
I.J. Modern Education and Computer Science, 2020, 5, 29-40
Published Online October 2020 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2020.05.03

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 5, 29-40

Software Defect Prediction Using Variant based

Ensemble Learning and Feature Selection

Techniques

Umair Ali, Shabib Aftab, Ahmed Iqbal, Zahid Nawaz, Muhammad Salman Bashir, Muhammad

Anwaar Saeed
Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan

Email: umair.ali.hamid@gmail.com, shabib.aftab@gmail.com, ahmedeqbal@gmail.com, mss.zahidnawaz@gmail.com,

salman.vu@gmail.com, anwaar@vu.edu.pk

Received: 02 June 2020; Accepted: 28 June 2020; Published: 08 October 2020

Abstract: Testing is considered as one of the expensive activities in software development process. Fixing the defects

during testing process can increase the cost as well as the completion time of the project. Cost of testing process can be

reduced by identifying the defective modules during the development (before testing) stage. This process is known as

“Software Defect Prediction”, which has been widely focused by many researchers in the last two decades. This

research proposes a classification framework for the prediction of defective modules using variant based ensemble

learning and feature selection techniques. Variant selection activity identifies the best optimized versions of

classification techniques so that their ensemble can achieve high performance whereas feature selection is performed to

get rid of such features which do not participate in classification and become the cause of lower performance. The

proposed framework is implemented on four cleaned NASA datasets from MDP repository and evaluated by using three

performance measures, including: F-measure, Accuracy, and MCC. According to results, the proposed framework

outperformed 10 widely used supervised classification techniques, including: “Naïve Bayes (NB), Multi-Layer

Perceptron (MLP), Radial Basis Function (RBF), Support Vector Machine (SVM), K Nearest Neighbor (KNN), kStar

(K*), One Rule (OneR), PART, Decision Tree (DT), and Random Forest (RF)”.

Index Terms: Software Defect Prediction, Feature Selection, Classifier Variant, Ensemble Learning. Machine Learning

Techniques

1. Introduction

Software testing is an important activity of quality assurance process, which ensures the delivery of qualitative

product without any defects. As compared to other activities of software development life cycle, testing is the most

expensive one as it consumes more resources than others [8,9,10]. This activity makes sure that all of the developed

modules are bug free [6,7]. To bring down the overall development cost by keeping the quality intact, is a major issue

for software development industry. The prediction of defective modules on the basis of historical development data can

resolve this issue. In this procedure, the software modules which are more likely to be defective are identified before the

testing activity. Due to which only those software modules are tested which are predicted as defective instead of all.

With this approach, the cost of testing activity can be significantly reduced by keeping the quality intact [10,11,12]. The

prediction of software defects is a binary classification problem as we have to identify that the particular module is

defective or non-defective. Many researchers have focused on machine learning techniques to solve the binary

classification problems such as: Network Intrusion Detection [21,22], Sentiment Analysis [13,14,15,16,17,18], Rainfall

Prediction [19,20], and Software Defect Prediction [1,2,3,4,5]. The process of software defect prediction has been

focused by many researchers in the last decade however improving the prediction accuracy has always been the main

concern. This research proposes a classification framework for software defect prediction using variant based ensemble

learning and feature selection techniques. There are five stages of the proposed framework: 1) Dataset Selection, 2)

Variant Selection, 3) Pre-processing & Feature Selection, 4) Classification, and 5) Reflection of Results. The proposed

framework is implemented on four of the cleaned datasets from NASA MDP repository including: JM1, KC1, PC4 and

PC5. Moreover, three accuracy measure including: F measure, Accuracy and MCC are used for performance analysis.

The performance of the proposed framework is compared with various supervised classifiers from a published research

[1], which have used the same datasets and accuracy measures for performance analysis. The classifiers include: “Naïve

Bayes (NB), Multi-Layer Perceptron (MLP), Radial Basis Function (RBF), Support Vector Machine (SVM), K

mailto:ahmedeqbal@gmail.com
mailto:mss.zahidnawaz@gmail.com

30 Software Defect Prediction Using Variant based Ensemble Learning and Feature Selection Techniques

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 5, 29-40

Nearest Neighbor (KNN), kStar (K*), One Rule (OneR), PART, Decision Tree (DT), and Random Forest (RF)”.

Results show that the proposed framework performed better than all of other classifiers from [1] in all of the three

accuracy measures.

