
I.J. Modern Education and Computer Science, 2020, 2, 36-52
Published Online April 2020 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2020.02.05

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 36-52

Inter-Process Communication (IPC) in

Distributed Environments: An Investigation and

Performance Analysis of Some Middleware

Technologies

Hamed Dinari
Department of Computer Engineering (CE), Iran University of Science and Technology (IUST),

Tehran Province, Tehran, Iran,

Email: dinari.hamed@yahoo.com

Received: 29 January 2020; Accepted: 09 March 2020; Published: 08 April 2020

Abstract—Nowadays with improvement in computer

science, distributed systems have attracted remarkable

attention and increasingly become an indispensable factor

in our life. Massive-scale data processing, weather

forecasting, industrial control systems, medical science,

multi-tire architectures in enterprise applications, and

aerospace to name but a few are the cases in point that

distributed systems play a notable role. Inter-Process

Communication or in a short form, IPC is specified as the

heart of all distributed systems, therefore they are not

formed without IPC. Numerous methods concerning IPC

have been proposed so far that are utilized in diverse

circumstances. According to the physical location of

communication processes in applications, IPC could be

established among either multiple processes on the same

computer or several computers across a network. From

the communication pattern’s perspective, these IPCs can

be classified into two broad groups namely, shared

memory and message passing. Although, it is not true to

say when processes are performed on the same computer

definitely employ shared memory to communicate if

processes are executed on the different systems they

inevitably communicate through message passing. By

way of illustration, pipes use message passing patterns to

make a connection between various processes but all of

the processes are carried out on the same system. The

aim of this research is to depict a categorization of the

some IPC methods, give a brief description of them, and

assess their performance in terms of transferring rate by

sending multiple files in different sizes between a client

and server. As we expected, socket as the basic IPC,

since it does not perform extra operations on the input

data to be sent had a desirable performance compared to

others. Although, to achieve some of the capabilities, like

eliminating platform dependencies and asynchronous

communication, it needs to add additional layers that

make poor performance.

Index Terms—Inter-Process Communication (IPC),
Remote Procedure Call (RPC), Distributed Systems, Web

Services, Remote Method Invocation (RMI).

I. INTRODUCTION

Today computer systems are evolving. Since 1945

which has been considered as emerging of computers’ ear

until approximately 1985, computers had been large and

expensive so that a minicomputer cost at least thousands

of dollars. As a result, most organizations had a few

computers and because these computers were not

connected together they worked independently. But since

mid-80 two advancements in microprocessors and

communications technologies changed the world

completely. These progressions eventually led to the

development of modern technologies in which instead of

using one powerful processor, multiple normal or poor

processors were connected together [1]. From an

architectural perspective, these multiprocessor computers

are essentially divided into two categories:

1. Tight Coupling: in this model, there is a primary

memory (address space) which is shared among all

processes.

2. Loosely Coupling: in this model, processors do not

use share memory and each processor has its own local

address space. Furthermore, they are connected together

through various communication lines with low or high

bandwidth.

Normally, the tight coupling systems are recognized as

“parallel processing systems” as well as loosely coupling

systems that are identified as “distributed systems”. As

the title of the paper indicates, this research tends to

proceed with the second group. There are lots of

definitions for distributed systems but, none of them in

agreement with any of the other. One of those definitions

as follows: A distributed system is a collection of

independent computers that appears to its users as a

single coherent system [1]. Actually, from the user’s

point of view, who works with a distributed system, this

system resembles a single computer”. Figure 1 shows an

architectural view of distributed systems.

 Inter-Process Communication (IPC) in Distributed Environments: An Investigation and Performance 37

Analysis of Some Middleware Technologies

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 36-52

Distributed systems are used in a wide spectrum of

areas, for example, multi-tier architectures in enterprise

applications [2] (a two-tier and a three-tier architecture

are presented in Figure 2 and Figure 3 respectively),
weather forecasting, computer and wireless sensors

networks, banking and airline reservation systems,

scientific computing (cluster, grid, cloud), and real-time

process control.

The leading purposes of distributed systems include

Transparency, Openness, Reliability, Performance, and

Scalability. Because in this paper our main target is Inter-

Process Communication and also we would not like to

reinvent the wheel, you can meet [1,3] to find more

valuable information regarding distributed systems.

Fig.1. Distributed system architecture [1]

The communications between processes are specified

as the heart of all distributed systems so that without a

profound understanding about the role of them and how

they would make, our knowledge about distributed

systems is defective. To reach these ends we would

attempt to cover corresponding facts about them. Usually,

these communications can be classified into two common

groups including shared memory, and message passing.

In the following sections, we would express them so that

you would be able to obtain more knowledge and apply

them in your work more effectively. Because

communications in distributed systems establish through

a network and there are vast concepts that depend on one

another, if you desire to grasp more about network’s

layers and also precise information pertaining to either

Transmission Control Protocol /Internet Protocol

(TCP/IP) or Open System Interconnection (OSI) models,

you can refer to [4,5].

In this paper, as its title implies, we do not intend to

introduce a novel IPC method, but we would like to

report a series of IPCs and demonstrate how and why

these methods have been developed. For example, what

methods or technologies can remove platform

dependencies or make possible asynchronous

communication. In the results section, you would observe

how some of these technologies like Web Services

encounter a sharp drop in performance to achieve these

goals. There are other methods not mentioned in this

study, including signals, which is one of the commonly

used in Operating Systems, because this article is focused

on high-level IPCs. As we would emphasize throughout

this research, these methods are not superior to each other,

but in various situations and depending on different

requirements you can choose the appropriate method. In

some circumstances, some of these methods may be used

in combination to achieve your goals. Although, to be

master all of these techniques you need experience,

practice, and time. So, another purpose of this paper is to

give an overview of several methods in a nutshell and to

help the reader understand the concept of IPC in less time

unlike most of the papers that have focused on two or

three methods. One of the limitations of this article is that

it does not describe the methods in detail. Because the

details of each of these methods can be as much as a

book, in addition, everyone who reads this article may

not be highly skilled to grasp the concept of IPC, so

another target of this paper is to express the concepts in a

simple manner. Some of these methods, including

CORBA, are not used today, but because our goal is to

describe the evolution of the spectrum of some IPCs,

CORBA also sits in this range, so, we have to address it.
Because the principal purpose of this study is focused

on message passing communications in distributed

environments we would like to express a brief history

concerning how some communication methods have

emerged. In operating systems processes have their own

address space to do not affect each other, the main

drawback of such mechanisms appears when they tend to

exchange data so that they have to copy the data which is

a quite time-consuming and tedious operation especially

for large-scale data. Shared memory as the first and

foremost Inter-Process Communication (IPC) method

was recommended to deal with this problem and

processes could communicate more easily.

In the early, processes communicated through shared

memory, then various methods have been offered in

38 Inter-Process Communication (IPC) in Distributed Environments: An Investigation and Performance

Analysis of Some Middleware Technologies

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 36-52

order to solve different issues depending on diverse

conditions. Throughout the history of computing, all

network’s operations have been performed by operating

systems. The Unix operating system was the first

provider of network facilities. Personal computing was

being fulfilled slowly, Microsoft and Apple software did

not support network protocols until the mid-1990s.

Although Novell and Banyan companies were popular in

this scope, they also supported only network capabilities

at the operating system level.

