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Abstract: Testing is considered as one of the expensive activities in software development process. Fixing the defects 

during testing process can increase the cost as well as the completion time of the project. Cost of testing process can be 

reduced by identifying the defective modules during the development (before testing) stage. This process is known as 

“Software Defect Prediction”, which has been widely focused by many researchers in the last two decades. This 

research proposes a classification framework for the prediction of defective modules using variant based ensemble 

learning and feature selection techniques. Variant selection activity identifies the best optimized versions of 

classification techniques so that their ensemble can achieve high performance whereas feature selection is performed to 

get rid of such features which do not participate in classification and become the cause of lower performance. The 

proposed framework is implemented on four cleaned NASA datasets from MDP repository and evaluated by using three 

performance measures, including: F-measure, Accuracy, and MCC. According to results, the proposed framework 

outperformed 10 widely used supervised classification techniques, including: “Naïve Bayes (NB), Multi-Layer  

Perceptron  (MLP), Radial Basis Function (RBF), Support Vector Machine (SVM), K Nearest Neighbor (KNN), kStar 

(K*), One Rule (OneR), PART, Decision Tree (DT), and Random Forest (RF)”. 

 

Index Terms: Software Defect Prediction, Feature Selection, Classifier Variant, Ensemble Learning. Machine Learning 

Techniques 

 

1. Introduction 

Software testing is an important activity of quality assurance process, which ensures the delivery of qualitative 

product without any defects. As compared to other activities of software development life cycle, testing is the most 

expensive one as it consumes more resources than others [8,9,10]. This activity makes sure that all of the developed 

modules are bug free [6,7]. To bring down the overall development cost by keeping the quality intact, is a major issue 

for software development industry. The prediction of defective modules on the basis of historical development data can 

resolve this issue. In this procedure, the software modules which are more likely to be defective are identified before the 

testing activity. Due to which only those software modules are tested which are predicted as defective instead of all. 

With this approach, the cost of testing activity can be significantly reduced by keeping the quality intact [10,11,12]. The 

prediction of software defects is a binary classification problem as we have to identify that the particular module is 

defective or non-defective. Many researchers have focused on machine learning techniques to solve the binary 

classification problems such as: Network Intrusion Detection [21,22], Sentiment Analysis [13,14,15,16,17,18], Rainfall 

Prediction [19,20], and Software Defect Prediction [1,2,3,4,5]. The process of software defect prediction has been 

focused by many researchers in the last decade however improving the prediction accuracy has always been the main 

concern. This research proposes a classification framework for software defect prediction using variant based ensemble 

learning and feature selection techniques. There are five stages of the proposed framework: 1) Dataset Selection, 2) 

Variant Selection, 3) Pre-processing & Feature Selection, 4) Classification, and 5) Reflection of Results. The proposed 

framework is implemented on four of the cleaned datasets from NASA MDP repository including: JM1, KC1, PC4 and 

PC5. Moreover, three accuracy measure including: F measure, Accuracy and MCC are used for performance analysis. 

The performance of the proposed framework is compared with various supervised classifiers from a published research 

[1], which have used the same datasets and accuracy measures for performance analysis. The classifiers include: “Naïve 

Bayes (NB), Multi-Layer Perceptron  (MLP), Radial Basis Function (RBF), Support Vector Machine (SVM), K 
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Nearest Neighbor (KNN), kStar (K*), One Rule (OneR), PART, Decision Tree (DT), and Random Forest (RF)”. 

Results show that the proposed framework performed better than all of other classifiers from [1] in all of the three 

accuracy measures. 

