2018). 

 
                                𝑡𝑡𝑡𝑡 − 𝑖𝑖𝑑𝑑𝑡𝑡(𝑡𝑡,𝐼𝐼) = 𝑡𝑡𝑡𝑡(𝑡𝑡,𝐼𝐼). 𝑖𝑖𝑑𝑑𝑡𝑡(𝑡𝑡,𝐼𝐼)                                                       (4) 

 
Where 
 

                     𝑡𝑡𝑡𝑡(𝑡𝑡,𝐼𝐼) = 𝑡𝑡𝐹𝐹𝑙𝑙𝑓𝑓 𝑡𝑡 ∈ 𝐼𝐼                                                           (5) 
 

                                𝑖𝑖𝑑𝑑𝑡𝑡(𝑡𝑡,𝐼𝐼) = 1 + log (𝑁𝑁/|{𝑑𝑑 ∈ 𝐼𝐼: 𝑡𝑡 ∈ 𝑑𝑑}|)                         (6) 
 

Where N is the total number of documents?  
Table 4 shows the results obtained by combining TF and IDF for the below code-A and code-B. 
 

 
 
Significance of using TF-IDF is term frequency identifies the words having a unique occurrence of word in the 

documents. Term frequency is calculated by counting the tokens in the respective documents like for int in code-A is 
calculated as 1/7 which denotes the term int occurs once among 7 readable tokens. Similarly for a, b, c, and z in a code-
A is 2/7, 2/7, 2/7, and 0/7 respectively. In the same way the term frequencies for all the tokens in code-B is calculated 
and presented in 5th columns of table 4. Inverse document frequency for each tokens of code-A and code-B are 
presented in column 6 and 7 respectively. Finally tf-idf value 0.4837 signifies uniqueness of token c in code-A and 
token z in code-B. 
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Table 4. TF-IDF for the tokens of code-A and code-B 

Token code A code  B TF-A TF-B IDF-A IDF-B TF.IDF-A TF.IDF-B 

int 1 1 1/7=0.142 1/7=0.142 1+Log(2/2)=1 1+Log(2/2)=1 0.1428 0.1428 

a 2 2 2/7=0.285 2/7=0.285 1+Log(2/2)=1 1+Log(2/2)=1 0.2857 0.2857 

b 2 2 2/7=0.285 2/7=0.285 1+Log(2/2)=1 1+Log(2/2)=1 0.2857 0.2857 
c 2 0 2/7=0.285 0/7=0 1+Log(2/1)=1.69 1+log(2/2)=1 0.4837 0 

z 0 2 0/7=0 2/7=0.285 1+Log(2/2)=1 1+log(2/1)=1.69 0 0.4837 

4.1 Classification of clone types 

As the last step, we classify clone types by manually validating the matching percentage of all four clone types 
according to the following thresholds. The following judgment criteria are based on the validation of more than 4000 
known clone pairs taken from sanfoundry.com. The classification threshold is based on the similarity value as shown in 
the table 5. 

Table 5. Thresholds of clone type classification based on similarity values 

 
 
 
 
 
 

5. Experimental Setup and Dataset Creation 

The experiment is conducted on the Windows 7 operating system with Intel core 2 duos CPU having 2 GHZ speed 
and 2GB RAM on three sets of data samples. We plan 3 set of case studies as shown below. 

 
i) Dataset-1: To understand the parsing ability of ANTLR, and clone classification accuracy of cosine 

similarity, we initially validated our approach on 135 of C codes, 99 C++ codes and 33 java codes with 
average line count of 5. We recorded time taken to parse the various inputs files.  

ii) Dataset-2: We have collected sample of C, C++ and Java codes from sanfoundry.com which contains 1000 
algorithm based codes of C, C++ and Java. We have edited all the codes according to clone type definitions 
to get total of 4234 true clone pairs of each code samples.  

iii) Dataset-3: Next we perform systematic GitHub-web scrapping on 73,075 active repositories of C and 86,505 
active repositories of C++ to collect 12,600 sample clone pairs of C and 14,480 clone pairs of C++ with 
average line count of 15. Since BigCloneBench is the standard data set for java, we use the sample dataset 
similar to that of (Wang, 2020) which contains 9,134 java codes type. The table 6 presents the details of three 
datasets on various known clone pairs.  

