
I.J. Modern Education and Computer Science, 2020, 2, 19-29
Published Online April 2020 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2020.02.03

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 19-29

OCR for Printed Bangla Characters Using Neural

Network

Asif Isthiaq
Department of Computer Science and Engineering, Ahsanullah University of Science and Technology,

141&142, Love Road, Tejgaon Industrial Area, Dhaka 1208, Bangladesh

Email: asifisthiaq@gmail.com

Najoa Asreen Saif
Department of Computer Science and Engineering, Ahsanullah University of Science and Technology,

141&142, Love Road, Tejgaon Industrial Area, Dhaka 1208, Bangladesh

Email: najoa06@gmail.com

Received: 28 October 2019; Accepted: 23 November 2019; Published: 08 April 2020

Abstract—Optical Character recognition is a buzzword in

the field of computing. Artificial neural networks are

being used to recognize characters for a long time. ANN

has the ability to learn and model non-linear and complex

relationships, which is really important because in real

life, many of the relationships between inputs and outputs

are non-linear as well as complex. Research in the field of

OCR with Bangla language is not as vast as the English

language. So, there is a scope of research in this area. It

can be used to search and scan hundreds of Bangla

documents within seconds and can easily manipulate the

data. It is developed for various purpose like for vision

impaired person where OCR software can help turn

books, magazines and other printed documents into

accessible files that they can listen. The limitation of

traditional OCR are sufficient dataset is not available, all

different font of characters are not available and there are

lots of complex and similar shape characters for which

accuracy not good. In our research, we first tried to make

a dataset large enough so that we can train our neural

network as they require big data to train. We built our

own dataset of 2,97,898 Bangla single character images

of different fonts . Then for implementing neural network

we used Scikit-learn’s multi-layer perceptron classifier

and we also implemented our own multi-layer feed

forward back propagation neural network using a

machine learning framework named Tensorflow. We

have also built a GUI application to demonstrate the

recognition of Bangla single character images.

Index Terms—Dataset Creation, Neural Network,

Training Model, Testing Model, Classification .

I. INTRODUCTION

Character recognition is easy for humans. We learn to

recognize the differences between letters of a language

from a young age. We train our mind to recognize

between letters, words and figures from childhood. In

optical character recognition, scientists have been trying

to implement methods which are used by human brains to

recognize characters. neural network is one of them. It

was made trying to duplicate the human brain. We built

our own dataset and implemented a neural network for

training and testing. First we studied to find out what type

of work has been done in the field of character

recognition and we have found some limitations within

the existing research regarding Bangla OCR. So, in order

to provide a better approach we have created our own

dataset of Bangla single characters. Then we have

implemented our multilayer feedforward back

propagation neural network with different approaches.

We have also built a GUI application for the

demonstration of recognition of Bangla single characters

in which the number of hidden layer and number of

neurons in those hidden layers can be set by the user.

Optical Character Recognition or OCR is a technology

which is used to recognize characters from a digital

image or scanned documents by examining the text of a

digital image or document and translate the characters in

such a way that can be manipulated and used for data

processing. In our research we have worked with printed

characters.

There are several phases to recognize the characters

successfully. First, the image needs to undergo some pre-

processing steps such as noise reduction, binarization,

skew detection and correction etc. Next is segmentation

phase where lines are segmented into words and words

into characters. Then set of features are extracted from

those segmented character images in the feature

extraction phase. At the end segmented character image is

classified using a classifier in the classification phase.

Bangla OCR can be used in many sectors. One may

able to search hundreds of Bangla documents, books etc.

and locate what they need within seconds using the

digital search features. Bangla OCR allows scanning of

Bangla documents and make it available to manipulate

easily and relevant information can be added later on.

Scanned documents can be stored in digital form so lot of

space can be saved and so backup can be created to

20 OCR for Printed Bangla Characters Using Neural Network

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 19-29

prevent it from any loss. Bangla OCR applications can be

used for various purposes like if someone is vision

impaired, OCR software can help turn books, magazines

and other printed documents into accessible files that they

can listen.

There are several limitations existing in Bangla OCR.

Sufficient dataset not available for Bangla printed

characters. Sufficient dataset with different fonts is not

available for Bangla printed characters. Due to

complexity and similarities between different characters

accuracy is not good enough.

Our objective is to create Bangla single character

dataset, developing a multilayer Feedforward

Backpropagation Neural Network classifier for Bangla

OCR and creating a model by which we can recognize

any given character image of any size just by resizing the

character into 40 by 40 pixels.

As our data is complex, we are motivated to use neural

network because it gives better result.