2. Related Work 

Many researchers have focused on the use of machine learning techniques in order to predict the software defects 

before the testing stage by using the historical data (data of previously developed modules). The historical data consists 

of various software metrics collected during the development. This section discusses some recent studies, conducted on 

software defect prediction. All of the researchers which are going to be discussed in this section used cleaned version of 

datasets (D’’) from NASA MDP repository. Researchers in [1] performed a detailed performance analysis of various 

supervised classification techniques on software defect prediction. The techniques include: “Naïve Bayes (NB), Multi-

Layer Perceptron (MLP). Radial Basis Function (RBF), Support Vector Machine (SVM), K Nearest Neighbor (KNN), 

kStar (K*), One Rule (OneR), PART, Decision Tree (DT), and Random Forest (RF)”. The default parameters of the 

classification techniques are used and performance was evaluated by using six measures including: “Precision, Recall, 

F-Measure, Accuracy, MCC, and ROC Area”. The authors presented the results as a baseline for other studies so that 

any improvement in the accuracy by any proposed technique can be verified by comparing with the widely used base 

classifiers. Researchers in [2] presented a framework for software defect prediction. Feature selection and ensemble 

learning techniques are used to improve the performance of prediction. Two different dimensions are implemented in 

the framework, in one dimension feature selection is used and in second dimension feature selection activity is not 

performed. This process is done to identify the effect of feature selection process on the performance. Performance 

evaluation is performed through six measures such as: “Precision, Recall, F-Measure, Accuracy, MCC, and ROC Area”. 

The results obtained from both of the dimensions are compared with each other. The results are also compared with 

other well-known and widely used classification techniques from [1] which have used the same datasets and 

performance measures. Researchers in [3] discussed the issue of imbalanced datasets and used three well known and 

widely used resampling techniques to resolve this problem during the process of software defect prediction. The used 

techniques include: “Random Under Sampling”, “Random Over Sampling” and “Synthetic Minority Oversampling 

Technique (SMOTE)”. For classification, various widely used machine learning techniques are used and effects of the 

resampling techniques on the performance is analyzed by using four measures such as: “F-measure, Accuracy, MCC 

and ROC”. Researchers in [4] presented a framework to predict the defects at early stages of software development. To 

increase the performance of prediction, the researchers incorporated feature selection and ensemble learning techniques 

and for performance evaluation four measures are used: F-measure, Accuracy, MCC and ROC. Various feature 

selection techniques are used in the experiment. In the results, all feature selections techniques are compared with each 

other in all of the used performance measures. Then a detailed comparison is performed with various widely used 

supervised classification techniques from research [1]. Researchers in [5] proposed a classification framework to predict 

the defective modules before the testing. They used a multi filter feature section technique with an aggregated method 

and Artificial Neural Network (MLP). The framework is implemented with two different dimensions: first with 

oversampling technique and second without oversampling technique. The purpose behind introducing the oversampling 

technique in the framework is to analyze the effect of resampling on the performance of proposed classification 

framework. Performance evaluation is performed by using four accuracy measures: F-measure, Accuracy, MCC and 

ROC.  

3. Materials and Methods 

This paper contributes by proposing a classification framework for software defect prediction using variant based 

ensemble learning and feature selection techniques. The proposed framework (Figure. 1) consists of five stages: 1) 

Dataset Selection, 2) Variants Selection, 3) Data Preprocessing & Feature selection, 4) Classification, 5) Reflection of 

results. WEKA tool is used for the implementation of proposed classification framework. 
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Fig.1. Proposed Classification Framework 

Selection of appropriate dataset is the first stage of the proposed framework. In this study we have selected four 

widely used cleaned datasets from NASA MDP repository including: JM1, KC1, PC4 and PC5 (Table 1). These 

datasets reflect the module wise metrics of software systems of NASA (Table 2) and their testing results that either 

these modules are defective or not (Fig. 2,). Each dataset consists of various records whereas each record represents a 

module in the form of an attribute set. The attributes are the software metrics which are generated during the 

development (Table 2). 