2. Related Work

Many researchers have focused on the use of machine learning techniques in order to predict the software defects

before the testing stage by using the historical data (data of previously developed modules). The historical data consists

of various software metrics collected during the development. This section discusses some recent studies, conducted on

software defect prediction. All of the researchers which are going to be discussed in this section used cleaned version of

datasets (D’’) from NASA MDP repository. Researchers in [1] performed a detailed performance analysis of various

supervised classification techniques on software defect prediction. The techniques include: “Naïve Bayes (NB), Multi-

Layer Perceptron (MLP). Radial Basis Function (RBF), Support Vector Machine (SVM), K Nearest Neighbor (KNN),

kStar (K*), One Rule (OneR), PART, Decision Tree (DT), and Random Forest (RF)”. The default parameters of the

classification techniques are used and performance was evaluated by using six measures including: “Precision, Recall,

F-Measure, Accuracy, MCC, and ROC Area”. The authors presented the results as a baseline for other studies so that

any improvement in the accuracy by any proposed technique can be verified by comparing with the widely used base

classifiers. Researchers in [2] presented a framework for software defect prediction. Feature selection and ensemble

learning techniques are used to improve the performance of prediction. Two different dimensions are implemented in

the framework, in one dimension feature selection is used and in second dimension feature selection activity is not

performed. This process is done to identify the effect of feature selection process on the performance. Performance

evaluation is performed through six measures such as: “Precision, Recall, F-Measure, Accuracy, MCC, and ROC Area”.

The results obtained from both of the dimensions are compared with each other. The results are also compared with

other well-known and widely used classification techniques from [1] which have used the same datasets and

performance measures. Researchers in [3] discussed the issue of imbalanced datasets and used three well known and

widely used resampling techniques to resolve this problem during the process of software defect prediction. The used

techniques include: “Random Under Sampling”, “Random Over Sampling” and “Synthetic Minority Oversampling

Technique (SMOTE)”. For classification, various widely used machine learning techniques are used and effects of the

resampling techniques on the performance is analyzed by using four measures such as: “F-measure, Accuracy, MCC

and ROC”. Researchers in [4] presented a framework to predict the defects at early stages of software development. To

increase the performance of prediction, the researchers incorporated feature selection and ensemble learning techniques

and for performance evaluation four measures are used: F-measure, Accuracy, MCC and ROC. Various feature

selection techniques are used in the experiment. In the results, all feature selections techniques are compared with each

other in all of the used performance measures. Then a detailed comparison is performed with various widely used

supervised classification techniques from research [1]. Researchers in [5] proposed a classification framework to predict

the defective modules before the testing. They used a multi filter feature section technique with an aggregated method

and Artificial Neural Network (MLP). The framework is implemented with two different dimensions: first with

oversampling technique and second without oversampling technique. The purpose behind introducing the oversampling

technique in the framework is to analyze the effect of resampling on the performance of proposed classification

framework. Performance evaluation is performed by using four accuracy measures: F-measure, Accuracy, MCC and

ROC.

3. Materials and Methods

This paper contributes by proposing a classification framework for software defect prediction using variant based

ensemble learning and feature selection techniques. The proposed framework (Figure. 1) consists of five stages: 1)

Dataset Selection, 2) Variants Selection, 3) Data Preprocessing & Feature selection, 4) Classification, 5) Reflection of

results. WEKA tool is used for the implementation of proposed classification framework.

 Software Defect Prediction Using Variant based Ensemble Learning and Feature Selection Techniques 31

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 5, 29-40

Pre-Processing
Resample

Randomize

Dataset Selection

Dataset

Feature Selection
Attribute Evaluator: CfsSubsetEval

Search Method: BestFirst

Results & Performance

Evaluation

SVM-4
RF-3

SVM-4
KNN-4

RF-3
KNN-4

SVM-4
RF-3

KNN-4

Variants Selection

Selected Variants

1st
Stage

2nd
Stage

3rd
Stage

4th
Stage

5th
Stage

Fig.1. Proposed Classification Framework

Selection of appropriate dataset is the first stage of the proposed framework. In this study we have selected four

widely used cleaned datasets from NASA MDP repository including: JM1, KC1, PC4 and PC5 (Table 1). These

datasets reflect the module wise metrics of software systems of NASA (Table 2) and their testing results that either

these modules are defective or not (Fig. 2,). Each dataset consists of various records whereas each record represents a

module in the form of an attribute set. The attributes are the software metrics which are generated during the

development (Table 2).

Table 1. NASA Cleaned Datasets (D”) [23]

Dataset Attributes Modules Defective
Non-

Defective

Defective

(%)

JM1 22 7,720 1,612 6,108 20.8

KC1 22 1,162 294 868 25.3

PC4 38 1,270 176 1094 13.8

PC5 39 1694 458 1236 27.0

32 Software Defect Prediction Using Variant based Ensemble Learning and Feature Selection Techniques

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 5, 29-40

Fig.2. Target Class Distribution

Each of the used datasets contains various independent attributes, and only one dependent attribute. The dependent

attribute is the one which is going to be predicted, also known as target class and the independent attributes are those

which are used to predict the dependent attribute. The independent attributes of the used datasets are mentioned in Table

2. The target class (dependent attribute) can contain only one from either of two values: ‘Y’ or ‘N’. ‘Y’ shows that the

module is defective and ‘N’ reflects that the module is non-defective (Fig 2). Researchers in [23], provided two versions

of cleaned NASA datasets: DS’ and DS’’. The instances in DS’ included duplicate and inconsistent values however DS’’

contains non-duplicate and consistent instances. These datasets are currently available at [24]. In this research we have

used the DS’’ version of NASA datasets which is already been used by many researchers [1,2,3,4,5,25,26,27].