Table 6. Number of clone types for dataset 1, 2, and 3. 

Dataset Language Clone Type 
T1 T2 T3 T4 

1 C 24 28 48 36 
C++ 28 27 22 22 
Java 8 9 8 8 

2 C 1,112 1,026 896 1,200 
C++ 1,286 950 1,018 980 
Java 1,448 1,020 860 906 

3 C 4,238 4,290 1,996 2,076 
C++ 5,432 5,180 1,846 2,022 
Java 3,298 2,696 1,860 1,288 

Total 16,874 15,226 8,554 8,538 

6. Results and Analysis 

In section 3, we have applied TF-IDF cosine similarity directly on the C source files and found the results in table 
3. The obtained similarity measure can only be used to find the type 1 clones and do not support detection of other three 

Similarity matching Clone type 
1 1 

>=0.95 && < 0.99 2 
>=0.80 and <=0.90 4 
>=0.65 and <0.80 3 
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clone types. We analyze the results of parse tree similarity using TFID-Cosine similarity by presenting the precision and 
recall values that act as a validation parameters for our proposed approach.  

Precision tries to find what proportion of positive instances where correct. (https://developers.google.com/) For 
instance we know that add1c and addc are type 2 clones. If we obtain type 2 as the result of classification then it is a 
true positive result otherwise it is said to be false-positive result. With this basic knowledge, we present precision as 

 
Precision=True Positive/ True Positive + False Positive 

 
Recall tries to find how many positives are identified correctly. 
 

Recall= True Positive / True Positive + False Negative 
 

In terms of precession and recall by selecting the few results randomly from C, CPP and Java to understand clone 
classification accuracy is as follows. 

6.1 Results on Dataset-1  

We present few samples of dataset 1 for both C and C++ in table 7 and 8 respectively using CPP14.g4 grammar. 

Table 7. Functional tree similarity for C programs using TFID-cosine similarity 

Sl. No  Source file Destination file Percentage of matching Result obtained Expected Result 
1 add1C add1C 1.0 Type1 Type1 
2 add1C addC 0.93 Type2 Type2 
3 add1C add2C 0.43 Type 3 Type 3 
3 add1C factdowhileC 0.26 Not a clone Not a clone 
4 add1C factforC 0.25 Not a clone Not a clone 
5 add1C factwhileC 0.26 Not a clone Not a clone 
6 add1C helloC 0.12 Not a clone Not a clone 
7 factdowhileC factforC 0.88 Type4 Type4 
8 factdowhileC factwhileC 0.95 Type4 Type4 
9 factforC factwhileC 0.87 Type4 Type4 

Table 8. Functional tree similarity for CPP programs using TFID-cosine similarity. 

Sl. No  Source file Destination file Percentage of matching Result obtained Expected Result 
1 add1cpp add1cpp 1.0 Type1 Type1 
2 add1cpp addcpp 0.96 Type2 Type2 
3 add1cpp add2cpp 0.46 Type3 Type3 
4 add1cpp factdowhilecpp 0.31 Not a clone Not a clone 
5 add1cpp factforcpp 0.33 Not a clone Not a clone 
6 add1cpp factwhilecpp 0.31 Not a clone Not a clone 
7 add1cpp hellocpp 0.08 Not a clone Not a clone 
8 factdowhilecpp factforcpp 0.91 Type4 Type4 
9 Factdowhilecpp factwhilecpp 0.95 Type4 Type4 
10 Factforcpp factwhilecpp 0.93 Type4 Type4 

 
Table 9 shows the similarity of two functional tree’s of ANTLR generated functional tree for Java files using 

JavaLexer.g4 and JavaParser.g4 grammar. 