Table 1. NASA Cleaned Datasets (D”) [23] 

Dataset Attributes Modules Defective 
Non- 

Defective 

Defective 

(%) 

JM1 22 7,720 1,612 6,108 20.8 

KC1 22 1,162 294 868 25.3 

PC4 38 1,270 176 1094 13.8 

PC5 39 1694 458 1236 27.0 

 



32 Software Defect Prediction Using Variant based Ensemble Learning and Feature Selection Techniques  

Copyright © 2020 MECS                                                    I.J. Modern Education and Computer Science, 2020, 5, 29-40 

 

Fig.2. Target Class Distribution  
 

Each of the used datasets contains various independent attributes, and only one dependent attribute. The dependent 

attribute is the one which is going to be predicted, also known as target class and the independent attributes are those 

which are used to predict the dependent attribute. The independent attributes of the used datasets are mentioned in Table 

2. The target class (dependent attribute) can contain only one from either of two values: ‘Y’ or ‘N’. ‘Y’ shows that the 

module is defective and ‘N’ reflects that the module is non-defective (Fig 2). Researchers in [23], provided two versions 

of cleaned NASA datasets: DS’ and DS’’. The instances in DS’ included duplicate and inconsistent values however DS’’ 

contains non-duplicate and consistent instances. These datasets are currently available at [24]. In this research we have 

used the DS’’ version of NASA datasets which is already been used by many researchers [1,2,3,4,5,25,26,27].  

Table 2. Independent Attributes of Datasets 

Sr. 

# 
Attributes JM1 KC1 PC4 PC5 

1 LOC_BLANK    

2 BRANCH_COUNT    

3 CALL_PAIRS    

4 
LOC_CODE_AND_

COMMENT 
   

5 LOC_COMMENTS    

6 
CONDITION_COU

NT 
   

7 
CYCLOMATIC_CO

MPLEXITY 
   

8 
CYCLOMATIC_DE

NSITY 
   

9 DECISION_COUNT    

10 
DECISION_DENSIT

Y 
    

11 
DESIGN_COMPLE

XITY 
   

12 DESIGN_DENSITY    

13 EDGE_COUNT    

14 
ESSENTIAL_COMP

LEXITY 
   

15 
ESSENTIAL_DENS

ITY 
   

16 
LOC_EXECUTABL

E 
   

17 
PARAMETER_COU

NT 
   

18 
GLOBAL_DATA_C

OMPLEXITY 
   

19 
GLOBAL_DATA_D

ENSITY 
   

20 
HALSTEAD_CONT

ENT 
   

21 
HALSTEAD_DIFFI

CULTY 
   

22 
HALSTEAD_EFFO

RT 
   

23 
HALSTEAD_ERRO

R_EST 
   

24 
HALSTEAD_LENG

TH 
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25 
HALSTEAD_LEVE

L 
   

26 
HALSTEAD_PROG

_TIME 
   

27 
HALSTEAD_VOLU

ME 
   

28 
MAINTENANCE_S

EVERITY 
   

29 
MODIFIED_CONDI

TION_COUNT 
   

30 
MULTIPLE_CONDI

TION_COUNT 
   

31 NODE_COUNT    

32 

NORMALIZED_CY

LOMATIC_COMPL

EXITY 
   

33 NUM_OPERANDS    

34 NUM_OPERATORS    

35 
NUM_UNIQUE_OP

ERANDS 
   

36 
NUM_UNIQUE_OP

ERATORS 
   

37 
NUMBER_OF_LIN

ES 
   

38 
PERCENT_COMME

NTS 
   

39 LOC_TOTAL    

 

Second stage of the framework deals with the selection of best variants from different classifiers (Fig.3). Six 

classifiers are optimized (tuned) to create the variants. The classifiers include: Support Vector Machine (SVM), 

Decision Tree (DT), K-Nearest Neighbor (KNN), Naive Bayes (NB), Random Forest (RF), and Multi-layer Perceptron 

(MLP). First, these classifiers are applied on all the datasets to predict the defective modules with default parameters 

(without tuning), and then different variants from each of these classifiers are created by optimizing their parameters. 