Table 2. Independent Attributes of Datasets

Sr.

Attributes JM1 KC1 PC4 PC5

1 LOC_BLANK

2 BRANCH_COUNT

3 CALL_PAIRS

4
LOC_CODE_AND_

COMMENT

5 LOC_COMMENTS

6
CONDITION_COU

NT

7
CYCLOMATIC_CO

MPLEXITY

8
CYCLOMATIC_DE

NSITY

9 DECISION_COUNT

10
DECISION_DENSIT

Y

11
DESIGN_COMPLE

XITY

12 DESIGN_DENSITY

13 EDGE_COUNT

14
ESSENTIAL_COMP

LEXITY

15
ESSENTIAL_DENS

ITY

16
LOC_EXECUTABL

E

17
PARAMETER_COU

NT

18
GLOBAL_DATA_C

OMPLEXITY

19
GLOBAL_DATA_D

ENSITY

20
HALSTEAD_CONT

ENT

21
HALSTEAD_DIFFI

CULTY

22
HALSTEAD_EFFO

RT

23
HALSTEAD_ERRO

R_EST

24
HALSTEAD_LENG

TH

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

JM1 KC1 PC4 PC5

Defective Non- Defective

 Software Defect Prediction Using Variant based Ensemble Learning and Feature Selection Techniques 33

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 5, 29-40

25
HALSTEAD_LEVE

L

26
HALSTEAD_PROG

_TIME

27
HALSTEAD_VOLU

ME

28
MAINTENANCE_S

EVERITY

29
MODIFIED_CONDI

TION_COUNT

30
MULTIPLE_CONDI

TION_COUNT

31 NODE_COUNT

32

NORMALIZED_CY

LOMATIC_COMPL

EXITY

33 NUM_OPERANDS

34 NUM_OPERATORS

35
NUM_UNIQUE_OP

ERANDS

36
NUM_UNIQUE_OP

ERATORS

37
NUMBER_OF_LIN

ES

38
PERCENT_COMME

NTS

39 LOC_TOTAL

Second stage of the framework deals with the selection of best variants from different classifiers (Fig.3). Six

classifiers are optimized (tuned) to create the variants. The classifiers include: Support Vector Machine (SVM),

Decision Tree (DT), K-Nearest Neighbor (KNN), Naive Bayes (NB), Random Forest (RF), and Multi-layer Perceptron

(MLP). First, these classifiers are applied on all the datasets to predict the defective modules with default parameters

(without tuning), and then different variants from each of these classifiers are created by optimizing their parameters.

All of these variants are then used to predict the defective modules and those variants are selected for ensembles which

have higher accuracy on all of the datasets. Only one variant is selected from one family (family included base classifier

and its variants), suppose if four different variants of MLP are created then only one variant would be selected which

performs higher than its own base classifier (with default parameters). If more than one variants perform better than

base classifier then the one with the highest performance will be selected. Multiple variants are created of each base

classifier. The first variant of each classifier is the base classifier itself with its default parameters. The accuracy of each

of the later variants is compared with the first variant (base classifier) as well as with other variants within the family on

each of the dataset. If any of the variant within the family cannot perform well than base classifier then no variant will

be selected from that family.

Dataset

Training

Data

Test

Data

Base Classifiers

NB

SVM

MLP

RF

KNN

DT

Variants Validation

Performance

improved

No

Selected

Yes

Not Selected

Fig.3. Variant Selection Process

34 Software Defect Prediction Using Variant based Ensemble Learning and Feature Selection Techniques

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 5, 29-40

Two variants of Naive Bayes (NB) are created (Table 3) by optimizing two parameters (“UseKernalEstimator” and

“Use SupervisedDiscretization”). In first variant the default parameters are used, in which both the parameters are not

selected whereas in later variants both the parameters are selected one by one.

Table 3. Variants of Naive Bayes

Optimized

parameter

NB-1

(Default)
NB-2 NB-3

UseKernalEstimator

/
UseSupervisedDiscr

etization

None-
selected

UseKernal
Estimator

UseSupervisedDisc
retization

For Support Vector Machine (SVM), three variants are created (Table 4). The value of complexity parameter “C”

is considered for optimizing, which defines hyper-plan and controls the misclassification. In the case of small value of

C, a hyper-plan with large margin is defined which results in high misclassification rate in training data. If the value of

C is large then it defines a hyper-plan with small margin which gives better results and classify maximum points

correctly.