To create dataset we have taken 10 different bangla

fonts of 40*40. Then use the Matlab code to generate all

possible position from the cropped image. We also used

circshift function to shift pixels from place to place so

that we can get good amount of picture from single

dataset.

Neural networks are a set of algorithms that are

designed to recognize patterns. We have implemented

neural network using Sklearn MLP Classifier and using

Tenserflow.

In Sklearn MLP Classifier, we used model with one

hidden layer and two hidden layers. In those hidden

layers we have used different numbers of neuron to check

the accuracy of our model. Two approaches was done

when implementing this classifier. When selecting the

train and test data we have used two different ways.

First we used our own dataset and used the train test

split method to divide the dataset into train and test data.

For the second approach we used a new font named

turagmj as a test data and the whole dataset is used as

training data.

We implemented neural network using TensorFlow

with both one and two hidden layers. In this

implementation of neural network we have used three

layers. One input layer, one hidden layer and one output

layer.

II. RELATED WORKS

Some work has been done regarding OCR and we have

been inspired by this. In this Table 1 we have discussed

some papers we have read and their approaches.

Table 1. Some related work regarding OCR

Work Summary

Optical Character

Recognition(OCR) for
printed Devnagari Script

Using Artificial Neural

Network [1]

The researchers proposed a technique for OCR system for printed Devnagari scripting artificial neural network with back

propagation algorithm with two hidden layers. Input matrix of size (48×57) had given them the best result. For classification of
characters they had considered three features which are mean distance, histogram of projection based on spatial position of pixel

and histogram of projection based on pixel value.

Optical Character

Recognition Using

Artificial Neural
Network [2]

In research [2], they described an offline handwritten alphabetical character recognition system using multilayer feed forward

neural network. The whole process of recognition included two phases training and testing. Both the phases consisted of pre-

processing, feature extraction and classification. The network had 35 neurons.

Application of Neural

Networks in Character

Recognition [3]

In research[3], they used neural networks in recognizing characters from a printed script. The algorithm used was BPN (Back

Propagation Neural Network). The BP algorithm determines the weight for a multilayer ANN with feed-forward

connections .The activation function used was Logsig.

Optical Character

Recognition using Back

Propagation Neural
Network [4]

In research [4], they used back propagation neural network to recognize printed English characters. The feedforward network

had one input, one hidden layer and one output layer. The network was trained with 558 samples of 62 characters where each

character had 9 samples. They tested their trained network with more than 10 samples per character and gave 99% accuracy for
numeric digits (0-9), 97% accuracy for capital letters (A-Z), 96% accuracy for small letters (a-z).

Different methods for

Optical Character

Recognition [5]

In research [5], they described the different methods for optical character recognition. The authors covered different phases to

develop a complete OCR but they emphasize on the feature extraction process. The accuracy of their combined method provided

90% accuracy in some cases. They had used multilayer neural network as their classifier.

Implementing

Recognition of hand

written characters [6]

In research [6], they gave a good idea of implementing recognition of hand written characters. In this research work the authors

made the dataset written by 1000 people. They used Support Vector Machine which is used for classification in pattern

recognition. This RBF SVM produced 93.43% overall recognition rate.

Different models of
Neural Network to find

the effectiveness of the

Neural Network [7]

In research [7], they used different models of neural network and they recorded certain parameters to find the effectiveness of the
neural network. They used image size (10×10) as an input to the neural network.

Minimally Segmenting

High Performance

Bangla Optical

Character Recognition
Using Kohonen

Network [8]

In research [8], they described a method to recognize Bangla character using kohonen neural network. The images are first

converted into gray scale and then to binary images. Then these images are scaled to fit a pre-determined area with a fixed but

significant number of pixels. The feature vectors are then extracted. Finally a kohenen neural network is chosen for the training

and classification process. The resulting classifier was accurate in recognizing characters better than 98% depending on the
quality of the input images.

A Complete Bangla

OCR System for Printed

Characters [9]

In research [9], it gave us the comprehensive description of different phases of OCR and how to recognize characters using

artificial neural network. Preprocessing steps of this article includes binarization, noise removal, skew detection and correction,

segmentation in various levels and scaling. The output of neuron for each character was 50.

Recognition of

Conjunctive Bangla
Characters by Artificial

Neural Network [10]

In research [10], they tried to recognize Bangla conjunctive characters. The method used a comparison between sample data and

training data components. Each character patterns scaled onto(16×16) binary image. So the input layer had 256 inputs. The
network had one hidden layer. The hidden layer neurons was estimated to be 100. The output layer was 193. They had worked

with 100 samples.

 OCR for Printed Bangla Characters Using Neural Network 21

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 19-29

III. IMPLEMENTATION OF OUR PROPOSED WORK

A. Our Proposed Work

(1) Creating Bangla single characters dataset so that

after us others can use it which would give them

better recognition rate. We took images of (40 *

40) 1600 pixels.