All of these variants are then used to predict the defective modules and those variants are selected for ensembles which 

have higher accuracy on all of the datasets. Only one variant is selected from one family (family included base classifier 

and its variants), suppose if four different variants of MLP are created then only one variant would be selected which 

performs higher than its own base classifier (with default parameters). If more than one variants perform better than 

base classifier then the one with the highest performance will be selected. Multiple variants are created of each base 

classifier. The first variant of each classifier is the base classifier itself with its default parameters. The accuracy of each 

of the later variants is compared with the first variant (base classifier) as well as with other variants within the family on 

each of the dataset. If any of the variant within the family cannot perform well than base classifier then no variant will 

be selected from that family.  
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Fig.3. Variant Selection Process 
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Two variants of Naive Bayes (NB) are created (Table 3) by optimizing two parameters (“UseKernalEstimator” and 

“Use SupervisedDiscretization”). In first variant the default parameters are used, in which both the parameters are not 

selected whereas in later variants both the parameters are selected one by one.  

Table 3. Variants of Naive Bayes 

Optimized 

parameter 

NB-1 

(Default) 
NB-2 NB-3 

UseKernalEstimator

/ 
UseSupervisedDiscr

etization 

None- 
selected 

UseKernal
Estimator 

UseSupervisedDisc
retization 

 

For Support Vector Machine (SVM), three variants are created (Table 4). The value of complexity parameter “C” 

is considered for optimizing, which defines hyper-plan and controls the misclassification. In the case of small value of 

C, a hyper-plan with large margin is defined which results in high misclassification rate in training data. If the value of 

C is large then it defines a hyper-plan with small margin which gives better results and classify maximum points 

correctly.  

Table 4. Variants of Support Vector Machine 

Optimized 
parameter 

SVM-1 
(Default) 

SVM-2 SVM-3 SVM-4 

C 1 10 25 50 

 

In Multi-layer Perceptron (MLP), the parameter “h” is optimized, which defines the two things 1) no of hidden 

layers, and 2) no of neurons in each hidden layer. The default value is “a” which defines one hidden layer, and the no of 

neurons in the hidden layer are decided by the following formula: 

 

a =  
(𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 +  𝐶𝑙𝑎𝑠𝑠𝑒𝑠)

2
 

 

Only one hidden layer is used in all variants of MLP with different no of neurons as shown in Table 5. 

Table 5. Variants of Multi-Layer Perceptron 

Optimized 

parameter 

MLP-1 

(Defaul
t) 

MLP-2 MLP-3 MLP-4 MLP-5 

h a 3 5 7 9 

 

In Random Forest (RF), the parameter of “max depth” is optimized. By default RF has value 0 however two 

variants are created by changing its number (Table 6). 

Table 6. Variants of Random forest 

Optimized parameter 
RF-1 

(Default) 
RF-2 RF-3 

MaxDepth 0 10 15 

 

During the optimization of K-Nearest Neighbor, three variants are created by optimizing the number of neighbors 

(Table 7).  

Table 7. Variants of K-nearest Neighbours 

Optimized 

parameter 

KNN-1 

(Default) 
KNN-2 KNN-3 KNN-4 

No of 
Neighbours 

1 3 5 7 

 

From Decision Tree (DT), 4 variants are created by tuning the parameter of confidence factor which controls the 

pruning (Table 8). 
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Table 8. Variants of Decision Tree 

Optimized 

parameter 

DT-1 

(Default) 
DT-2 DT-3 DT-4 DT-5 

Confidence 

Factor 
0.25 0.20 0.15 0.10 0.05 

 

All variants including the base classifiers (with default parameters) are used to classify the datasets with training: 

testing split ratio of 70:30. After the performance analysis on accuracy measure only three variants are selected: SVM-4, 

RF-3 and KNN-4, as these variants showed higher performance than the base classifiers as well as than other variants 

within their family. The detailed results (accuracy of the selected variants) will be discussed in next section.  