In essence, the concept of networking in the world of

computers for implementation of telecommunications

was not much discussed until the development of the

World Wide Web (WWW).

The Network operating systems provided capabilities

in which an application could be shared among multiple

users simultaneously. These one-layer systems were not

scalable enough to be expanded. The advent of computer

networks and improvement in technologies have led to

the advancement of systems, consequently, the

Object Request Broker (ORB) concept was raised. For

instance, Microsoft’s MTS and Common Object Request

Broker (CORBA) were developed. These interfaces

decoupled both layers: User Interface (UI), and Business

Logic (BL).

On the other side, the HyperText Transport Protocol

(HTTP) was released in 1990. Although several other

protocols, such as Gopher had already been developed,

the major characteristics that distinguished the HTTP

protocol from other ones were its extensibility against

web languages like Hypertext Markup Language (HTML)

and also the ultra-flexibility in the transmission layer of

the TCP/IP protocol. Therefore, the HTTP made it

possible to transfer data in various formats without any

particular conditions. In the span of the next ten years,

low-level protocols were supported by the network

operating systems and by the Simple Mail Transfer

Protocol (SMTP) and the File Transfer Protocol (FTP)

protocols on the Internet, it became easier to transfer files

over a network.

Similarly, the Remote Procedure Call (RPC) concept

was offered in which a procedure (subroutine) could be

performed in a different address space by a computer

program. When RPC was released it made an opportunity

to expand programs, although this concept was

completely dependent on software platforms. For

example, RPC on the Unix Operating System by

Common Object Request Broker Architecture (CORBA)

and on the Microsoft Operating Systems by Distributed

Common Object Model (DCOM) were implemented We

will describe them in the next sections.

In the development environments data layer (Database),

process layer (Core), and application layer (User

Interface) were decoupled and installed on multiple

connected machines. As a result, application programs

became more reliable against extensibility. For many

years, Microsoft and Sun corporations competed

regarding the RPC challenges. CORBA vs. DCOM

(CORBA was developed and released by the Enterprise

Management Group (EMG)), and these competitions

continued until Sun Corporation developed RMI for Java.

Fig.2. Two-tier architecture

Fig.3. Three-tier architecture

The RPCs like RMI, CORBA, and DCOM have a

sophisticated implementation, but it is one of the major

drawbacks of them. These middleware technologies to

transfer data relied on specific standards of their

corporations, which disallowed them to communicate.

For instance, if a corporation used DCOM, it was not

permitted to communicate with a corporation that utilized

CORBA. The following states some of their main

disadvantages:

1. These three RPCs have their own format to transfer

data as well as they depend on the Operating System so

that they could not share information.
2. The methods and mechanisms that they use to

exchange facts are different completely. By way of

illustration, DCOM adopts ActiveX Data

Objects/Remote Data Service (ADO/RDS) to transfer

data whereas RMI applies Java DataBase Connectivity

(JDBC). Hence, they could not communicate.

Researchers endeavored to tackle these troubles, then the

Web Services (WS) were suggested that not only covered

the pitfalls regarding platform dependencies, but they are

elegant solutions to the issues that have ever been

reported.

Application and Data

Management Tier

Presentation Tier

Data Management

Tier

Application

Tier

Presentation Tier

https://en.wikipedia.org/wiki/Context_switch

 Inter-Process Communication (IPC) in Distributed Environments: An Investigation and Performance 39

Analysis of Some Middleware Technologies

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 36-52

After the mentioned problems were solved, since some

computer systems were not always available to process

requests or because of the high load of systems, they

tended to postpone several requests or services to another

time, systems had to communicate asynchronously. To

do so, the data that exchanged among systems must be

persisted and processed at the proper time. To manage

this challenge the Message-Queue-Based communication

methods or Message-Oriented Middlewares (MOM) were

founded. In these technologies, all data related to

communication is preserved in a message provider such

as IBMMQ, ActiveMQ, RabbitMQ, and etc., then

processed in a suitable time according to particular

policies. Equally, other methods and mechanisms have

been developed to overcome a special challenge, for

example, stream-oriented communication methods were

created to carry out replication, transferring audio and

video files, and load balancing.

The remainder of the paper is organized as follows.

Section two highlights some relevant papers as a

literature review that has been conducted so far. Section

three indicates a general classification of several IPC

methods and also goes through each. Section four is

dedicated to the performance evaluation of some

middleware technologies. Finally, the conclusion, future

works, and summary of multiple IPC are represented by

section five.

II. LITERATURE REVIEW

Until now, Inter-Process Communication has been

discussed as one of the commonly investigated topics in

distributed systems and numerous research papers have

been conducted to address the IPC from diverse

perspectives. These research studies discussed some IPCs

like Java-RMI, web services, CORBA, COM/DCOM,

pipe-based, shared-memory, and socket, then analyzed

and compared them from different viewpoints such as

performance, programming languages, and their

architecture. We will represent several of them briefly.

In [6] the different IPC mechanisms are analyzed by

comparing various sizes of data by a program simulating

the messages across the network. All the source code for

IPC performance evaluation was written in UNIX. The

performance factors such as memory, transfer rate, buffer

sizes, data transfer methods, and code complexity are

examined and evaluated for all mechanisms. A

comparison of different mechanisms shows that the

streaming socket performs well.

The authors in [7] presented an argumentative

comparison of both technologies showing where they

relate and where they diverge. They have also stated

solutions and challenges for interoperation between both

technologies. An oversimplified view is to consider Web

services as middleware for middleware that would locate

on top of CORBA and relegate CORBA as a lower-level

implementation platform. As an illustration from the

telephony networks, CORBA sometimes sits on top of

SOAP-like applications. In [8] authors considered Java-

RMI, CORBA and Web Services from different

viewpoints. Although improvements in implementations

of SOAP communications have significantly reduced the

performance failings, while a Web Service solution will

still be slower, consume more memory, more network

bandwidth, and more CPU cycles than an alternative

solution, the differences are less marked in realistic

applications. In [9] authors explore the diverse

mechanisms of several IPCs like CORBA, socket, RPC,

and REST alongside their advantages and disadvantages.

In [10] authors provided an architectural analysis of

the existing distributed object-oriented technologies like

CORBA, Java RMI, and COM/DCOM. They pointed out

theses IPCs from various perspectives including

architectural differences, programming differences (e.g.,

issues like server object locators, object inheritance), and

application differences.

Authors in [11] considered various IPCs like sockets,

pipes, and shared memory, then assessed their

performance. They found which the transmission time of

the pipeline was basically unchanged regardless of the

amount of data transferred. It was time-consuming to

establish a pipeline. But once it was established, the data

transmission time was basically the same regardless of

the amount of data. However, the data transmission time

was increased with the increase of the number of bytes

transferred by shared memory and sockets. Therefore, the

pipeline was the best method when a large amount of

data needed to be transmitted. When the amount of data

transferred was less shared memory had obvious

advantages in transferring data at very fast speed.

In [12] authors have provided a detailed comparison of

web services and distributed objects. They tried to

compare the design and implementation of a small file

server application implemented using RMI and web

services. They discovered that using the most

straightforward implementation in both technologies,

web services outperform RMI when accessing

multiple/deeply nested files, especially over high latency

channels. However, the default web services interfaces

are improper to use, so they develop a technique for

wrapping the web service to make it as easy to use as the

distributed object implementation.