Fig. 1. Phases of our proposed OCR

(2) At first, we wanted to take (20 * 20) 400 pixels

image of each single character but accuracy was

poor. So we changed the image size to (40 * 40)

1600 pixels for better accuracy.

(3) Implementing a feed forward back propagation

neural network using different approaches.

(4) Using different activation function in hidden

layers of neural network and compare which one

will give better accuracy.

B. Dataset Creation

We need to build a Bangla single character’s dataset

from scratch. We have built a dataset of 2,97,898 images.

We took 50 Bangla characters form ‘a’ to ‘ri’ and from

‘ko’ to ‘khandata’. For each character we took 10 Bangla

fonts. They are:

(1) BhrahmaputraMJ

(2) BorhalMJ

(3) ChandrabatiMatraMJ

(4) DhorolaMJ

(5) GangaMJ

(6) GoomtiMJ

(7) KongshoMatraMJ

(8) ModhumatiMJ

(9) PadmaMJ

(10) RatoolMJ

There is an image of “ka” in 10 different fonts in Fig. 2.

Fig. 2. “ka” in 10 different fonts

We have also written a Matlab code which would

enable us to make many images from one image. We

have mainly done that to make many instances of a

character and to take letter of a font to different places so

that the neural network gets a higher chance of better

training and the accuracy can increase. Let us think that

we have just drawn a character named ‘ko’ with the help

of Photoshop. The steps after that is given below.

1) Step 1: Cut the image by any snipping app like

Snipping Tool or PicPick to create a 40*40 image.

Each character in Bangla letters has different

height and width so we selected a fixed font size

so that the character with maximum height and

width can be cropped using 40 * 40 window size.

2) Step 2: Then use the Matlab code to generate all

possible position from the cropped image. We do

this because we wanted to increase the number of

images in the dataset. In the code we have function

named top, bottom, right and left. First top and

bottom function is called to generate all possible

top and bottom positions. Then right function is

called so the image is right shifted by one pixel

and then top and bottom function is called so that

all possible top and bottom position image is

generates from that shifted image until the shifted

image hit the boundary pixels. We do the same

process when left function is called.

In Fig. 3 we can see that the first image of ‘ko’. It is

the picture we get after cropping using Picpick from

photoshop. Then after feeding the image to our code we

get all possible shifted position of that image in Fig. 3 are

some images that are generated after feeding the image to

the Matlab code.

22 OCR for Printed Bangla Characters Using Neural Network

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 19-29

Fig. 3. Single image into multiple images

We have used circshift function to shift the pixels from

place to place. So we get good amount of pictures from a

single image and that’s why the data set can be much

larger and the neural network gets a big enough dataset to

train. Fig. 4 is the result when applying the rotate

function.

Fig. 4. Rotation of a character image

In Fig. 4 the first and second row gives us the rotated

image. First row gives us 15, 45, 60 and 90 degree rotated

version of the image. On the Second row we get the -15, -

45, - 60 and -90 degree rotated version of that image.

3) Step 3: After applying the same process for all the

letters and all the fonts we got our image dataset.

Then we labeled out dataset where “a” is denoted

by 1 and so on and lastly “khandacta” is denoted

by 50 and save it in a csv file.

4) Step 4: This will be the final step of our dataset

creation process. For that we wrote another code

named DatasetCreation.py. It is written using

python programming language. The images up to

this point is two dimensional and 40*40. Now we

convert this image into one dimension which is

1*1600. First we did the usual preprocessing like

rgb to gray conversion. Then we convert the grey

image to binary image which means the image will

only contain black and white pixels. Finally, we

convert the two-dimensional image into a one-

dimensional image and then the image is appended

in the dataset.csv. So one row of the dataset gives

us the one character or letter. So, in the csv file

there is 1600 columns and 2,97,898 rows. Each

row represents one letter with its own class labeled.

After doing all the processes mentioned above, we

get our final dataset. And now our dataset is ready

to be used by the neural network.

C. Description Of The Dataset

Table I gives us a clear idea about our dataset. We took

10 fonts of a single character and draw those fonts in

different styles like bold, smooth etc. Then we created a

vast dataset by shifting those characters in different

positions. Our dataset holds total of 2,97,898 images. We

took 40*40 images.

Table 2. Number of character image in each class

Serial No.