Third stage of proposed framework deals with two activities Data preprocessing and Feature Selection. In Data 

preprocessing, two tasks are performed: Resampling [31, 32] and Randomization. Resampling is performed to resolve 

the issue of class imbalance in the datasets as this issue can compromise the accuracy of proposed classification 

framework [2,3,4,5]. To perform this task, the builtin function of WEKA is used 

(weka.filters.supervised.instance.Resample). On the other hand, the randomization technique shuffles the instances of 

datasets. This process is also performed by using a builtin function of WEKA tool 

(weka.filters.unsupervised.instance.Randomize).  

Feature Selection activity is applied on all the datasets in order to select only those features which highly 

participate in the classification process. As, it has been proved now from the studies [2], [5] that those features should 

be removed from the dataset which do not participate in classification process as these features may reduce the 

performance. In this research, feature selection is performed by “Cfs Subset Evaluator” [28, 29, 30] with BestFirst 

search method, whereas full dataset is given for training. In this approach, three directions are used for feature subset 

selection: Forward, Backward, and Bi-Directional. In result, three subsets are generated for each dataset. To choose the 

best subset, those attributes are selected which are common in each direction as shown in Table 9.  

Table 9. Feature Subsets 

BestFirst 

(Direction) 
JM1 KC1 PC4 PC5 

Forward 

1,3,4,6,7

,8,9,11,2

0,21 

1,3,8,9,

10,14,1

9,20 

4,8,17
,26 

3,4,10

,13,17
,19,20

,21,35 

Backward 
1,3,4,6,7
,8,9,16,2

0,21  

1,3,8,9,
10,14,1

9,20  

4,8,17

,26  

3,4,13

,17,19

,20,25
,35 

Bi-

Directional 

1,3,4,6,7

,8,9,16,2
0,21  

1,3,8,9,

10,14,1
9,20  

4,8,17

,26 

3,4,13
,17,19

,20,21

,35 

Common 
Features 

1,3,4,6,7

,8,9,20,2

1 

1,3,8,9,

10,14,1

9,20 

4,8,17
,26 

3,4,13

,17,19

,20,35 

 

Classification is the fourth stage of the proposed framework. In this stage the ensembles are created by using three 

variants which are selected in second stage of framework. Purpose of ensemble learning is to combine the power of 

multiple classifiers in one classification model. Many ensemble techniques are available today such as Bagging, 

Boosting, Voting and Stacking etc. In this research, voting is selected to create ensembles. In this technique multiple 

sub models are created and each models performs its own prediction and then those predictions are combined on the 

basis of voting. Three variants selected in second stage including: SVM-4, RF-3 and KNN-4 are used to create various 

ensembles by using Voting technique. Ensemble with all possible combinations of selected variants are used one by one 

for classification using the subsets selected in third stage, and finally one ensemble having the combination of RF-3 and 

KNN-4 is chosen as it performed highest among all. 
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4. Results and Discussion 

Fifth and the last stage of the proposed framework deals with the presentation and analysis of results. Three 

measures are used for the performance evaluation of proposed framework including: F-measure, Accuracy, and MCC. 

All of these performance measures are based on confusion matrix (Fig. 4) 

 

Fig. 4. Confusion Matrix 

A confusion matrix is consists of four parameters: TP, FP, FN, and TN. These parameters are explained below: 

TP (True Positive): “Instances which are actually positive and also classified as positive”.  

FP (False Positive): “Instances which are actually negative but classified as positive”. 

FN (False Negative): “Instances which are actually positive but classified as negative”.  

TN (True Negative): “Instances which are actually negative and also classified as negative”. 