Table 4. Variants of Support Vector Machine

Optimized
parameter

SVM-1
(Default)

SVM-2 SVM-3 SVM-4

C 1 10 25 50

In Multi-layer Perceptron (MLP), the parameter “h” is optimized, which defines the two things 1) no of hidden

layers, and 2) no of neurons in each hidden layer. The default value is “a” which defines one hidden layer, and the no of

neurons in the hidden layer are decided by the following formula:

a =
(𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 + 𝐶𝑙𝑎𝑠𝑠𝑒𝑠)

2

Only one hidden layer is used in all variants of MLP with different no of neurons as shown in Table 5.

Table 5. Variants of Multi-Layer Perceptron

Optimized

parameter

MLP-1

(Defaul
t)

MLP-2 MLP-3 MLP-4 MLP-5

h a 3 5 7 9

In Random Forest (RF), the parameter of “max depth” is optimized. By default RF has value 0 however two

variants are created by changing its number (Table 6).

Table 6. Variants of Random forest

Optimized parameter
RF-1

(Default)
RF-2 RF-3

MaxDepth 0 10 15

During the optimization of K-Nearest Neighbor, three variants are created by optimizing the number of neighbors

(Table 7).

Table 7. Variants of K-nearest Neighbours

Optimized

parameter

KNN-1

(Default)
KNN-2 KNN-3 KNN-4

No of
Neighbours

1 3 5 7

From Decision Tree (DT), 4 variants are created by tuning the parameter of confidence factor which controls the

pruning (Table 8).

 Software Defect Prediction Using Variant based Ensemble Learning and Feature Selection Techniques 35

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 5, 29-40

Table 8. Variants of Decision Tree

Optimized

parameter

DT-1

(Default)
DT-2 DT-3 DT-4 DT-5

Confidence

Factor
0.25 0.20 0.15 0.10 0.05

All variants including the base classifiers (with default parameters) are used to classify the datasets with training:

testing split ratio of 70:30. After the performance analysis on accuracy measure only three variants are selected: SVM-4,

RF-3 and KNN-4, as these variants showed higher performance than the base classifiers as well as than other variants

within their family. The detailed results (accuracy of the selected variants) will be discussed in next section.

Third stage of proposed framework deals with two activities Data preprocessing and Feature Selection. In Data

preprocessing, two tasks are performed: Resampling [31, 32] and Randomization. Resampling is performed to resolve

the issue of class imbalance in the datasets as this issue can compromise the accuracy of proposed classification

framework [2,3,4,5]. To perform this task, the builtin function of WEKA is used

(weka.filters.supervised.instance.Resample). On the other hand, the randomization technique shuffles the instances of

datasets. This process is also performed by using a builtin function of WEKA tool

(weka.filters.unsupervised.instance.Randomize).

Feature Selection activity is applied on all the datasets in order to select only those features which highly

participate in the classification process. As, it has been proved now from the studies [2], [5] that those features should

be removed from the dataset which do not participate in classification process as these features may reduce the

performance. In this research, feature selection is performed by “Cfs Subset Evaluator” [28, 29, 30] with BestFirst

search method, whereas full dataset is given for training. In this approach, three directions are used for feature subset

selection: Forward, Backward, and Bi-Directional. In result, three subsets are generated for each dataset. To choose the

best subset, those attributes are selected which are common in each direction as shown in Table 9.

Table 9. Feature Subsets

BestFirst

(Direction)
JM1 KC1 PC4 PC5

Forward

1,3,4,6,7

,8,9,11,2

0,21

1,3,8,9,

10,14,1

9,20

4,8,17
,26

3,4,10

,13,17
,19,20

,21,35

Backward
1,3,4,6,7
,8,9,16,2

0,21

1,3,8,9,
10,14,1

9,20

4,8,17

,26

3,4,13

,17,19

,20,25
,35

Bi-

Directional

1,3,4,6,7

,8,9,16,2
0,21

1,3,8,9,

10,14,1
9,20

4,8,17

,26

3,4,13
,17,19

,20,21

,35

Common
Features

1,3,4,6,7

,8,9,20,2

1

1,3,8,9,

10,14,1

9,20

4,8,17
,26

3,4,13

,17,19

,20,35

Classification is the fourth stage of the proposed framework. In this stage the ensembles are created by using three

variants which are selected in second stage of framework. Purpose of ensemble learning is to combine the power of

multiple classifiers in one classification model. Many ensemble techniques are available today such as Bagging,

Boosting, Voting and Stacking etc. In this research, voting is selected to create ensembles. In this technique multiple

sub models are created and each models performs its own prediction and then those predictions are combined on the

basis of voting. Three variants selected in second stage including: SVM-4, RF-3 and KNN-4 are used to create various

ensembles by using Voting technique. Ensemble with all possible combinations of selected variants are used one by one

for classification using the subsets selected in third stage, and finally one ensemble having the combination of RF-3 and

KNN-4 is chosen as it performed highest among all.