Character Name

Total Number of

Character Image in

Each Class

1 অ 1973

2 আ 386

3 ই 2264

4 ঈ 2012

5 উ 2588

6 ঊ 2330

7 ঋ 7712

8 এ 2204

9 ঐ 8453

10 ও 2639

11 ঔ 4262

12 ক 5427

13 খ 8323

14 গ 8453

15 ঘ 17259

16 ঙ 18663

17 চ 2882

18 ছ 1849

19 জ 1372

20 ঝ 3562

21 ঞ 3327

22 ট 8593

23 ঠ 6746

24 ড 8289

25 ঢ 5104

26 ণ 3260

27 ত 3311

28 থ 3294

29 দ 4914

 30 ধ 2549

31 ন 2484

32 প 11641

33 ফ 6709

34 ব 11786

35 ভ 8715

36 ম 11462

37 য 10454

38 র 7271

39 ল 4832

40 শ 3969

41 ষ 4629

42 স 1644

 OCR for Printed Bangla Characters Using Neural Network 23

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 19-29

43 হ 3024

44 ড় 3133

45 ঢ় 4441

46 য় 2623

47 ং 16403

48 ং 8759

49 ং 15722

50 ৎ 4148

D. Implementation Using Sklearn MLP Classifier

We have first implemented our neural network using

MLP classifier. MLP’s full form is multi-layer perceptron

classifier. This model optimizes the log-loss function

using stochastic gradient descent. We have used model

with both one hidden layer and two hidden layers. In

those hidden layers we have used different numbers of

neuron to check the accuracy of our model. We have

done our coding in python language. We have used two

approaches when implementing this classifier. When

selecting the train and test data we have used two

different ways. First we used our own dataset and used

the train test split method to divide the dataset into train

and test data. We had given 20% for test and 80% for the

training process. For the second approach, we used a new

font named turagmj as a test data and the whole dataset is

used as training data. Both of the approaches are similar.

For train test split we need to read the data and label of

the data then split the data in train and test. But for the

second approach both our own data and the new test data

which is totally unfamiliar needs to be read separately

with their label. We have train and test our data with

using both 1 hidden layer and 2 hidden layers. So the

steps are as follows:

(1) First, we imported the necessary libraries.

(2) Then we read the dataset.

(3) Next step was to analyze the dataset to make it

useful for our work.

(4) The step after that was to prepare the data.

Trainand test data each are divided into two

subdivision for train test split. For using a totally

different test data split is not required.

(5) Then the train values are scaled so that the values

which are large cannot affect the outcome that

much.

(6) Finally, we train and test the dataset using the

MLPClassifier.

E. Implementation Using Tensorflow

Machine learning frameworks like TensorFlow,

PaddlePaddle, Torch, Caffe, Keras, and many others can

speed up machine learning development significantly.

Programing frameworks can not only shorten coding time

but sometimes also perform optimizations that speed up

code. In this implementation, we have used TensorFlow.

First we initialize the variables then we start our own

session then we train algorithm and then implement a

neural network,

Writing and running programs in TensorFlow has the

following steps:

(1) Create Tensors (variables) that are not yet

executed/evaluated.

(2) Write operations between those Tensors.

(3) Initialize the Tensors.

(4) Create a Session.

(5) Run the Session.

When we created a variable, we simply defined the

variable , but did not evaluate its value. To evaluate it, we

had to run:

init = t .global_variables_initializer()

That initialized the variable, and then we finally able to

evaluate the value of the variable. Let us look at an easy

example :

Fig. 5. An example of variable initializing

As expected, the result is not 20. We got a tensor

saying that the result is a tensor that does not have the

shape attribute, and is of type “int32”. All we did was put

in the *computation graph, but we have not run this

computation yet. In order to actually multiply the two

numbers, we will have to create a session and run it.

Fig. 6. An example of session

Next we use placeholders . A placeholder is an object

whose value we can specify only later. To specify values

for a placeholder, we can pass in values by using a “feed

dictionary” (feed_dict variable). Below, we created a

placeholder for x. This allows us to pass in a number later

when we run the session.

Fig. 7. An example of Placeholders

When we first defined x we did not have to specify a

value for it. A placeholder is simply a variable that we

will assign data to only later, when running the session.

We can say that we feed data to these placeholders when

running the session.

Here’s what’s happening: When we specify the

operations needed for a computation, we are telling

TensorFlow how to construct a computation graph.

The computation graph can have some placeholders

whose values we will specify only later. Finally, when we

24 OCR for Printed Bangla Characters Using Neural Network

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 19-29

run the session, we are telling TensorFlow to execute the

computation graph.

Next, to implement a linear function we will need the

following functions :

– tf.matmul(..., ...) to do a matrix multiplication

– tf.add(..., ...) to do an addition

Next, we implemented one-hot encoding on categorical

data. Categorical data are variables that contain label

values rather than numeric values. The number of

possible values is often limited to a fixed set. Categorical

variables are often called nominal. Some examples

include:

– A “pet” variable with the values: “dog” and “cat”.