The authors in [13] represent an experimental

evaluation of the latency performance of several

implementations of Simple Object Access Protocol

(SOAP) operating over HTTP, and compares these

results with the performance of JavaRMI, CORBA,

HTTP, and with the TCP setup time. The main objective

of their work to identify the sources of inefficiency in the

current implementations of SOAP and discuss changes

that can improve their performance.

In [14] authors have studied and evaluated three

widely-used inter-process communication devices-pipes,

sockets and shared memory. They have identified the

various factors that could affect their performance such

as message size, hardware caches, and process

scheduling, and constructed experiments to reliably

measure the latency and transfer rate of each device.in

[15] authors attempted to make a clear investigation

between Web Services and Distributed Objects as well as

40 Inter-Process Communication (IPC) in Distributed Environments: An Investigation and Performance

Analysis of Some Middleware Technologies

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 36-52

described some misconceptions that everyone might face.

M.D. Hanes and his co-workers focused on the proper

use of the technologies like RMI, CORBA, and web

service to implement new Signal and Image Processing

(SIP) applications, or developing other applications by

these technologies because of an emerging trend in the

SIP community are the advent of middleware and

middleware can be readily exerted for distributed

computing applications by the SIP community [16].
The authors pointed out RMI, RMI Tunneling, and

Web Services performance elegantly. They have

compared technology alternatives for developing

distributed Java applications, which have to communicate

through firewall and proxy secured networks. These

alternatives can be classified into two groups: (1) Using

RMI tunneling techniques, including HTTP-to-port,

HTTP-to-CGI and HTTP-to-servlet tunneling; and (2)

using Web Services instead of Java RMI. The

comparison of RMI tunneling alternatives has shown that

the transition to RMI tunneling is related to

administrative tasks, including the deployment and

configuration of corresponding tunneling components

and settings [17]. N. Lynch and A. Shvartsman,

developed and analyzed algorithms to solve problems of

communication and data sharing in highly dynamic

distributed environments. The term dynamic here

encompasses many types of changes, including changing

network topology, processor mobility, changing sets of

participating client processes, a wide range of types of

processor and network failures, their approach to

middleware differs from common practice: although

middleware framework such as CORBA supports the

construction of distributed systems from components,

their specification capability is limited to the formal

definition [18].

The authors evaluated the performance of RMI, RMI-

SSL, web service, and WS-security and considered their

features. They have conducted a functional and

performance analysis. Moreover, they have assessed both

regular (unsecured) as well as secured variants, WS-

Security and RMI–SSL. Their investigation covers the

following evidence: RMI is suitable for distributed

applications, which require synchronous remote method

invocations only, make use of stateful objects, object

references, distributed garbage collection. Web services,

on the other hand, are better suitable for dynamic service

binding and communication through firewalls.

Differences also exist between secured versions. RMI–

SSL offers point-to-point security while WS-Security

offers message-level security. To recognize the

differences in performance they have done these

performance analysis on both Windows and Linux. The

measurements have illustrated that RMI was superior to

Web services in all scenarios [19].

III. CATEGORIZATION OF THE IPC METHODS

Normally, massive data applications are distributed.

To have a profound understanding of how they function

in distributed environments you need some concepts

that we will describe. One such notion is Inter-Process

Communication or in short form IPC, which explains

ways and how the processes communicate. The IPC is

specified as the heart of all distributed systems and

because of its outstanding role, lots of research papers

have ever been performed to deal with its methods and

mechanisms.

There are various kinds of IPC, including shared

memory, RMI, web service, pipes, and so on. In a

nutshell, almost all of them are constructed based on

two major concepts: shared memory and message

passing. In Figure 4 a general classification of some

IPC technologies is pictured which we would explain

later.

A.1 Shared Memory

Processes are located in different address spaces in

order to do not touch each other. The main drawback of

this isolation is that if one process requires to pass some

data to another, the data must be copied, which can be a

relatively costly operation for an immense amount of

data.

To manage the problem, shared memory is used. As

its name implies, through shared memory two or more

processes have access to the same memory location and

would be able to transfer data.

Shared memory does not handle the concurrency

problems to the processes involved. To achieve this

goal, it often exploits concurrency control techniques

such as semaphore. One of the significant benefits of

shared memory is when processes tend to exchange a

large amount of data. Figure 5 illustrates a shared

memory between several processes.

There are two kinds of shared memory that will be

investigated as follows:

A.1.1 Mapped File

In this mapping the region of the virtual memory

belongs to the process is mapped to the files. To put in

another way, reading or writing to those sections of

memory is mapped to reading or writing operations to the

file. This approach is recognized as the default mapping

type. There are two kinds of memory-mapped files as

follows:

A.1.1.1 Persisted

In this type as their names offer, when the last process

is terminated, data are saved to the source file on the disk.

These memory-mapped files are suitable to manage the

large source files.

 Inter-Process Communication (IPC) in Distributed Environments: An Investigation and Performance 41

Analysis of Some Middleware Technologies

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 36-52

A.1.1.2 Non-Persisted

In this group, as their names suggest, the data are

elusive. Simply speaking, when the last process that

working with a file is finished, data are wiped out. These

memory-mapped files are convenient when shared

memory is used to communicate between processes.

Fig.4. A classification of some IPC technologies

A.1.2 Anonymous Mapping

In this mapping type, the area of the virtual memory

owned by a process is mapped. The contents are set to

zero. This mapping resembles dynamic memory

allocation. The memory in one process mapping may be

shared with the mappings pertaining to other processes.

This can be performed through two approaches:

 If a segment of a file is mapped by two processes,

the same pages of physical memory are shared by

them.

 If a child process is built, it inherits the mappings

belong to its parent which link to the same pages

of the physical memory of that parent. When any

modification is done on data in the child process,

various pages would be made the child process.

When two or more processes share the same

pages, each process can detect the changes in the

page contents made by other processes depending

on the mapping type. There are two mapping

types such as private or shared.

Private Mapping: any changes in this mapping are not

observed to other processes.
Shared Mapping: when any modifications are done

over the content of this mapping, they are discernible by

other processes.

B.1 Message Passing

Another notable IPC concept that is routinely

investigated is message passing. In message passing,

processes communicate by passing messages just using

two operations: send and receive. The message passing

concept relatively seems simple, but it requires multiple

design options to be made. There are many methods that

employee message passing to communicate. The

following examines them.

Fig.5. Shared Memory between multiple processes

B.1.1 Pipe

A pipe is one of the most straightforward IPC

methods, and it can be shared among two or more

pertinent or independent processes. A pipe has two

endpoints, just as a physical pipe. Normally one process

produces data and leaves to one end of the pipe and

another process consumes them from the other one.

Pipes are divided into two categories namely, ordinary

and named which are as follows:

Shared

Memory

Process1

Process 3

Process 4

Process 2

Inter-Process Communication(IPC)

Message Passing

Socket-Based (TCP/UDP)

Message Queue

Publish-
Subscrib

Content-Based Topic-Based

Point to
Point

RPC-Based

.Net
Remoting

Web
Service

RESTful SOAP

CORBA RMI DCOME XML-RPC

Pipe

Named Ordinary

Shared Memory

Memory Mapping

Anonymous
Mapping

Mapped File

42 Inter-Process Communication (IPC) in Distributed Environments: An Investigation and Performance

Analysis of Some Middleware Technologies

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 36-52

B.1.1.1 Ordinary

Ordinary pipes permit merely one-sided

communication. They implement the producer-consumer

mechanism, which means one process leaves to the pipe

and another one acquires from it. In these pipes,

processes use a parent-child relationship to communicate.