 

All of three performance measures: F-measure, Accuracy, and MCC are calculated by using the parameters of 

confusion matrix. The brief description along with the calculation formula of each of the used performance measure is 

given below: 

 

‘F-measure’ is one of the widely used measures to analyze the performance of classification techniques. To 

calculate this measure, two measures named ‘Precision’ and ‘Recall’ have to be calculated as F-measure is the average 

of these both measures.  

Precision represents the ratio between True Positive instances and the instances which are classified as positive 

(True Positive + False Positive) as shown below:  

 

Precision
( )

TP

TP FP



                                                                          (1) 

 

Recall represents the ratio between True Positive instances and the instances which are actually positive (True 

Positive + False Negatives) as shown below: 

 

Re
( )

TP
call

TP FN



                                                                       (2) 

 

And finally F-measure is the average of Precision and Recall, as shown below” 

 

Precision * Recall * 2
F-measure

(Precision + Recall)
                                                            (3) 

 

Accuracy represents the ratio of the instances which are classified correctly and the total number of classified 

instances, as shown below:  

 

TP TN
Accuracy

TP TN FP FN




  
                                                       (4) 

 

MCC represents the ratio of the observed classifications and the predicted classifications.  

 

( )( )( )( )

TN TP FN FP
M C C

FP TP FN TP TN FP TN FN

  


   

                                            (5)
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First the results of the variants from stage two are discussed. Multiple variants are created in each of the classifier 

family (base classifier family) and then those variants are used to predict the defect prone software modules by using all 

of the used datasets. Three variants from 6 families of the classifiers are selected as only those three performed with 

highest accuracies by outperforming the base classifiers of their families. The performance of selected variants 

including SVM-4, RF-3, and KNN-4 are reflected in the tables below (Table 10). 

Table 10. Accuracy of Selected Variants  

Dataset JM1 KC1 PC4 PC5 

 

Default 

Classifier 
Variant 

Default 

Classifier 
Variant 

Default 

Classifier 
Variant 

Default 

Classifier 
Variant 

SVM-4 79.1883 79.4041 75.3582 76.7908 88.189 90.5512 74.2126 74.8031 

RF-3 80.1813 80.6131 77.937 79.0831 87.4016 87.4016 75.9843 76.7717 

KNN-4 73.9637 80.0086 69.341 77.9370 85.8268 85.8268 73.0315 76.5748 

 

The final results of the proposed framework in terms of F-Measure, Accuracy and MCC are reflected and 

compared (Table 11 to Table 14) with the results of a published paper [1]. That paper [1] has used 10 widely used 

supervised classification models on the same version of cleaned NASA MDP datasets, which are used for experiments 

in this research. The classifiers used in the published papers include: “Naïve Bayes (NB), Multi-Layer Perceptron 

(MLP). Radial Basis Function (RBF), Support Vector Machine (SVM), K Nearest Neighbor (KNN), kStar (K*), One 

Rule (OneR), PART, Decision Tree (DT), and Random Forest (RF)”.  

In this research, the performance measures are only discussed for the defective class (‘Y’) as we are predicting the 

defective modules not the non-defective modules. Results show that the proposed framework outperformed all 10 

classifiers from published paper in all three performance measures on all of the used datasets. The results from 

published paper show the symbol ‘?’ in few places which indicates that the score in that measure cannot be calculated 

due to the issue of imbalance data. The proposed framework also solved this issue besides the overall high performance.  

Table 11. JM1 Results 

Classifier F-Measure Accuracy MCC 

NB 0.318 79.835 0.251 

RBF 0.181 80.397 0.215 

SVM ? 79.188 ? 

kNN 0.348 73.963 0.186 

kStar 0.355 75.993 0.212 

OneR 0.216 77.158 0.126 

PART 0.037 79.490 0.104 

DT 0.348 79.101 0.252 

RF 0.284 80.181 0.244 

MLP 0.146 80.354 0.206 

Proposed 
Framework 

0.507 84.974 0.488 

 

The results of JM1 dataset are shown in Table 11. It can be seen that the proposed framework outperformed in F-

Measure, Accuracy, and in MCC with the scores of 0.507, 84.974, and 0.488 respectively.  