36 Software Defect Prediction Using Variant based Ensemble Learning and Feature Selection Techniques

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 5, 29-40

4. Results and Discussion

Fifth and the last stage of the proposed framework deals with the presentation and analysis of results. Three

measures are used for the performance evaluation of proposed framework including: F-measure, Accuracy, and MCC.

All of these performance measures are based on confusion matrix (Fig. 4)

Fig. 4. Confusion Matrix

A confusion matrix is consists of four parameters: TP, FP, FN, and TN. These parameters are explained below:

TP (True Positive): “Instances which are actually positive and also classified as positive”.

FP (False Positive): “Instances which are actually negative but classified as positive”.

FN (False Negative): “Instances which are actually positive but classified as negative”.

TN (True Negative): “Instances which are actually negative and also classified as negative”.

All of three performance measures: F-measure, Accuracy, and MCC are calculated by using the parameters of

confusion matrix. The brief description along with the calculation formula of each of the used performance measure is

given below:

‘F-measure’ is one of the widely used measures to analyze the performance of classification techniques. To

calculate this measure, two measures named ‘Precision’ and ‘Recall’ have to be calculated as F-measure is the average

of these both measures.

Precision represents the ratio between True Positive instances and the instances which are classified as positive

(True Positive + False Positive) as shown below:

Precision
()

TP

TP FP

 (1)

Recall represents the ratio between True Positive instances and the instances which are actually positive (True

Positive + False Negatives) as shown below:

Re
()

TP
call

TP FN

 (2)

And finally F-measure is the average of Precision and Recall, as shown below”

Precision * Recall * 2
F-measure

(Precision + Recall)
 (3)

Accuracy represents the ratio of the instances which are classified correctly and the total number of classified

instances, as shown below:

TP TN
Accuracy

TP TN FP FN

 (4)

MCC represents the ratio of the observed classifications and the predicted classifications.

()()()()

TN TP FN FP
M C C

FP TP FN TP TN FP TN FN

 (5)

 Software Defect Prediction Using Variant based Ensemble Learning and Feature Selection Techniques 37

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 5, 29-40

First the results of the variants from stage two are discussed. Multiple variants are created in each of the classifier

family (base classifier family) and then those variants are used to predict the defect prone software modules by using all

of the used datasets. Three variants from 6 families of the classifiers are selected as only those three performed with

highest accuracies by outperforming the base classifiers of their families. The performance of selected variants

including SVM-4, RF-3, and KNN-4 are reflected in the tables below (Table 10).

Table 10. Accuracy of Selected Variants

Dataset JM1 KC1 PC4 PC5

Default

Classifier
Variant

Default

Classifier
Variant

Default

Classifier
Variant

Default

Classifier
Variant

SVM-4 79.1883 79.4041 75.3582 76.7908 88.189 90.5512 74.2126 74.8031

RF-3 80.1813 80.6131 77.937 79.0831 87.4016 87.4016 75.9843 76.7717

KNN-4 73.9637 80.0086 69.341 77.9370 85.8268 85.8268 73.0315 76.5748

The final results of the proposed framework in terms of F-Measure, Accuracy and MCC are reflected and

compared (Table 11 to Table 14) with the results of a published paper [1]. That paper [1] has used 10 widely used

supervised classification models on the same version of cleaned NASA MDP datasets, which are used for experiments

in this research. The classifiers used in the published papers include: “Naïve Bayes (NB), Multi-Layer Perceptron

(MLP). Radial Basis Function (RBF), Support Vector Machine (SVM), K Nearest Neighbor (KNN), kStar (K*), One

Rule (OneR), PART, Decision Tree (DT), and Random Forest (RF)”.

In this research, the performance measures are only discussed for the defective class (‘Y’) as we are predicting the

defective modules not the non-defective modules. Results show that the proposed framework outperformed all 10

classifiers from published paper in all three performance measures on all of the used datasets. The results from

published paper show the symbol ‘?’ in few places which indicates that the score in that measure cannot be calculated

due to the issue of imbalance data. The proposed framework also solved this issue besides the overall high performance.

Table 11. JM1 Results

Classifier F-Measure Accuracy MCC

NB 0.318 79.835 0.251

RBF 0.181 80.397 0.215

SVM ? 79.188 ?

kNN 0.348 73.963 0.186

kStar 0.355 75.993 0.212

OneR 0.216 77.158 0.126

PART 0.037 79.490 0.104

DT 0.348 79.101 0.252

RF 0.284 80.181 0.244

MLP 0.146 80.354 0.206

Proposed
Framework

0.507 84.974 0.488

The results of JM1 dataset are shown in Table 11. It can be seen that the proposed framework outperformed in F-

Measure, Accuracy, and in MCC with the scores of 0.507, 84.974, and 0.488 respectively.