To be more specific, a process can utilize the pipe which

has been constructed by itself or a process that has

inherited it. Whenever processes are communicating over

a pipe and processes terminated for any reason, the

ordinary pipe would be destroyed (figure 6).

B.1.1.2 Named

Named pipes are more vigorous in comparison to

ordinary pipes and they can be bidirectional, unlike the

ordinary pipes that are unidirectional. Once a named

pipe is built, several independent processes can

communicate over it. Named pipes are not demolished

even if the communicating processes are terminated. In

these pipes, one process can write to one pipe and read

from another. This capability allows them to write and

read at the same time. They must be explicitly

destructed when not required again (Figure 7.)

Fig.6. Ordinary pipe

Fig.7. Named pipe

B.1.2 Socket

A socket is one endpoint specified by an IP address

and a port number which permits communication

between two autonomous processes on the same or

different machines. More specifically, it is a manner in

which computers talk to one another over a network. By

defining a socket, the programmer would announce to

the operating systems to provide resources and also

required space to establish a connection without going

through in TPC/IP details.

More broadly speaking, there are four kinds of

sockets including, stream sockets, datagram sockets,

raw sockets as well as sequenced packet sockets. The

first two are most extensively exploited and the last two

are rarely utilized. The aim of our research is to outline

the first two.

B.1.2.1 Streaming Sockets

Streaming sockets are identified as "connection-

oriented sockets". In such an approach, the delivery

process would be guaranteed. More specifically, If the

sequence of digits such as "1, 2, 3" are sent through the

streaming socket, they would be achieved in the same

series "1, 2, 3". These sockets apply TCP protocol to

exchange data and also before sending data over a

network must make a connection through three steps

handshaking, if the delivery process is not fulfilled, an

error is sent to the sender. Most services and protocols

that are defined in the fourth layer of the network and

require authenticity, accuracy as well as maintaining the

order of data, use these types of sockets. FTP, HTTP, and

SMTP which need a reliable and safe connection are the

cases in point.

B.1.2.2 Datagram sockets

These sockets are recognized as "connection-less

sockets" and are based on UDP (User Datagram Protocol)

protocol. They do not guarantee the delivery process.

Unlike the stream sockets which mentioned above, these

type of sockets are connectionless. Expressly, before

sending data do not require to make a connection. A

packet with the detailed information of the destination is

produced and send it out. Notwithstanding, datagram

sockets are unreliable they still cover a wide spectrum of

topics and scopes, including audio and video

transmission, and also Domain Name System (DNS).

Transferring data with high-speed is one of the most

leading merits of them.

RPC-Based methods

In a nutshell, a Remote Procedure Call (RPC) is when

an application causes to perform a procedure in a

different address space (normally on another computer on

a shared network). The following investigates several

RPC-based methods.

B.1.3 XML-RPC

XML-RPC is an RPC-based IPC that is applied

throughout the Internet. An XML-RPC request is an

HTTP-POST request that uses XML schema in its body.

It is a procedure that is executed on the server and sends

its response as an XML format. It can exert different

parameter types like String, Number, Array, and etc.

This IPC was expanded by a group of people in

Microsoft corporation in 1998 and a new protocol named

SOAP (Simple Object Access Protocol) was developed.

In comparison to SOAP, XML-RPC is more simple.

Later, we will express SOAP.

XML-RPC uses its methodName characteristic to

invoke methods that may contain lowercase or uppercase

letters, numbers, commas, and the '/' sign, which is

suitable for many purposes, but when we tend to send an

object as an argument we would encounter a problem.

Normally, in XML-RPC, arrays and structures are

Pipe

Write Read

Pipe 1
Write Read

Pipe 2

Read Write

Parent

Process

Child

Process

https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Context_switch

 Inter-Process Communication (IPC) in Distributed Environments: An Investigation and Performance 43

Analysis of Some Middleware Technologies

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 36-52

without any name. To grasp more detail refer to [20].

B.1.4 CORBA

The CORBA stands for Common Object Request

Broker Architecture. It is a standard developed by the

Object Management Group(OMG) to simplify the

communication of systems without getting involved in

hardware platforms, programming languages, as well as

operating systems. Normally, this standard is applied in

the multi-tier architecture of applications. Although the

C++ implementations of CORBA manage In and InOut

parameters by nature, C++ developers suffer from

various series of challenges with parameters that are

related to storage. These issues would appear when

object references and varying-length entities such as

strings or sequences are passed as arguments [3].

The complexity of its structure is one of the dominant

drawbacks of CORBA. To expose an interface or API,

CORBA utilizes Interface Definition Language (IDL). It

provides IDL mappings for a wide range of programming

languages, including C, C++, COBOL, JAVA, LISP,

PL/1, Pascal, Python, and etcetera. Moreover, in the

future, it would be conceivable to afford mappings for

other programming languages that require to support this

technology. From Java programmers’ point of view,

unlike RMI it is not a convenient and flexible technology

to implement Java-based programs because it does not

allow to pass some executable codes as inputs.

When CORBA’s clients and services need to

communicate, the requests are passed to objects that

recognized as Object Request Broker (ORB) to invoke

the methods. Additionally, ORBs are interconnected via

Internet Inter-Orb Protocol (IIOP) and enable distributed

programs to communicate over the Internet regardless of

the programming languages. Figure 8 pinpoints

CORBA’s architecture.

B.1.5 DCOM

DCOM (Distributed Component Object Model) is a

distributed extension to COM (Component Object Model)

which is a component-based development model for the

Windows environment. It is a collection of Microsoft

concepts and program interfaces in which client

program’s objects would be able to demand services and

communicate to other computers over a network.

It was Microsoft's response to CORBA. This protocol

would be very beneficial while using COM components

and also does not require to communicate with non-

Microsoft-based systems otherwise, it would not be

effective. The COM is used by developers to "create

reusable software components". Moreover, it is

developed to create a connection between the software

components of applications. COM’s objects are made

using different object oriented-based programming

languages such as C++. COM+, DCOM as well as

ActiveX controllers that belong to COM’s family. For a

detailed review of this section refers to [10].

B.1.6 Remote Method Invocation (RMI)

RMI is short for Remote Method Invocation. As its

name suggests, it provides a mechanism for Java

developers to invoke methods of various objects on

virtual machines remotely. Diverse RPC-based methods

have been offered. Unlike most of them, it is not

restricted to primitive data types and would be able to

pass or return objects to programs. Precisely,

programmers are allowed to transfer code snippets over a

network and perform them on remote virtual machines

dynamically.

Fig.8. CORBA’s Architecture [21]

In large scale environments, RMI’s clients could

access to the new version of Java's services and do not

need to distribute programs among clients. This

capability could be used both in local networks and web

environments. Dividing CPU’s loads is one of the chief

advantages of RMI. Figure 9 indicates an architectural

view of RMI.

Due to the most flexibility and high adaptability of

RMI, it has been adopted by most developers to create

enterprise applications. Because it is a Java technology, it

would not be able to interact with non-Java-based

programs like C and C++.