Table 12. KC1 Results 

Classifier F-Measure Accuracy MCC 

NB 0.400 74.212 0.250 

RBF 0.362 78.796 0.347 

SVM 0.085 75.358 0.151 

kNN 0.395 69.341 0.190 

kStar 0.419 72.206 0.238 

OneR 0.256 73.352 0.147 

PART 0.255 76.504 0.239 

DT 0.430 75.644 0.291 

RF 0.454 77.937 0.346 

MLP 0.358 77.363 0.296 

Proposed 

Framework 

0.548 83.9542 0.482 
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KC1 results are reflected in Table 12. It can be seen that the proposed framework shows high performance in all of 

the three measures with the scores of 0.548, 83.9542 and 0.482 respectively.  

Table 13. PC4 Results 

Classifier F-Measure Accuracy MCC 

NB 0.404 86.089 0.334 

RBF 0.250 87.401 0.279 

SVM 0.286 88.189 0.342 

kNN 0.438 85.826 0.359 

kStar 0.330 81.889 0.225 

OneR 0.361 87.926 0.352 

PART 0.481 85.301 0.396 

DT 0.583 86.876 0.514 

RF 0.532 90.288 0.516 

MLP 0.562 89.763 0.515 

Proposed 

Framework 
0.68 91.8635 0.649 

 

Table 13 reflects the results of PC4 dataset. It can be observed that the proposed framework performed better with 

highest performance in F-Measure, Accuracy, and in MCC with the score of 0.68, 91.8635, and 0.649 respectively. 

Table 14. PC5 Results 

Classifier F-Measure Accuracy MCC 

NB 0.269 75.393 0.245 

RBF 0.235 75.590 0.251 

SVM 0.097 74.212 0.173 

kNN 0.498 73.031 0.314 

kStar 0.431 69.881 0.227 

OneR 0.387 71.259 0.209 

PART 0.335 75.787 0.274 

DT 0.531  75.000 0.361 

RF 0.450 75.984 0.322 

MLP 0.299 74.212 0.216 

Proposed 

Framework 
0.75 87.7953 0.669 

 

PC5 results are shown in Table 14. It can be observed that the proposed framework outperformed in F-Measure, 

Accuracy, and in MCC with the score of 0.75, 87.7953 and 0.669 respectively. 

5. Conclusion 

In this paper, the researchers proposed a classification framework for the prediction of defect prone software 

modules in order to reduce the cost of testing process in software development life cycle. The key activities performed 

by the researchers in order to improve the performance include: feature selection and variant based ensemble 

classification. Feature selection is performed to eliminate those features which do not participate in the classification 

process and even reduce the performance of framework besides the high processing cost. In the process of variant 

selection, first the variants are created by optimizing six base classifiers, including: Support Vector Machine (SVM), 

Decision Tree (DT), K-Nearest Neighbor (KNN), Naive Bayes (NB), Random Forest (RF), and Multi-layer Perceptron 

(MLP). From the variants of each base classifier (classifier family), one variant is selected which performed higher than 

all other variants of its family including the base classifier. Three variants are selected in this research due to high 

performance including SVM-4, RF-3 and KNN-4. These variants are then integrated by using an ensemble technique: 

“Voting” with all possible combinations. One combination of variants: RF-3 and KNN-4 outperformed all the other 

combinations and is selected for classification in the proposed framework. The results of the framework are compared 

with the results of various widely used supervised classifiers from published paper, which have used the same datasets 

and performance measures for performance analysis. The comparative analysis have reflected the fact that the proposed 

framework outperformed all other classification techniques from the published paper and also resolved the issue of class 

imbalance. However it is suggested for future work to optimize more classifiers with extensive set of parameters so that 

more variants can be selected for ensemble learning. 
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