Table 12. KC1 Results

Classifier F-Measure Accuracy MCC

NB 0.400 74.212 0.250

RBF 0.362 78.796 0.347

SVM 0.085 75.358 0.151

kNN 0.395 69.341 0.190

kStar 0.419 72.206 0.238

OneR 0.256 73.352 0.147

PART 0.255 76.504 0.239

DT 0.430 75.644 0.291

RF 0.454 77.937 0.346

MLP 0.358 77.363 0.296

Proposed

Framework

0.548 83.9542 0.482

38 Software Defect Prediction Using Variant based Ensemble Learning and Feature Selection Techniques

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 5, 29-40

KC1 results are reflected in Table 12. It can be seen that the proposed framework shows high performance in all of

the three measures with the scores of 0.548, 83.9542 and 0.482 respectively.

Table 13. PC4 Results

Classifier F-Measure Accuracy MCC

NB 0.404 86.089 0.334

RBF 0.250 87.401 0.279

SVM 0.286 88.189 0.342

kNN 0.438 85.826 0.359

kStar 0.330 81.889 0.225

OneR 0.361 87.926 0.352

PART 0.481 85.301 0.396

DT 0.583 86.876 0.514

RF 0.532 90.288 0.516

MLP 0.562 89.763 0.515

Proposed

Framework
0.68 91.8635 0.649

Table 13 reflects the results of PC4 dataset. It can be observed that the proposed framework performed better with

highest performance in F-Measure, Accuracy, and in MCC with the score of 0.68, 91.8635, and 0.649 respectively.

Table 14. PC5 Results

Classifier F-Measure Accuracy MCC

NB 0.269 75.393 0.245

RBF 0.235 75.590 0.251

SVM 0.097 74.212 0.173

kNN 0.498 73.031 0.314

kStar 0.431 69.881 0.227

OneR 0.387 71.259 0.209

PART 0.335 75.787 0.274

DT 0.531 75.000 0.361

RF 0.450 75.984 0.322

MLP 0.299 74.212 0.216

Proposed

Framework
0.75 87.7953 0.669

PC5 results are shown in Table 14. It can be observed that the proposed framework outperformed in F-Measure,

Accuracy, and in MCC with the score of 0.75, 87.7953 and 0.669 respectively.

5. Conclusion

In this paper, the researchers proposed a classification framework for the prediction of defect prone software

modules in order to reduce the cost of testing process in software development life cycle. The key activities performed

by the researchers in order to improve the performance include: feature selection and variant based ensemble

classification. Feature selection is performed to eliminate those features which do not participate in the classification

process and even reduce the performance of framework besides the high processing cost. In the process of variant

selection, first the variants are created by optimizing six base classifiers, including: Support Vector Machine (SVM),

Decision Tree (DT), K-Nearest Neighbor (KNN), Naive Bayes (NB), Random Forest (RF), and Multi-layer Perceptron

(MLP). From the variants of each base classifier (classifier family), one variant is selected which performed higher than

all other variants of its family including the base classifier. Three variants are selected in this research due to high

performance including SVM-4, RF-3 and KNN-4. These variants are then integrated by using an ensemble technique:

“Voting” with all possible combinations. One combination of variants: RF-3 and KNN-4 outperformed all the other

combinations and is selected for classification in the proposed framework. The results of the framework are compared

with the results of various widely used supervised classifiers from published paper, which have used the same datasets

and performance measures for performance analysis. The comparative analysis have reflected the fact that the proposed

framework outperformed all other classification techniques from the published paper and also resolved the issue of class

imbalance. However it is suggested for future work to optimize more classifiers with extensive set of parameters so that

more variants can be selected for ensemble learning.

References

[1] Iqbal, S. Aftab, U. Ali, Z. Nawaz, L. Sana, M. Ahmad, and A. Husen, “Performance Analysis of Machine Learning Techniques

on Software Defect Prediction using NASA Datasets,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 5, 2019.

 Software Defect Prediction Using Variant based Ensemble Learning and Feature Selection Techniques 39

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 5, 29-40

[2] A. Iqbal, S. Aftab, I. Ullah, M. S. Bashir, and M. A. Saeed, “A Feature Selection based Ensemble Classification Framework for

Software Defect Prediction,” Int. J. Mod. Educ. Comput. Sci., vol. 11, no. 9, pp. 54-64, 2019.

[3] A. Iqbal, S. Aftab, and F. Matloob, “Performance Analysis of Resampling Techniques on Class Imbalance Issue in Software

Defect Prediction,” Int. J. Inf. Technol. Comput. Sci., vol. 11, no. 11, pp. 44-53, 2019

[4] F. Matloob, S. Aftab, and A. Iqbal, “A Framework for Software Defect Prediction Using Feature Selection and Ensemble

Learning Techniques,” Int. J. Mod. Educ. Comput. Sci., vol. 11, no. 12, pp. 14-20, 2019.

