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Abstract—Testing is one of the crucial activities of 

software development life cycle which ensures the 

delivery of high quality product. As software testing 

consumes significant amount of resources so, if, instead 

of all software modules, only those are thoroughly tested 

which are likely to be defective then a high quality 

software can be delivered at lower cost. Software defect 

prediction, which has now become an essential part of 

software testing, can achieve this goal. This research 

presents a framework for software defect prediction by 

using feature selection and ensemble learning techniques. 

The framework consists of four stages: 1) Dataset 

Selection, 2) Pre Processing, 3) Classification, and 4) 

Reflection of Results. The framework is implemented on 

six publically available Cleaned NASA MDP datasets 

and performance is reflected by using various measures 

including: F-measure, Accuracy, MCC and ROC. First 

the performance of all search methods within the 

framework on each dataset is compared with each other 

and the method with highest score in each performance 

measure is identified. Secondly, the results of proposed 

framework with all search methods are compared with 

the results of 10 well-known supervised classification 

techniques. The results reflect that the proposed 

framework outperformed all of other classification 

techniques.   

 

Index Terms—Feature Selection, Ensemble Classifier, 

Hybrid Classifier, Machine Learning Techniques, 

Software Defect Prediction  

 

I. INTRODUCTION 

Today, we are living in modern digital era where we 

need the software applications for most of our day to day 

and business activities. This shift did not occur within a 

day or week, instead the process started more than two 

decades before. The reliability of software applications is 

directly proportional to the quality of software, higher the 

quality, more reliable the softwares are. High quality 

softwares at lower cost has always been the main concern 

of customers and developers however defects are 

inevitable due to the large size and high complexity in 

required applications [11,12], [17,18,19]. Software 

testing is considered as one of the crucial activities of 

software development life cycle which ensures the 

delivery of high quality software [29]. It has also been 

reported that software testing consumes high amount of 

resources in development life cycle, therefore an effective 

and efficient mechanism is required to locate and fix the 

defects with lower cost. Software Defect Prediction (SDP) 

is an effective way to resolve this issue which ensures the 

high quality of software with limited amount of resources 

[11,12], [17,18], [20], [29]. With this approach the 

software modules which are predicted as defective can be 

tested thoroughly as compared to those modules which 

are predicted as non-defective [11,12], [29]. Machine 

learning techniques have been widely used for software 

defect prediction since last two decades. These 

techniques are categorized as 1) Supervised, 2) 

Unsupervised, and 3) Hybrid [1,2]. In supervised learning, 

the classes are known in advance. These learning 

techniques need the pre-classified data (training data) for 

training, during which classification rules are made and 

then these rules are used to classify the unseen data (test 

data). In unsupervised learning, classes are not-known, 

these techniques use particular algorithms to explore and 

identify the structure of data. The hybrid learning or semi 

supervised learning approach integrates the both: 

supervised and unsupervised techniques. The objective of 

this research is to contribute to improve the prediction of 

defect prone software modules. For this purpose, a 

framework is presented for software defect prediction by 

using the feature selection and ensemble learning 

techniques. The proposed framework consists of four 

stages: 1) Dataset Selection, 2) Data Preprocessing, 3) 

Classification, and 4) Reflection of Results. Six 

publically available NASA MDP Datasets are used for 

the implementation of proposed framework. Pre-

processing stage of the proposed framework consists of 

three activities: Normalization, Feature Selection and 

Class Balancing. All of these activities aim to improve 

the structure of data so that higher results can be achieved 

from classification process. Classification stage uses 

‘Stacking’ technique to implement the ensemble learning. 

Performance of the proposed framework is analyzed by 

using various measures including: F-measure, Accuracy, 

MCC and ROC. The results of the proposed framework 
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are evaluated in two ways: first, the performance of 

search methods on each dataset is evaluated within the 

framework by comparing with each other in all accuracy 

measures. Secondly, all the results of proposed 

framework (including all search methods) are compared 

with the results of 10 widely used base classifiers from a 

published research. The classifiers include: “Naïve Bayes 

(NB), Multi-Layer Perceptron (MLP), Radial Basis 

Function (RBF), Support Vector Machine (SVM), K 

Nearest Neighbor (KNN), kStar (K*), One Rule (OneR), 

PART, Decision Tree (DT), and Random Forest (RF)”. It 

is observed that the proposed framework performed well 

as compared to all of the base classifiers.   