– A “color” variable with the values: “red”, “green”

and “blue”.

– A “place” variable with the values: “first”, “second”

and “third”.

Each value represents a different category. Some

categories may have a natural relationship to each other,

such as a natural ordering. The “place” variable above

does have a natural ordering of values. This type of

categorical variable is called an ordinal variable.

Some algorithms can work with categorical data

directly. For example, a decision tree can be learned

directly from categorical data with no data transform

required (this depends on the specific implementation).

Many machine learning algorithms cannot operate on

label data directly. They require all input variables and

output variables to be numeric. In general, this is mostly a

constraint of the efficient implementation of machine

learning algorithms rather than hard limitations on the

algorithms themselves. This means that categorical data

must be converted to a numerical form. If the categorical

variable is an output variable, you may also want to

convert predictions by the model back into a categorical

form in order to present them or use them in some

application. For categorical variables where no such

ordinal relationship exists, the integer encoding is not

enough. In fact, using this encoding and allowing the

model to assume a natural ordering between categories

may result in poor performance or unexpected results

(predictions halfway between categories). In this case, a

one-hot encoding can be applied to the integer

representation. This is where the integer encoded variable

is removed and a new binary variable is added for each

unique integer .

Fig. 8. An example of one hot encodinig

We implemented neural network using TensorFlow

with both one and two hidden layers.

In this implementation of neural network, we have

used three layers. One input layer, one hidden layer and

one output layer. Input layer has 1600 nodes or neurons.

In the hidden layer we have used different number of

nodes or neurons to check the accuracy of our model and

in our output layer we have 50 nodes or neurons.

Fig. 9. Our Neural Network with One Hidden Layer

For this implementation we have done our coding in

python. The steps are as follows:

(1) First we need to import all necessary libraries.

(2) Next we load the dataset from a csv file with

labels. Then we split the dataset between train and

test. For doing so a function is called named load

dataset() which adds the bias to the data. Then it

converts the numerical target data or label to

binary data using one hot encoding. Then the

function returns the splitted dataset. We had given

20% for test and 80% for the training process.

(3) Then we specify the numbers of neurons in each

layer. Here the number of neurons in the input

layer and output layer is fixed which is 1600 and

50 consecutively. We vary the number of neurons

in the hidden layer to check the accuracy of our

model.

(4) Then we create placeholders for our data.

(5) Then weight initialization is done by calling

init_weights() function. This function uses

tfrandom_ normal() to give a random weight to

each edge or synapses.

(6) After initialization of weights the forwardprop()

function is called. This function multiply the

inputs with their corresponding weights using

tf.matmul() function. Then sigmoid activation

function is applied to the result of the matrix

multiplication.

(7) Next the backpropagation part starts. The cost is

calculated using the softmax cross entropy with

logits() function. Update is done by using

GradientDescentOptimizer() function.

(8) Lastly, we feed the all the training examples and

with their corresponding labels using feed_dict

and calculate training and testing accuracy using

actual and predicted value.

 OCR for Printed Bangla Characters Using Neural Network 25

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 19-29

In this implementation of neural network we have used

four layers. One input layer, two hidden layers and one

output layer. Input layer has 1600 nodes or neurons. In

the two hidden layers we have used different number of

nodes or neurons to check the accuracy of our model and

in our output layer we have 50 nodes or neurons. For this

implementation we have done our coding in python. Our

goal is to build an algorithm capable of recognizing a

Bangla character with high accuracy. To do so, we are

going to build a tensorflow model using a softmax output.

The model is:

LINEAR ̵> RELU ̵ > LINEAR ̵>

RELU ̵> LINEAR ̵ > SOFTMAX

Fig. 10. Our Neural Network with Two Hidden Layer

In the output layer we will use softmax activation

function. A softmax layer generalizes sigmoid to when

there are more than two classes. The steps of building our

model are as follows:

(1) Our first task is to create placeholders for training

examples and their corresponding labels. In our

dataset the size of each the training example is

1600 and there are 50 classes. This will allow us to

later pass our training data in when we run our

session. For this task we have implemented a

function called create placeholders() to create the

placeholders in tensorflow.

(2) Our second task is to initialize the parameters in

tensorflow. For this task we have implemented a

function called initialize parameters() to initialize

the parameters in tensorflow. We are using Xavier

Initialization for weights and Zero Initialization

for biases.

(3) Then we have implemented the forward

propagation module in tensorflow. The function

will take in a dictionary of parameters and it will

complete the forward pass. This function multiply

the inputs with their corresponding weights using

tf.matmul() function. Then relu activation function

is applied to the result of the matrix multiplication.