RMI’s objects could be accessed in two ways:

 Remote Access by Reference

 Remote Access by Value

In the first case, the object located in a server and

when the first client sends a request to make that, it is

created as well as any modifications on the object are

seen by other clients. The prime advantage of this case is

saving the server’s resources (fetching the object from

secondary memory to the main one and creating it

performs only once, furthermore it can be serialized on

the secondary memory once again) but the drawback of

this approach is increasing the network traffics because

various requests are constantly sent out to the server to

carry out on the object.

44 Inter-Process Communication (IPC) in Distributed Environments: An Investigation and Performance

Analysis of Some Middleware Technologies

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 36-52

In the second case, whenever a client sends a request,

an object is made and placed in the server’s memory and

since each client can fulfill own modifications on object

locally these changes on the object would not be

observed by other clients. Simply speaking, these

operations are done by the client and consequently, the

server’s resources are preserved (because of multiple

copies of an object). Moreover, transferring information

over the network decrease that results in declining in the

network’s delay.

Fig.9. RMI’s architecture [10]

B.1.7 Web Service

A web service is a client-server application or an

application component for communication. It is a

technology that allows clients to communicate through

invoking their methods regardless of the operating

system, programming languages, and hardware platforms

and known as an adaptive evolution in distributed

computing.

Precisely, it is a middleware that defines a series of

operations, protocols, and XML-based standardized

messaging to eliminate the hardware and software

dependencies and permits programs to exchange data in

the most straightforward approach. By way of example,

two web services written in .NET and JAVA and

installed on the Linux and the Windows platforms can

communicate without any issues. Unlike web-based

applications that use HTML to exchange data, web

services employee XML. What’s more, web applications

depend on some technologies and platforms like ASP,

and PHP but web services can work without any

dependencies on other platforms or technologies. Figure

10 indicates a general structure of a web service that we

outline how these components work together. There are

two major web service components: WSDL, UDDI.

WSDL

WSDL stands for Web Services Description Language.

WSDL is an XML-based document contains beneficial

information such as the name and parameters of each

method as well as how to access it. WSDL is a part of

UDDI. It acts as an interface between web service

applications.

UDDI

UDDI is an abbreviation for Universal Description,

Discovery, and Integration. It is an XML-based

framework for describing, discovering and integrating

web services. It is a directory of web service interfaces

addressed by WSDL and holds worthwhile information

about web services. There are three important operations

in web services architecture as follows:

1. Publish

To make a service available, its description must be

published in such a way that other service requester can

find it.

2. Find

In this operation, the service requester extracts the

service description directly or by sending a request to the

service registrar.

3. Bind

In this operation, the service requester employees the

service description to communicate with others.

There are mainly two types of web services: SOAP

and RESTful.

SOAP

SOAP is an acronym for Simple Object Access

Protocol. It is a platform and language independent as

well as simple and extensible. It applies an XML-based

protocol to access web services and objects and

exchanges messages through the protocol such as HTTP,

IIOP, and SMTP over a network.

RESTful

REST shorts for REpresentational State Transfer. It is

a software architecture style that compatible with a

stateless communications protocol and the most

commonly used protocol like HTTP. Some basic HTTP

REST requests are: POST, GET, PUT, and DELETE.

It exploits some data types like plain text, HTML,

XML, JSON, and etc. Furthermore, it can apply other

formats that are machine-readable, although usually, the

JSON format is most popular. It supports object-oriented

programming paradigms. Normally, people recognize

them as RESTful API or RESTful web services which

can be utilized interchangeably. It can apply SOAP web

services because of compatibility with some protocols

like HTTP, and SOAP. Additionally, it uses Uniform

Resource Locator (URI) to expose business logic. Unlike

SOAP web services, REST requires less bandwidth and

resources. Several architectural properties of the REST

are stated as follows:

Stub Skeleton

Remote Reference

Transport

Security

Stub Skeleton

Remote Reference

Transport

Security

Bootstrap Registry

Virtual Machine 1 Virtual Machine 2

 Inter-Process Communication (IPC) in Distributed Environments: An Investigation and Performance 45

Analysis of Some Middleware Technologies

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 36-52

 Performance in component interactions, which

can be the leading factor in network efficiency.

 High scalability means supporting the large

numbers of components that would be able to

interact.

 The modifiability of components is relatively

simple (even while the application is performing)

 Visibility of communication between components

by service agents

 Portability of components by moving program

code alongside the data

Reliability in the resistance to failure at the system

level in the presence of failures within components,

connectors, or data [22].

Fig.10. web service structure [23]

B.1.8 .NET Remoting

It is a Microsoft Application Programming Interface

(API) for IPC that developed in 2002 with the version 1.0

of .NET Framework. Like other RPC-based technologies

such as CORBA and RMI, the .NET Remoting is

sophisticated. The client and server can communicate by

message passing through operating systems and network

agents.

This topic is specific to a legacy technology that is

retained for backward compatibility with existing

applications and is not recommended for new

development. Either distributed or multi-tier applications

should now be developed using the Windows

Communication Foundation (WCF). Because it uses no

longer, it will not be argued in detail. If you would like to

get more knowledge in this area you can see [24].

B.1.9 Message-Queue-Based

Message queue makes it possible in which several

applications can communicate asynchronously without

blocking them while waiting for the response from each

other. For example, consider the sending of an email

instead of calling someone, in the first option the person

requires to be immediately available to speak on the

phone, but in the second case, firstly the e-mails store in

middle storage, next lets the recipient manages the

messages when available, consequently the message

delivery process would be guaranteed and the sender and

recipient would not be blocked.

The characteristics and capabilities of messaging

systems are comparatively standardized. To be more

specific, diverse systems released by various providers

may expose the same interface. Java Message Service

(JMS) is a case in point which is a platform-neutral and a

Java-based interface for messaging systems. Figure 11

depicts the general structure of a message-queue-based

system.

Generally, there are two patterns in message-queue-

based systems which would be described as follows:

Publish-subscribe:

It is a message-queue-based pattern where message

sender named publisher is not responsible for managing

and sending the messages directly to specific receivers

which called subscribers but, instead messages are

classified into different classes without aware of their

subscribers, then subscribers receive the messages from

the classes that are of their interests without knowledge

of the publishers.

In this model, subscribers receive only a bunch of the

total published messages. The process of choosing and

processing the messages is called filtering. There are two

common kinds of filtering: topic-based and content-based.

In a topic-based system, messages are put in "topics"

or named logical channels. Subscribers will receive

messages from the topics they have subscribed to. All

subscribers will receive the same messages from the

same topics. The publisher must define the classes of

messages and determine which subscribers can subscribe.

With the Publish-Subscribe model, the sender never

explicitly specifies the receiver, it never even knows if

any receiver exists or not. Figure 12 shows a topic-based

message-queue-based model.

Fig.11. Data exchanging between applicationsthrough message-queue-

based [2]

Service

Requester

Service

Provider

Service

Registry

Bind

Find Publish

WSDL, UDDI

Service

description

Service

description

Service

46 Inter-Process Communication (IPC) in Distributed Environments: An Investigation and Performance

Analysis of Some Middleware Technologies

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 36-52

Fig.12. Dynamic routing of messages according to run-time rules, topic-based, and publish-subscribe [2]

In a content-based system, messages are only delivered

to a subscriber that satisfies its constraints on the content

of those messages as well as it is responsible for

classifying the messages. Some systems are developed in

a combination of the two ways which means publishers

leave messages to a topic while subscribers may choose

one or more topics, distinguish some keywords, and

restrictions on the topics’ contents (content-based). For

example, consider a magazine publishing, each

magazine is received by many people. In an airline

departure board, all of the passengers can observe airline,

departure time, destination, and etc. for each flight and

everyone can choose information that is pertinent to

himself or herself Take another example, in social

networks groups or channels that usually type of

communication is asynchronous (some members are

offline), then messages persist when the receiver

becomes available can get them. The general architecture

of the content-based model is pictured in Figure 13.