Table 9. Functional tree similarity for Java programs using TFID-cosine similarity 

Sl. No  Source file Destination file Percentage of matching Result obtained Expected Result 
1 add1java add1java 1.0 Type1 Type1 
2 add1java addjava 0.92 Type2 Type2 
3 add1java factdowhilejava 0.22 Not a clone Not a clone 
4 add1java factforjava 0.20 Not a clone Not a clone 
5 add1java factwhilejava 0.22 Not a clone Not a clone 
6 add1java hellojava 0.11 Not a clone Not a clone 
7 factdowhilejava factforjava 0.82 Type4 Type4 
8 factdowhilejava factwhilejava 0.92 Type4 Type4 
9 factforjava factwhilejava 0.82 Type4 Type4 

 
The experiment was extended to total of 135 C codes with 9180 comparisons, 99 C++ codes with 4950 

comparisons and 33 Java codes with 561 comparisons were made to record the following precision and recall is shown 
in the table 10. The results show excellent precision and recall for type 1 and 2 but yields false positive values for type 3 
and 4. The table 10 shows the improvement in the precision and recall of type 3 and type4. 
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Table 10. Precision and recall using cosine similarity 

Clone types Precision Recall 
Type1 (267/267) 100 (267/267) 100 
Type2 (267/267) 100 (267/267) 100 
Type3 (263/267)98.50 (252/267) 98.50 
Type4 (262/267) 98.12 (234/267) 98.12 

 
One noted good thing about TFID-cosine similarity is that it takes just 40 seconds to compare 9180 C code 

comparisons and takes 78 minutes to compare equivalent functional trees which make it computationally infeasible for 
exhaustive comparisons. 

6.2 Results on Dataset-2 

This section presents the classification results for the known clone pairs of dataset-2 containing exactly 4234 clone 
pairs of C, C++ and Java codes as shown in table 5. We have applied exhaustive comparison on the each dot file 
containing functional tree using TF-IDF cosine similarity. The results of clone classification for entire dataset-2 are 
presented in table 11 below. 

Table 11. Clone classification result for dataset-2 

Language Expected clone type results 
Type-1 Type-2 Type-3 Type-4 

C 1,112/1,112 1,026/1,026 882/896 1,142/1,200 
C++ 1,286/1,286 943/950 1,002/1,018 962/980 
Java 1,448/1,448 1,013/1,020 842/860 894/906 

Average precision 100 99.53 98.26 97.14 
 
The results presented in table 11 proves that the proposed method works very well in detecting the clone types 1 

and 2 on all three languages with almost 100% precision. We have also obtained excellent results in detecting type 3 
and 4 with precision of 98.26% and 97.14% respectively that outperforms the existing tree based clone detection tools 
for detecting type 3 and 4 clone types.  

6.3 Results on Dataset-3 

This section presents the classification results for the known clone pairs of dataset-3 containing exactly 12,600 
sample clone pairs of C and 14,480 clone pairs of C++ with average line count of 15 and 9,134 java codes from 
BigCloneBench as shown in table 5. We have applied exhaustive comparison on the each dot file containing functional 
tree using TF-IDF cosine similarity. The results of clone classification for entire dataset-3 are presented in table 12 
below. 

Table 12. Clone classification result for dataset-3 

Language Expected clone type results 
Type-1 Type-2 Type-3 Type-4 

C 4,238/4,238 4,290/4,290 1,996/1,996 2,076/2,076 
C++ 5,432/5,432 5,046/5,180 1,824/1,846 2,008/2,022 
Java 3,289/3,298 2,582/2,696 1,698/1,860 1,176/1,288 

Average precision 99.9 97.96 96.7 97.66 

 
The results presented in table 12 proves that the proposed method works very well in detecting the clone types 1 

and 2 on all three languages with almost 98.93% precision. We have also obtained encouraging results in detecting type 
3 and 4 with average precision of 97.18%. 