 

II. RELATED WORK 

Many researchers have used machine learning 

techniques to solve the binary classification problems 

such as Sentiment Analysis [1,2,3,4,5,6], Rainfall 

Prediction [7,8], Network Intrusion Detection [9,10], and 

Software Defect Prediction [11,12,13,14,15,16]. Some of 

the studies related to software defect prediction are 

discussed here. Researchers in [11] performed a 

performance analysis by using various machine learning 

techniques on software defect prediction. The experiment 

is performed on twelve cleaned NASA datasets. The 

classification techniques include: “Naïve Bayes (NB), 

Multi-Layer Perceptron (MLP). Radial Basis Function 

(RBF), Support Vector Machine (SVM), K Nearest 

Neighbor (KNN), kStar (K*), One Rule (OneR), PART, 

Decision Tree (DT), and Random Forest (RF)”. The 

performance is analyzed by using Precision, Recall, F-

Measure, Accuracy, MCC, and ROC Area. Researchers 

in [12] proposed a feature selection based ensemble 

classification framework. The framework is implemented 

in two dimensions, one with feature selection and second 

without feature selection. The performance is analyzed by 

using Precision, Recall, F-measure, Accuracy, MCC and 

ROC. For experiment, 12 cleaned publically available 

NASA datasets are used. The results of proposed 

framework are compared with other widely used 

classification techniques including: “Naïve Bayes (NB), 

Multi-Layer Perceptron (MLP),  Radial Basis Function 

(RBF), Support Vector Machine  (SVM), K Nearest 

Neighbor (KNN), kStar (K*), One  Rule (OneR), PART, 

Decision Tree (DT), and Random  Forest (RF)”. The 

framework outperformed other classification techniques 

in some of the datasets however it also has been noted 

that the class imbalance issue could not be fully resolved. 

In [13], the researchers used six classification techniques 

to predict the software defects. The classifications 

techniques include: Discriminant Analysis, Principal 

Component Analysis (PCA), Logistic Regression (LR), 

Logical Classification, Holographic Networks, and 

Layered Neural Networks. Back-propagation technique 

was used in ANN for training. Performance was 

evaluated by various measures including: Verification 

Cost, Predictive Validity, Achieved Quality and 

Misclassification Rate. The results reflected that, no  

classification technique performed 100 % accurately 

(without the error). In [14], the researchers used SVM to 

predict the software bugs in NASA datasets. The datasets 

include:   PC1, CM1, KC1 and KC3. The performance of 

SVM is compared with other techniques such as: Logistic   

Regression (LR), K-Nearest Neighbors (KNN), Decision 

Trees, Multilayer Perceptron (MLP), Bayesian Belief 

Networks (BBN), Radial  Basis  Function  (RBF),  

Random  Forest (RF),  and  Naïve  Bayes,  (NB).  The 

results reflected that SVM out performed some of the 

others classification techniques. In [15], the researchers 

discussed about the significance of metric selection for 

software bug prediction. They discussed that some 

metrics are more important than others while predicting 

the software defects. They used ANN model to identify 

the significant metrics. The selected metrics were then 

used by the researchers to predict the software defects 

through another ANN model.  Performance of the 

proposed method was compared with Gaussian kernel 

SVM and JM1 dataset from NASA MDP repository was 

used for experiment. The results reflected that SVM 

performed better than ANN in binary defect classification. 

In [16], the researchers presented an integrated method 

which consists of Hybrid Genetic algorithm and Deep 

Neural Network. The Hybrid Genetic algorithm selects 

the optimum features and Deep Neural Network performs 

the prediction by classifying the modules as defective and 

non-defective. The experiments were performed on 

various datasets from PROMISE repository. The results 

reflected that the proposed approach showed higher 

performance as compared to other techniques.  

 

III. MATERIALS AND METHODS 

This paper presents a feature selection based ensemble 

classification framework (Fig. 1) for software defect 

prediction. The framework consists of four stages: 1) 

Dataset selection, 2) Data Preprocessing, 3) Classification, 

and 4) Results. The proposed framework is implemented 

in WEKA as it is one of the widely used data mining 

tools.  

To analyze the performance of proposed framework, 

six benchmark cleaned NASA MDP datasets are used 

including KC1, KC3, MC2, MW1, PC4 and PC5 (Table 

1). These datasets reflect the historical data of NASA 

software systems. Each dataset consists of several 

features (one dependent feature and many independent 

feature). The independent features in each dataset are 

shown in Table 2. The dependent feature is the one which 

is going to be predicted on the basis of independent 

features. Dependent feature/attribute is also known as 

target class and consists of one value from two of the 

following: ‘Y’ or ‘N’. ‘Y’ reflects that the particular 

instance (software module) is defective and ‘N’ reflects 

that it is non-defective. Two cleaned version of NASA 

datasets are provided by [22]. DS’ and DS’’. DS’ version 

includes duplicate and inconsistent instances whereas 

DS’’ does not include duplicate and inconsistent 

instances. We have used D’’ version, taken from [23]. 
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This cleaned version is already used by [11,12], [24,25, 

26].  