(4) Next we calculate the cost using the softmax

cross entropy with logits() function by

implementing a function compute cost().

(5) After we compute the cost function we have

created an “optimizer” object. We have to call this

object along with the cost when running the

tf.session. When called, it will perform an

optimization on the given cost with the chosen

method and learning rate. In our implementation

we chose gradient descent as our method and

0.0001 as our learning rate. Then the update is

done by using AdamOptimizer() function.

Backpropagation is computed by passing through

the tensorflow graph in the reverse order. From

cost to inputs.

(6) Next we have implemented our model. We train

our model with 10 different fonts of Bangla

language and tested our model with a test dataset

of completely different font that is not in the

training dataset.

IV. RESULT AND DISCUSSION

To discuss our result we need to talk about our

approach of building the dataset because different

datasets gave us different result. First we thought of

building our dataset 20 * 20. For this first we cut images

of letters with size 200 * 200 and then resize it in 20 * 20.

For testing first we made the dataset only for 3 letters.

We took 3 sizes and 10 fonts. We made 13,245 images

from those 3 letters. When we tested the accuracy we

found the accuracy to be little bit more than 80%. When

we made the same dataset for 10 letters the accuracy

dropped to 60%. So we knew our approach needed to be

changed. Then we thought of not resizing the image

because it degrades the image quality. We changed the

size from 20 * 20 to 40 * 40. So we cut the images in 40

* 40. We took 10 fonts.

A. Training & Testing Using Train Test Split

We have a dataset of 2,97,898 images. We divided the

dataset in to five parts and we train our neural network

with four of those five parts and test neural network with

the remaining one part. In other words, we took 80% as

train data and 20% as test data of our dataset.

We have 1600 input neurons in the input layer and 50

output neurons in the output layer.

Accuracy Using Sklearn MLP Classifier With 1 HL

After testing with MLP classifier with one hidden layer

with different number of neurons in the hidden layer we

get the training and testing accuracy shown in Table 3.

Table 3. Training and Testing Accuracy using MLP with One Hidden

Layer

Hidden Layer 1 Training Accuracy Testing Accuracy

40 Neurons 97.15% 91.61%

50 Neurons 99.01% 95.34%

60 Neurons 99.07% 95.78%

100 Neurons 99.21% 97.07%

26 OCR for Printed Bangla Characters Using Neural Network

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 19-29

Accuracy Using Our Implemented Neural Network

With 1 HL.

After testing with neural network, we have

implemented with one hidden layer using google’s

Tensorflow framework with different number of neurons

in the hidden layer we get the training and testing

accuracy shown in Table 4.

Table 4. Training And Testing Accuracy using our NN With One

Hidden Layer

Hidden Layer 1 Training Accuracy Testing Accuracy

40 Neurons 97.89% 90.19%

50 Neurons 98.15% 94.44%

60 Neurons 99.03% 95.06%

100 Neurons 99.12% 96.34%

Accuracy Using Sklearn MLP Classifier With 2 HL.

After testing with MLP classifier with two hidden layer

with different number of neurons in the hidden layers we

get the following training and testing accuracy.

Table 5. Training And Testing Accuracy using MLP With Two Hidden
Layer

Hidden Layer

1

Hidden

Layyer 2

traing

Accuracy

Testing

accuracy

40 Neurons 20 Neurons 97.07% 91.77%

50 Neurons 25 Neurons 98.77% 94.02%

60 Neurons 30 Neurons 98.06% 94.73%

100 Neurons 50 Neurons 99.14% 98.13%

From the above accuracy Table 5 we can see that

accuracy increases when we use two hidden layers

instead of one. We can also see that accuracy increases

when we increase the number of neurons in the hidden

layers. When we used 100 neurons in the first hidden

layer and 50 neurons in the second hidden layer, we get

98.13% testing accuracy. For this particular neural

network testing accuracy of each individual class is given

in Table 6.

Table 6. Accuracy of each class

Serial No.