7. Comparative Study 

In this section, we present the recent tree based techniques on the two important parameters such as clone type 
classification and language supported by tool. The comparison is presented on table 13. 
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Table 13. Comparison of tree based techniques 

Sl.No Author/Citation Language 
Supported 

Clone Type 
detection 

1 Yang, 2018 [44] Java Function 
2 Pati, 2017 [70] ArgoUML 1,3 
3 Lavoie, 2019 [45] Java 3,4  
4 Clonemerge(Narasimhan, 

2015) 
C/C++ Near miss 

5 Y. Yang, 2018 [71] Java 1,2,3 
6 J. Zeng, 2019 , [72] Java 1,2,3,4 
7 OOP, D. Li, 2014 [73] Java/PHP 1,2 
8 (Thompson, 2011) [74] Erlang Structural 

9 Wang, 2020 [1] Java(IJDataset) 1,2,3,4 

10 Proposed method C, C++ and Java 1,2,3,4 

 
Table 13 provides evidence that only the work of J. Zeng, 2019[72] and Wang, 2020[1] have classified all 4 clone 

types but the major issue is they are limited to Java code for clone detection. Apart from this both the works are 
computationally infeasible. We are the first to apply the clone detection and classification to three languages. The 
evidences of current study gives the hint that since the grammars for parsing all the languages are freely made available 
by ANTLR, the current methodology can be extended to include all the programming languages that are in practice by 
all the universities in the world.  

Next, we present table 14 to compare our study with the open source tree based techniques to record the precision 
in detecting the clone pairs on our dataset-3. We have considered Deckard[35], iclones [27], ccfx[75] and re-use the 
accuracy data presented in FA-AST+GMN[1] to validate our approach.  

Table 14. Average precision comparison for tree based clone detection 

Technique/Tool Precision (%) 
Deckard 94.34 
iClones 91.24 

ccfx 95 
FA-AST+GMN 95 

Proposed Approach 98.077 

 
From the above table 14, we can conclude that, the proposed method is the more reliable, complete and language 

agnostic in detecting clone with the excellent average precision of 98.07% in detecting all four clone types thereby act 
as a proper validation tool for detecting learning levels by the students in submitted code assignments. The string based 
document comparison techniques for plagiarism detection in Arabic languages presented by Mohd. Binai [76] and 
plagiarism detection for Kurdish language proposed by Karzan Wakil et al. [77] can only detect type 1 and type 2 
clones but fail to detect type 3 and type 4 clones because of the semantic factor involved  in detecting code plagiarism 
hence cannot be applied to code plagiarism detection. 

8. Conclusion 

This research paper proposes more realiable code plagiarism detector by implementing complete and language-
agnostic clone detection for C, C++ and Java languages on the datasets containing average line count of 5, 15, and 32 
respectively. The technique works by extracting a functional tree from the ANTLR generated parse tree to eliminate the 
need of preprocessing stage employed by previous clone detection tools. We employ TF-IDF cosine similarity on the 
generated functional tree in dot file that takes less than 3 seconds to match the clone pairs of 1396 codes which provides 
evidence that the method works on large scale repositories. The results prove that classification of clone types-1 and 2 
are done with 100% precision and precision of 98.50 and 98.12 respectively for detecting type 3 and type 4 clones on 30 
small codes of C, C++, and Java. Proposed technique exhibits the precision of 99.9% for type-1, 97.96% for type-2, 
96.7% for type-3, and 97.66% for type-4 clone detection on the C, C++ and Java programs crawled from active 
repositories of Github. As ANTLR grammars are made available freely, the proposed model can be extended to include 
other existing programming languages to detect code plagiarism with clone types classified to get proper validation in 
submitted coding assignments. 
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