[5] A. Iqbal, and S. Aftab, “A Classification Framework for Software Defect Prediction Using Multi-filter Feature Selection

Technique and MLP,” Int. J. Mod. Educ. Comput. Sci., vol. 12, no. 1, pp. 18-25, 2020.

[6] A. Dadwal, H. Washizaki, Y. Fukazawa, T. Iida, M. Mizoguchi, and K. Yoshimura, “Prioritization in automotive software

testing: Systematic literature review,” CEUR Workshop Proc., vol. 2273, no. QuASoQ, pp. 52–58, 2018.

[7] A. Bertolino, “Software testing research: Achievements, challenges, dreams,” FoSE 2007 Futur. Softw. Eng., no. September,

pp. 85–103, 2007.

[8] R. M. De Castro Andrade, I. De Sousa Santos, V. Lelli, Ḱathia Marçal De Oliveira, and A. R. Rocha, “Software testing process

in a test factory from ad hoc activities to an organizational standard,” ICEIS 2017 - Proc. 19th Int. Conf. Enterp. Inf. Syst., vol.

2, no. Iceis, pp. 132–143, 2017.

[9] D. Kumar and K. K. Mishra, “The Impacts of Test Automation on Software’s Cost, Quality and Time to Market,” Procedia

Comput. Sci., vol. 79, pp. 8–15, 2016.

[10] S. Huda et al., “A Framework for Software Defect Prediction and Metric Selection,” IEEE Access, vol. 6, no. c, pp. 2844–2858,

2017

[11] E. Erturk and E. Akcapinar, “A comparison of some soft computing methods for software fault prediction,” Expert Syst. Appl.,

vol. 42, no. 4, pp. 1872–1879, 2015.

[12] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for cross-company software defect prediction,” Inf. Softw. Technol.,

vol. 54, no. 3, Mar. 2012.

[13] M. Ahmad, S. Aftab, I. Ali, and N. Hameed, “Hybrid Tools and Techniques for Sentiment Analysis: A Review,” Int. J.

Multidiscip. Sci. Eng., vol. 8, no. 3, 2017.

[14] M. Ahmad, S. Aftab, S. S. Muhammad, and S. Ahmad, “Machine Learning Techniques for Sentiment Analysis: A Review,” Int.

J. Multidiscip. Sci. Eng., vol. 8, no. 3, p. 27, 2017.

[15] M. Ahmad and S. Aftab, “Analyzing the Performance of SVM for Polarity Detection with Different Datasets,” Int. J. Mod.

Educ. Comput. Sci., vol. 9, no. 10, pp. 29–36, 2017.

[16] M. Ahmad, S. Aftab, and I. Ali, “Sentiment Analysis of Tweets using SVM,” Int. J. Comput. Appl., vol. 177, no. 5, pp. 25–29,

2017.

[17] M. Ahmad, S. Aftab, M. S. Bashir, and N. Hameed, “Sentiment Analysis using SVM: A Systematic Literature Review,” Int. J.

Adv. Comput. Sci. Appl., vol. 9, no. 2, 2018.

[18] M. Ahmad, S. Aftab, M. S. Bashir, N. Hameed, I. Ali, and Z. Nawaz, “SVM Optimization for Sentiment Analysis,” Int. J. Adv.

Comput. Sci. Appl., vol. 9, no. 4, 2018.

[19] S. Aftab, M. Ahmad, N. Hameed, M. S. Bashir, I. Ali, and Z. Nawaz, “Rainfall Prediction in Lahore City using Data Mining

Techniques,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 4, 2018.

[20] S. Aftab, M. Ahmad, N. Hameed, M. S. Bashir, I. Ali, and Z. Nawaz, “Rainfall Prediction using Data Mining Techniques: A

Systematic Literature Review,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 5, 2018.

[21] A. Iqbal and S. Aftab, “A Feed-Forward and Pattern Recognition ANN Model for Network Intrusion Detection,” Int. J. Comput.

Netw. Inf. Secur., vol. 11, no. 4, pp. 19–25, 2019.

[22] A. Iqbal, S. Aftab, I. Ullah, M. A. Saeed, and A. Husen, “A Classification Framework to Detect DoS Attacks,” Int. J. Comput.

Netw. Inf. Secur., vol. 11, no. 9, pp. 40-47, 2019.

[23] M. Shepperd, Q. Song, Z. Sun and C. Mair, “Data Quality: Some Comments on the NASA Software Defect Datasets,” IEEE

Trans. Softw. Eng., vol. 39, pp. 1208–1215, 2013.