Fig.13. Content-based message-based model [2]

Point-to-Point

In this model each node leaves messages into a

specific queue, then another one gets from it. To put it in

another way, although one node can choose to send a

message into multiple queues and only one node can get

from each queue at the same time this policy indicates

that the sender explicitly specifies the receiver. To give

you an idea, consider the following examples:

Postcard: we can send multiple postcards to many

people but each one can be received just by one person.

Email: although it might be sent to many people each

person gets it from its own queue (Inbox). In this model,

if I put a message into a queue, it will be shipped to just

one receiver because each application has its own queue.

In Figure 14 this model is illustrated.

Fig.14. Point to point message-queue-based [2]

RPC-based communications that we mentioned above

can be categorized into two board groups as follows:

1. Group Communication

RPC-based communication can have one-to-one

communication (unicast), one-to-many communication

(multicast), and one-to-all communication (broadcast).

Multicasting can be implemented using broadcasting.

Each system receives a message if the message does not

belong to this machine then discard it. Highly available

servers (client-server), database replication, multimedia

conferencing, online games, cluster management, and to

mention just a few are examples of group communication.

2. Stream-oriented communication

Streams can be established between two processes at

different machines, or directly between two different

devices. combinations are possible as well.

Stream-oriented communication is a form of

communication in which time plays a crucial role. For

instance audio and video stream. A data stream is nothing

but a sequence of data units. There are different

Source

Application

Massage

Provider

App Filter
A Year>=2015
B Price>2000
C Quantity<65

Application C

Application B

Application A

Application B
Source

Application

Massage

Provider

Application C

Application A

 Inter-Process Communication (IPC) in Distributed Environments: An Investigation and Performance 47

Analysis of Some Middleware Technologies

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 36-52

transmission modes in stream-oriented communication

that depicted as follows:

Asynchronous transmission mode

The data frames in a stream are sent one after another,

but it does not matter when the transferring process is

done entirely. As a point of clarification, a file transferred

as a data stream.

Synchronous transmission mode

A maximum threshold delay is defined for each unit in

a data stream. It is acceptable if one data unit transfers

much faster than the delay threshold. For example, if a

sensor pass sample temperature through a network and

the dissemination time over the network is lower than the

time interval between taking samples, it is satisfactory

Isochronous transmission mode

It is essential that data units are transferred on time. In

another way, data units must transfer between a

maximum and minimum end-to-end delay. By way of

illustration, representing audio and video in order to

preserve playback quality.

Normally, streams can be classified into two groups,

simple or complex as follows:

Simple stream

It involves only a single sequence of data.

Complex stream

It consists of several related simple streams called sub-

streams. The relationship between these sub-streams in a

complex stream is often time-dependent. For instance, to

transmit a movie, the stream made of a single video

stream along with two streams to exchange the sound as

well as a fourth stream might contain subtitles for deaf or

a translation into a different language. For a detailed

review see [1].

IV. EVALUATIONS OF SOME IPC METHODS

1. Experiments description

This section is devoted to performance assessment of

some IPC methods such as CORBA, RMI, TCP socket,

Web Service (SOAP), Web Service (RESTful), XML-

RPC, and Message Provider or Message Queue (MQ).

These methods were implemented by Java

programming language (a client and a server for each

method) then performed on a system with the following

configuration: RAM: 4GB, CPU: Intel(R) 2.4GHz,

Operating System (OS): Windows 7-64bit (Version 6.1),

Java Development Kit (JDK) version: 1.8.0_112, MQ:

Apache ActiveMQ-5.15.5.

To assess the performance of the methods, six audio

files with different size including (3, 8, 15.7, 26.6, 60.2,

341) MB were chosen randomly, then these files sent out

one by one from the client to the server for each method

in order to as the file size increases, we can distinguish

the performance of the methods more precisely and easily.

These experiments were conducted five times.

2. Experimental Results

Some of the observations are summarized as follows:

As we expected, the socket had a satisfactory

performance compared to the others since it is the

simplest IPC. The SOAP consumed much memory (for

the file with size 341MB, we set Xmx=1500MB at the

server side to resolve heap memory issues) and had poor

performance besides REST. The CORBA was extremely

slow to transfer the files. The RMI was superior to the

CORBA, SOAP, and REST.

Because RMI uses stateful objects and object

references as well as does not employ extra layers

compared to SOAP, in comparison to SOAP and XML-

RPC, it had a better performance. Other reasons for the

poor performance of web services against RMI can be

mentioned as follows: the sizes of the message that

transferred over the network, and overhead which

requires to processing the messages.

REST had better performance because it has a little

overhead on top of HTTP. On the other hand, SOAP has

different handlers and parsers to decode the message

once each message is received. Consequently, REST was

superior to SOAP in terms of transferring rate.

Furthermore, REST is just HTTP, It has no overhead. It

usually encodes the message in JSON (as opposed to

XML in SOAP), consumed little memory, unlike SOAP.

CORBA utilized IIOP and because it is more

convenient and more efficient to parse IIOP messages

rather than parsing XML, it performs well. SOAP, on the

other hand, convert all data to XML, then convert them

back, it takes more processing time against IIOP from

CORBA. We encountered this issue (parsing the XML

caused the poor performance) in XML-RPC as well.

SOAP and XML-RPC were terribly time-consuming and

memory-consuming compared to CORBA.

When the size of the input file was raised, the amount

of memory consumed in the XML-RPC method

increased dramatically as well as its speed got slow. To

tackle this issue we extend the Java memory heap space

and set the Xmx to 2048MB in order to transmit the input

file of size 341MB, otherwise, we encountered “memory

not enough” or “heap memory shortage” error. A file was

shipped by MQ as follows: firstly, the file was sent out

from the client and sit in the MQ, afterward, the same file

was gotten from MQ and forwarded to the server. It

seemed, because the MQ used concurrent threads in a

customized manner, in most cases, it had a very close

performance with the socket. These results have been

elaborated in Figure 15 through Figure 19. For all of the

methods, execution time is in milliseconds (ms).

48 Inter-Process Communication (IPC) in Distributed Environments: An Investigation and Performance

Analysis of Some Middleware Technologies

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 36-52

Fig.15. Experimental result 1

Fig.16. Experimental result 2

Fig.17. Experiment result 3

Fig.18. Experimental result 4

V. CONCLUSION AND FUTURE WORKS

To sum up, in this research firstly the main reasons

that distributed systems have emerged, the importance

and some of their basic concepts were described. Next,

since IPC plays an outstanding role in the distributed

systems, a pervasive and precise history of the IPC

technologies, how and why they have been appeared, a

comprehensive categorization (briefly, shared memory

and message passing) alongside a brief explanation of

them were stated. Afterward, some IPCs were

implemented and compared. As we expected, the socket

as a basic IPC method, because it does not perform extra

operations on the input data to be sent, was the fastest

method. Two methods XML-RPC and Web Service

(SOAP) consumed a lot of memory. Express differently,

XML-based IPCs had poor performance.