Character Name

Accuracy of Each

Class

1 অ 98.84%

2 আ 100.0%

3 ই 99.36%

4 ঈ 98.70%

5 উ 98.05%

6 ঊ 99.55%

7 ঋ 97.54%

8 এ 100.0%

9 ঐ 99.19%

10 ও 99.63%

11 ঔ 99.88%

12 ক 93.54%

13 খ 97.67%

14 গ 98.74%

15 ঘ 97.99%

16 ঙ 99.36%

17 চ 99.03%

18 ছ 97.48%

19 জ 97.83%

20 ঝ 98.20%

21 ঞ 99.41%

22 ট 98.76%

23 ঠ 99.31%

24 ড 94.04%

25 ঢ 99.02%

26 ণ 98.25%

27 ত 96.44%

28 থ 97.74%

29 দ 100.0%

 30 ধ 100.0%

31 ন 99.39%

32 প 99.59%

33 ফ 98.23%

34 ব 98.75%

35 ভ 97.52%

36 ম 97.64%

37 য 92.48%

38 র 95.76%

39 ল 99.39%

40 শ 99.25%

41 ষ 94.07%

42 স 96.71%

43 হ 99.49%

44 ড় 95.29%

45 ঢ় 97.42%

46 য় 98.82%

47 ং 99.91%

48 ং 97.89%

49 ং 99.49%

50 ৎ 99.01%

B. Testing Using Different Font

We also tried to test the accuracy using a totally

different font that is not present in our dataset. For that

we took a Bangla font turagMJ. We have 6171 as our test

data. So, our train data size is 2,97,898 and our test data

size is 6171. We used both MLP classifier with two

hidden layers and our implemented neural network using

google’s tensorflow framework with two hidden layers to

check the accuracy after testing with our test data. The

number of input neuron is 1600 and the number of output

neuron is 50. We used two hidden layers in our neural

network. We used different combination of neurons in

both the hidden layers. 400 neurons in hidden layer 1 and

200 neurons in hidden layer give the best result. As we

can see in Table 7 the result is not that great. Analyzing

the result, we can say that because of the complexness,

similarity and variation between fonts of Bangla

characters it is very hard for the neural network to

correctly classify them. Some of the characters accuracy

is high but some of the characters give very low accuracy.

So some additional preprocessing step is needed to

increase the accuracy further. We think if we apply some

morphological operation on the character images before

feature extraction it will increase the chances of

recognition.

 OCR for Printed Bangla Characters Using Neural Network 27

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 19-29

Table 7. Training and Testing accuracy using MLP with 2 hidden layer

Model Name Neurons

In HL

Training

Accuracy

Testing

Accuracy

MLP 400,200 99.38% 71.23%

Implemented NN 400,200 99.44% 69.82%

V. OUR GUI APPLICATION

OCR (optical character recognition) is the use of

technology to distinguish printed or handwritten text

characters inside digital images of physical documents,

such as a scanned paper document. The basic process of

OCR involves examining the text of a document and

translating the characters into code that can be used for

data processing. OCR is sometimes also referred to as

text recognition. First the image needs to undergo some

pre-processing. Next is segmentation phase where lines

are segmented into words and words into characters.

Then set of features are extracted from those segmented

character images in the feature extraction phase. At the

end segmented character image is classified. We wanted

to develop an application to give a demonstration of

optical character recognition. We have built a desktop

application with python scripting language. This

application uses Multilayer Perceptron classifier to

classify. This application is capable of classifying

characters using both 1 hidden layer and 2 hidden layers.

This application allows to change the number of neurons

in the hidden layers.

Our application gives a demonstration of optical

character recognition. To develop our application, we

first need to import some necessary libraries such as

Tkinter and PIL. We have also created two modules

named FeatureExtraction and MLP. We also need to

import these two modules. Below there is a snapshot of

our application when we first run it.

To test our application, we first need to choose a

Bangla character image of resolution 40*40. We can do it

in two ways. We can do it by pressing the browse button

or clicking the menu File. After clicking the file menu,

we can see two option one is open which is used for

choosing a character image of resolution 40*40 and the

other option is exit by clicking exit we can exit from the

application. After choosing a character image the image

will appear in the choose character image section.

After choosing a character image for testing we have to

extract features from that selected image. We have done

it using the FeatureExtraction module. First, we convert

the color image into a grey scale image. Then we convert

the grey image into binary image. White pixels are

denoted as 1 and black pixels are denoted as 0. Then we

extract features from that binary image and save it in a

csv file.

After extracting feature from selected character image

now we want to train our model. For this we used MLP

module. We can specify the number of neurons in the

hidden layer by giving it as an input in the entry section

of our application. If we just enter the number of neurons

it will be considered that our neural network will have

only one hidden layer. Then after pressing the Train &

Test button our model will be trained and the model will

be tested using the csv file which we created by

extracting features from the selected image. After training

& testing the selected character image is predicted.

If we want to train & test our model using two hidden

layers in the neural network. Then after extracting feature

from selected character image we train our model using

MLP module. We can specify the number of neurons in

the hidden layer by giving it as an input in the entry

section of our application. If we enter the number of

neurons in each hidden layer by separating them using a

comma it will be considered that our neural network will

have two hidden layers. Then after pressing the Train &

Test button our model will be trained and the model will

be tested using the csv file which we created by

extracting features from the selected image. Then after

training & testing the selected character image is

predicted.