[24] “NASA Defect Dataset.” [Online]. Available: https://github.com/klainfo/NASADefectDataset. [Accessed: 27-October-2019].

[25] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the impact of classification techniques on the performance of defect

prediction models,” Proc. - Int. Conf. Softw. Eng., vol. 1, pp. 789–800, 2015.

[26] G. Czibula, Z. Marian, and I. G. Czibula, “Software defect prediction using relational association rule mining,” Inf. Sci. (Ny).,

vol. 264, pp. 260–278, 2014.

[27] D. Rodriguez, I. Herraiz, R. Harrison, J. Dolado, and J. C. Riquelme, “Preliminary comparison of techniques for dealing with

imbalance in software defect prediction,” in Proceedings of the 18th International Conference on Evaluation and Assessment in

Software Engineering. ACM, p. 43, 2014.

[28] A. O. Balogun, S. Basri, S. J. Abdulkadir, and A. S. Hashim, “Performance Analysis of Feature Selection Methods in Software

Defect Prediction: A Search Method Approach,” Appl. Sci., vol. 9, no. 13, p. 2764, 2019.

[29] N. Sánchez-Maroño, A. Alonso-Betanzos, and M. Tombilla-Sanromán, “Filter methods for feature selection - A comparative

study,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 4881 LNCS, pp.

178–187, 2007.

[30] M. R. Malik, L. Yining, and S. Shaikh, “Analysis of Software Deformity Prone Datasets with Use of Attribute Selected

Classifier,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 7, pp. 14–21, 2019

[31] U. R. Salunkhe and S. N. Mali, “A hybrid approach for class imbalance problem in customer churn prediction: A novel

extension to under-sampling,” Int. J. Intell. Syst. Appl., vol. 10, no. 5, pp. 71–81, 2018.

[32] N. F. Hordri, S. S. Yuhaniz, N. F. M. Azmi, and S. M. Shamsuddin, “Handling class imbalance in credit card fraud using

resampling methods,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 11, pp. 390–396, 2018.

40 Software Defect Prediction Using Variant based Ensemble Learning and Feature Selection Techniques

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 5, 29-40

Authors’ Profiles

Umair Ali is student of MS Computer Science with the specialization of Software Engineering in Virtual

University of Pakistan. He received the degree, BS Computer Science from Virtual University of Pakistan in 2016.

His research interest includes Software Engineering and Data Mining.

Shabib Aftab received MS degree in Computer Science from COMSATS Institute of Information Technology

Lahore, Pakistan, and M.Sc degree in Information Technology from Punjab University College of Information

Technology (PUCIT) Lahore, Pakistan. Currently he is serving as Lecturer Computer Science at Virtual University

of Pakistan. His research areas include Data Mining and Software Process Improvement.

Ahmed Iqbal received MS degree in Computer Science with the specialization of Software Engineering from
Virtual University of Pakistan. His research interest includes Software Engineering and Data Mining

Zahid Nawaz received MS degree in Computer Science with the specialization of Software Engineering from

Virtual University of Pakistan. Currently he is serving as Head of Computer Science Department at Punjab College

(Dunyapur Campus). His research interest includes Software Requirement Engineering, Software Process Models,

Agile Process models, Software Design and Software Quality Assurance.

Muhammad Salman Bashir received MS degree in Computer Science from COMSATS Institute of Information

Technology Lahore, Pakistan, and M.Sc degree in Computer Science from Punjab University College of

Information Technology (PUCIT) Lahore, Pakistan. He is currently pursuing the Ph.D. degree with the Department

of Computer Science and Engineering, University of Engineering and Technology (UET), Lahore. Currently he is

working as Assistant Professor with the Department of Computer Science, Virtual University of Pakistan. His
research interests include HCI, Usability Evaluation, Software Processes, and Software Requirements Engineering.

Muhammad Anwaar Saeed obtained his PhD degree in Computer Science from National College of Business

Administration & Economics (NCBA&E), Lahore, Pakistan. He is currently working as Assistant Professor with the

Department of Computer Science, Virtual University of Pakistan. His area of research is key generation for data

encryption and information security. He is also interested in Quantum computing especially encryption mechanisms

used in this field. He is also the author of book “Framework for Self Organizing Encryption in Ubiquitous

Environment”, published by VDM Verlag in 2010. He has published many research papers on his area of interest.
Before joining VU, he has ample experience of both software development and network management.

How to cite this paper: Umair Ali, Shabib Aftab, Ahmed Iqbal, Zahid Nawaz, Muhammad Salman Bashir, Muhammad Anwaar

Saeed, " Software Defect Prediction Using Variant based Ensemble Learning and Feature Selection Techniques", International

Journal of Modern Education and Computer Science(IJMECS), Vol.12, No.5, pp. 29-40, 2020.DOI: 10.5815/ijmecs.2020.05.03