Fig.19. Experimental result 5

Because they perform marshaling and unmarshalling

over the messages in order to eliminate some platform

dependencies, and this processing requires a lot of time

and memory. Since RMI uses object references it had

satisfactory performance against XML-based IPCs and

CORBA. Message-Queue-Based IPCs like ActiveMQ

have made possible asynchronous communication and

because they use multiple threads to communicate

between processes, had acceptable performance. For

future works, it is possible to conduct the benchmarks on

different systems and evaluate the network traffics with

regard to each method. Furthermore, because some

systems utilize signals to notify each other and

communicate, on the other hand, each operation has a

priority to perform and usually use a specific signal to

proceed. In this paper, we have not mentioned them

because of their details. We would attempt to study them

in the future as well.

In Table 1, Table 2, and Table 3 at the follows we

attempt to illustrate a summarization of some IPCs

alongside their advantages and disadvantages. Keep in

mind that none of these methods are superior to others.

As mentioned above, depending on diverse

circumstances you should choose the most appropriate

one.

 Inter-Process Communication (IPC) in Distributed Environments: An Investigation and Performance 49

Analysis of Some Middleware Technologies

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 36-52

Table 1. Advantages and disadvantages of some IPC methods

Weakness Strengths Methods

- It is made for Wide Area Networks (WAN), so it
has weak performance across the networks with

poor resources.

-It performs various operations on the layers
concurrently, so it causes low speed over the

network.

- The ability to recover from any failures (reliability)

- It can be added to a network without disturbing for
other services

- Handling the errors effectively

- Independent of platform
- Overhead of data is litter.

- The sending and receiving of the packets are

guaranteed
-Simple implementation, client and server can be

implemented in two different languages.

- It is not required to know the procedural details of
the server application.

TCP

Sockets

-It is an unreliable protocol and there is no guarantee

to make sure all of the packets received or keep in
the same order.

- Because of error control deficiency, if it detects

any errors in received packets, it eliminates them.
- It is suffering from congestion control when a

large number of users transfer huge amounts of data

by UDP, it causes congestion and no one knows
how to manage it.

- It has not the order convention, and also no ACK

message for received data.
- Because only the application layer is responsible

for error recovery, under those circumstances,

applications can inform the user to retransmit the
message.

- Routers do not send a UDP datagram after a

collision and usually remove UDP packets before
TCP ones

- Because it uses a small packet alongside small

header size, it needs less time and memory to process.
-Because the packets in UDP have not ACK, and also

do not require to keep in memory to be confirmed,

their speed is high and memory consumption is low.
-It does not require to resend the missing packets, so it

is a suitable option for applications that are sensitive

to delay like audios and videos.
-It has a good transferring rate.

- Simple implementation, client and server can be

implemented in two different languages.
- It is not required to know the procedural details of

the server application.

UDP

- It is Java’s technology, so the client and server

must be written in Java language.

- Called and caller methods must be performing
when communicating.

-Overhead of marshaling and unmarshaling

- Overhead of object serialization.
- Reflection in RMI seems to be more expensive

than the HTTP protocol.

- Dividing processors' loads

- High transferring rate

- An ability to pass executable files.
- You can modify or add some classes easily.

- RMI is good for simple method calls (like queries)

- The marshaling of objects is automatic
- It will give you better performance over web

services.

RMI

- It has very low speed

- It is not changeable if you write a web service, it

does not allow you to change the parameters and

methods. You could add new changes as new
methods, but if you want to change the methods and

input parameters, the customer programs do not

work properly.

-Unlike RMI, the client and server could be written in

two different languages.

-It works over HTTP and port 80/443 which are

normally not blocked by firewalls and can work
behind Network Address Translation (NAT).

- It is much easier to debug web services over the wire

because the data can be easily captured via sniffing
tools.

- Web services will probably be more maintainable

and flexible for future requirements.
- Integrating with other enterprise components

like Enterprise Service Bus (ESB), Single Sign-On

(SSO), Identity Management, load balancing, security
filters, and security certificates is fairly easy.

Web
Service

-It has a complicated structure.

-Downloading process via CORBA is time-
consuming

-It has no standard mapping for Perl language.

Although some people might believe that Perl is not
used any longer, it still uses in some countries.

- It does not play well with firewalls.

-It has no standard to manage the life cycle of
objects.

-Supporting a wide range of languages like Java, C,

C++, Python, Smalltalk, Ada, COBOL, PL/I, LISP.
-It integrates with other technologies easily

-Supporting numerous operating systems including,

UNIX, Windows, AS/400, Open VMS, Apple’s OS X,
a diverse range of capabilities such as dealing with

transactions, security, Naming, messaging and

publish-subscribe services
- By employing marshaling in a compact format,

making it easier exchanging of the data because other

applications utilize similar formats to transfer.
- A convenient choice for enterprise applications

- High scalability which means the flexibility and

server-side architecture of CORBA permit developing
the servers that can be scaled to handle a huge number

of objects

CORBA

50 Inter-Process Communication (IPC) in Distributed Environments: An Investigation and Performance

Analysis of Some Middleware Technologies

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 36-52

-DCOM did not succeed to become a standard

protocol
-It is not compatible with disconnected

environments

-It is complicated to code in C++.
- It does not work well through firewalls.

-By marshaling and elimination of the dependencies, it

allows data to be exchanged from one COM object
instance to another on a different computer.

-It has rich built-in capabilities that make it possible to

communicate with other middleware products such as
Microsoft Message Queue Server (MSMQ).

-It lets to implement components in any language.

-Having an ability to perform on any platform such as
UNIX, Linux, SUN, and OSX.

-Because of the garbage collector, it supports the

networks with immense traffic and would be able to
remove unnecessary or completed objects on the

server.

DCOM

-Operational complexity (every queue must be
created, configured, and monitored) that are very

tedious actions.

-Only the sender is guaranteed that the message

would be sent. But, information about the delivery

time does not provide to the sender.

- Asynchronous communication
- Performance improves: it allows asynchronous

communication which means the endpoints negotiate

with the queue, not each other. The producer can put
messages into the queue without waiting to be

consumed and the consumer gets messages only when

they are available. No part in the systems is blocked or
waited for another. As a result, the performance of the

system improves.

- It has high reliability: since queue makes the data
persistent, if some errors occur in some components of

the program or goes down for any reason, by splitting

various components with a message queue, your
program becomes more fault- tolerant because the data

in the queue are not lost, other components that are

reachable can interact with queue without any
problem.
- High scalability: When the workloads of your system

increases, multiple instances of an application can put
their requests to a queue, then you can distribute the

workloads among diverse consumers.

- It makes simple the decoupling: message queues
eliminate dependencies between components and

provides an easy way to decouple the components of

applications which means each component has its own
business function specifically when you utilize micro-

services architectures.
- Separating the Apps: because message queue and

micro-services architecture make easier the

decoupling of code and business function of
components as well, consequently testing, and also

debugging, is more straightforward.
-Using micro-services: because micro-services

patterns are connected with events, It is easier through
message queue to route multiple services as well as

notify them when the data change.

-Message-driven processing: you can start and stop a
specific application by triggering depending on a

message received on a queue or processed

-Event-driven processing: relying on any event that
might occur in the queue you can conduct different

actions.