Fig. 11. Our GUI Application

Fig. 12. Our GUI Application

28 OCR for Printed Bangla Characters Using Neural Network

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 19-29

Fig. 13. Our GUI Application

VIDEO LINK OF THE APPLICATION : CLICK HERE

VI. CONCLUSION

In our research we have used different approaches to

build our dataset. When we use completely different font

for testing the accuracy decreases significantly. So, in

order to increase the accuracy, we need to apply some

preprocessing steps. We can apply some morphological

operation like thinning, erosion and closing etc. When

building our dataset we didn’t think of different lighting

conditions. So, in order to detect character images in

different lighting condition with higher accuracy we need

to apply histogram equalization on the character images

of our dataset. In order to increase accuracy some feature

engineering method can also be helpful.

Though we have tried to do our work but there are

some things left undone. We think some more features

can be implemented

(1) The accuracy for all the letters of Bangla is not

same. Recognizing some of the letters can be hard.

So, for complex letters some extra feature

extraction method is needed so that the letters can

be recognized with more accuracy.

(2) We also want to test our dataset with hand written

characters to check the accuracy for the hand

written character. Our dataset consists of printed

characters but we want to try if it can recognize

hand written characters.

(3) We want to combine hand written and printed

characters in a single dataset. We think a single

dataset for both hand written and printed

characters should be done so one dataset can be

used for both.

REFERENCES

[1] Raghuraj Singh1, C. S. Yadav2, Prabhat Verma3,Vibhash

Yadav4, Optical Character Recognition (OCR) for Printed

Devnagari Script Using Artificial Neural Network

International Journal of Computer Science

Communication,Vol. 1,

No. 1, January- June 2010

[2] Dr.Mrs.V.V.Patil 1, Rajharsh Vishnu Sanap 2 , Rohini

Babanrao Kharate,Optical Character Recognition Using

Artificial Neural Network,International Journal of

Engineering Research and General Science, Volume 3,

Issue 1, January-February, 2015

[3] V. Kalaichelvi,Ahammed Shamir Ali, Application of

Neural Networks in Character Recognition International

Journal of Computer Applications (0975 8887), Volume 52

No.12, August 2012

[4] Shyla Afroge, Boshir Ahmed, Firoz Mahmud, Optical

Character Recognition using Back Propagation Neural

Network 2nd International Conference on Electrical,

Computer Telecommunication Engineering (ICECTE), 8-

10 December 2016

[5] Md. Shahiduzzaman, Bangla Hand Written Character

Recognition International Journal of Science and Research

(IJSR), Index Copernicus Value (2013): 6.14, 2013

[6] Riasat Azim,Wahidur Rahman, M. Fazlul Karim, Bangla

Hand Written Character Recognition Using Support Vector

Machine. International Journal of Engineering Works, Vol.

3, Issue 6, PP. 36-46, June 2016

[7] Chirag I Patel, Ripal Patel, Palak Patel, Handwritten

Character Recognition using Neural Network. International

Journal of Scientific Engineering Research, Volume 2,

Issue 5,May-2011

[8] Adnan SHatil,Mumit Khan, Minimally Segmenting High

Performance Bangla Optical Character Recognition Using

Kohonen Network

[9] Md. Mahbub Alam and Dr. M. Abul Kashem, A Complete

Bangla OCR System for Printed Chracters COPYRIGHT

2010 JCIT, ISSN 2078-5828 (PRINT), ISSN 2218-5224

(ONLINE),VOLUME 01, ISSUE 01, 2010

[10] Abdur Rahim Md. Forkan, Shuvabrata Saha, Md.

Mahfuzur Rahman, Md. Abdus Sattar, RECOGNITION

OF CONJUNCTIVE BANGLA CHARACTERS BY

ARTIFICIAL NEURAL NETWORK International

Conference on Information and Communication

Technology, 7-9 March 2007

Authors’ Profiles

Mr. Asif Isthiaq has Bachelors degree in

Computer Science and Engineering from

Ahsanullah University of Science and

Technology. Currently he is working as a

Software Engineer in mPower Social.

Ms. Najoa Asreen Saif is a fresh graduate

and has completed Bachelors degree in

Computer Science and Engineering from

Ahsanullah University of Science and

Technology.

https://www.youtube.com/watch?v=z6wcsuY9doI

 OCR for Printed Bangla Characters Using Neural Network 29

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 2, 19-29

How to cite this paper: Asif Isthiaq, Najoa Asreen Saif, " OCR for Printed Bangla Characters Using Neural Network",

International Journal of Modern Education and Computer Science(IJMECS), Vol.12, No.2, pp. 19-29, 2020.DOI:

10.5815/ijmecs.2020.02.03