Message
Queue

- It is memory-consuming

- It is time-consuming
- It has poor packet validation.

- It is easy to implement.

- There are a wide number of libraries that you can use
easily.

-it is based on XML, which is a widely used language.
-It uses the HTTP protocol, which makes it possible to

work with a firewall perfectly.

XML-RPC

 Inter-Process Communication (IPC) in Distributed Environments: An Investigation and Performance 51

Analysis of Some Middleware Technologies

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 36-52

Table 2. Shared Memory vs. Message Passing

Disadvantage Advantage Method
-It needs concurrency control mechanisms and memory protection

which leads to complications in programming because the

programmers have to make sure to control all the critical regions
effectively.

-It does not support the persistence of data which means if the

system crash for any reason, the data are lost.
- When the number of processors in the machine are ever-increasing,

it progressively makes it difficult and expensive to construct shared

memory.

-Communication is fast because there is no
overhead related to system calls.

-Memory mapping of a file, improves I/O

performance, chiefly on large files.
-it can support message passing like pipes.

Shared Memory

Transferring of large files over the busy network are time-

consuming.

It does not require concurrency control
mechanisms like semaphores, which results

in performance improvement.
Message Passing

Table 3. SOAP vs REST

No. SOAP REST

1 SOAP is a protocol. REST is an architectural style.

2 SOAP stands for Simple Object Access Protocol. REST shorts for REpresentational State Transfer.

3 SOAP can't apply REST because it is a protocol.
REST can utilize SOAP web services because it is a concept and can

use any protocol like HTTP, SOAP.

4 SOAP uses service interface to expose business REST uses URI to expose business logic.

5 JAX-WS is the Java API for SOAP web services. JAX-RS is the Java API for REST web services.

6 SOAP defines standards to be strictly followed. REST does not define too many standards.

7 SOAP needs more bandwidth and resources REST requires less bandwidth and resources

8 SOAP permits only XML data format.
REST allows different data formats such as Plain text, HTML, XML,

JSON, etc.

REFERENCES

[1] Tanenbaum, Andrew S and V.Steen, Maarten, Distributed

systems: principles and paradigms. Prentice-Hall, 2007.

[2] M. Fowler, Patterns of enterprise application architecture.

Addison-Wesley Longman Publishing Co., Inc., 2002.

[3] Coulouris, George F and Dollimore, Jean and Kindberg,

Tim, Distributed systems: concepts and design. pearson

education, 2005.

[4] Peterson LL, Davie BS, Computer networks: a systems

approach. Elsevier, 2007.

[5] Tanenbaum, Andrew S., and David Wetherall, Computer

networks. Harlow, Essex: Pearson, 2014.

[6] D.Ruby, Ms. S.Krishnaveni and Ms., "Comparing and

Evaluating the Performance of Inter Process

Communication Models in Linux Environment,"

lnternational Journal of Trend in Research and

Development (IJTRD), pp. 51-55, Sep. 2016.

[7] Gokhale, Aniruddha and Kumar, Bharat and Sahuguet,

Arnaud, "Reinventing the wheel? CORBA vs. Web

services," in Proceedings of international world wide Web

conference, 2002.

[8] Gray, Neil AB, "Comparison of Web Services, Java-RMI,

and CORBA service implementations," in The Fifth

Australasian Workshop on Software and System

Architectures, Australasian, 2004, p. 52.

[9] S.Ghodake, A. R. Buchade, "Survey on Interprocess

Communication and Managment," International Journal

of Innovative Research in Computer and Communication

Engineering, vol. 5, no. 2, pp. 1511-1515, Feb. 2017.

[10] Patil, Abhishek and Korde, Rajesh and Sabharwal, Kapil,

"Comparison of Middleware Technologies-CORBA, RMI

& COM/DCOM," Citeseer.

[11] ZHANG, Xiurong, "The Analysis and Comparison of

Inter-Process Communication Performance Between

Computer Nodes," Management Science and Engineering,

vol. 5, no. 3, 2011.

[12] Cook, William R and Barfield, Janel, "Web service versus

distributed objects: A case study of performance and

interface design," International Journal of Web Services

Research (IJWSR), vol. 4, no. 3, pp. 49-64, 2007.

[13] Davis, Dan and Parashar, Manish P, "Latency

performance of SOAP implementations," in Cluster

Computing and the Grid, 2002. 2nd IEEE/ACM

International Symposium on, 2002, pp. 407-407.

[14] Venkataraman, Aditya and Jagadeesha, Kishore Kumar,

"Evaluation of inter-process communication

mechanisms," Architecture, vol. 86, p. 64, 2015.

[15] Vogels, Werner, "Web services are not distributed

objects," IEEE Internet computing, vol. 7, no. 6, pp. 59-

66, 2003.

[16] Ahalt, Mark D Hanes Stanley C and Krishnamurthy,

Ashok K, "A Comparison of Java RMI, CORBA, and

Web Services Technologies for Distributed SIP

Applications," HPEC, 2002.

[17] Juric, Matjaz B and Kezmah, Bostjan and Hericko,

Marjan and Rozman, Ivan and Vezocnik, Ivan, "Java RMI,

RMI tunneling and Web services comparison and

performance analysis," ACM Sigplan Notices, vol. 39, no.

5, 2004.

[18] Lynch, Nancy and Shvartsman, Alex, "Communication

and data sharing for dynamic distributed systems," in

Future directions in distributed computing, 2003, pp. 62-

67.

[19] Juric, Matjaz B and Rozman, Ivan and et al., "Comparison

of performance of Web services, WS-Security, RMI, and

RMI-SSL," Journal of Systems and Software, vol. 79, no.

5, pp. 689-700, 2006.

[20] Allman, Mark, "An evaluation of XML-RPC,"

SIGMETRICS Performance Evaluation Review, vol. 30,

pp. 2-11, 2003.

52 Inter-Process Communication (IPC) in Distributed Environments: An Investigation and Performance

Analysis of Some Middleware Technologies

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 36-52

[21] Carl-Fredrik Sørensen, "A Comparison of Distributed

Object Technologies".

[22] Roy T Fielding, Richard N Taylor, "Architectural styles

and the design of network-based software architectures,"

vol. 7, Jun. 2000.

[23] Kreger, By Heather, "Web Services Conceptual

Architecture (WSCA 1.0)," 2001.

[24] Scott McLean, James Naftel, Kim Williams,

Microsoft .NET Remoting. 2002.

Author’s Profie

Mr. Hamed Dinari was born in Abdanan,

Ilam, located in the west of IRAN. He is

an M.Sc. graduate in Computer

Engineering (Software) from the

Department of Computer Engineering

(CE), Iran University of Science and

Technology (IUST), Tehran, IRAN. His

research interests lie primarily in the area of Database Systems,

Data Mining, Graph Mining, Indexing, and Distributed

Systems. He is currently working as a Software Engineer and

Enterprise Application Developer. In his free time, he would

like to listen to music and study psychology and linguistics

books.

How to cite this paper: Hamed Dinari, " Inter-Process Communication (IPC) in Distributed Environments: An

Investigation and Performance Analysis of Some Middleware Technologies", International Journal of Modern

Education and Computer Science(IJMECS), Vol.12, No.2, pp. 36-52, 2020.DOI: 10.5815/ijmecs.2020.02.05