 

 

Fig. 1. Proposed Framework 

Table 1. Nasa Cleaned Dataset D’’ [22] 

Datasets Attributes  Modules Defective 
Non-

Defective 

Defective 

(%) 

KC1 22 1162 294 868 25.3 

KC3 40 194 36 158 18.5 

MC2 40 124 44 80 35.4 

MW1 38 250 25 225 10 

PC4 38 1270 176 1094 13.8 

PC5 39 1694 458 1236 27.0 

Table 2. Features of D’’ Datasets 

 

N

O 

Attributes KC1 KC3 MC2 MW1 PC4 PC5 

1.  LOC_BLANK       

2.  
BRANCH_CO

UNT 
      

3.  CALL_PAIRS 
 

     

4.  

LOC_CODE_

AND_COMM

ENT 

      

5.  
LOC_COMM

ENTS 
      

6.  
CONDITION_

COUNT  
     

7.  

CYCLOMATI

C_COMPLEX

ITY 

      

8.  
CYCLOMATI

C_DENSITY  
     

9.  
DECISION_C

OUNT  
     

10.  
DECISION_D

ENSITY  
    

 

11.  
DESIGN_CO

MPLEXITY 
      

12.  
DESIGN_DE

NSITY  
     

13.  
EDGE_COUN

T  
     

14.  

ESSENTIAL_

COMPLEXIT

Y 

      

15.  
ESSENTIAL_

DENSITY  
     

16.  
LOC_EXECU

TABLE 
      

17.  
PARAMETER

_COUNT  
     

18.  

GLOBAL_DA

TA_COMPLE

XITY 
 

  
  

 

19.  
GLOBAL_DA

TA_DENSITY  
  

  
 

20.  
HALSTEAD_

CONTENT 
      

21.  
HALSTEAD_

DIFFICULTY 
      

22.  
HALSTEAD_

EFFORT 
      

23.  
HALSTEAD_

ERROR_EST 
      

24.  
HALSTEAD_

LENGTH 
      

25.  
HALSTEAD_

LEVEL 
      

26.  
HALSTEAD_

PROG_TIME 
      

27.  
HALSTEAD_

VOLUME 
      

28.  

MAINTENAN

CE_SEVERIT

Y 
 

     

29.  

MODIFIED_C

ONDITION_C

OUNT 
 

     

30.  

MULTIPLE_C

ONDITION_C

OUNT 
 

     

31.  
NODE_COUN

T  
     

32.  

NORMALIZE

D_CYLOMA

TIC_COMPL

EXITY 

 
     

33.  
NUM_OPERA

NDS 
      

34.  
NUM_OPERA

TORS 
      

35.  

NUM_UNIQU

E_OPERAND

S 

      

36.  

NUM_UNIQU

E_OPERATO

RS 

      

37.  
NUMBER_OF

_LINES  
     

38.  
PERCENT_C

OMMENTS  
     

39.  LOC_TOTAL       

 

Pre-processing is the second stage of proposed 

framework and further consists of three activities, 1) 

Normalization, 2) Feature Selection, and 3) Class 

Balancing. The process of normalization aims to bring the 

values of complete dataset into the range of 0 to 1 for 

effective classification results. For feature selection, we 

used the wrapper approach with Artificial Neural 

Network (MLP) as feature subset evaluator and for 

training, full datasets are used. Six search methods are 
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used including: Best First (BF), Greedy Stepwise (GS), 

Genetic Algorithm/Search (GA), Particle Swarm 

Optimization (PSO), Rank Search (RS) and Linear 

Forward Selection (LFS). For each of the used dataset, 

we got 6 subsets except the case with MW1 with GS 

which did not generate any subset (Table 3). To handle 

the class imbalance issue [27,28] resampling is performed 

on all the datasets by using the ‘Resample package’ 

provided by Weka. We have chosen the resampling with 

replacement technique in which a random subsample of 

dataset is produced where each instance in dataset has 

equal chance of being selected and an instance can be 

selected multiple times. This is basically an oversampling 

technique for minority class. However, in Weka 

implementation, it samples majority class as well.  

Table 3. Feature Subsets 

FS KC1 KC3 MC2 MW1 PC4 PC5 

BF 

1,4,5,2

2,24,3

6 

4,5,7 9,21,38 
3,6,28,

30,32 

2,3,4,5,9,

10,16, 

23,25,27,

35,37 

2,4,7,8,9,14

,17,18,29, 

30, 32, 36 

   

GS 
1,4,16,

36 
4,5,7 21 

No 

Subset 

3,4,10,34,

37 

 

7,18,36 

GA 

1,4,5,1

6,21,2

6,35,3

6,39 

4,15,

16,25

,34,3

9 

1,11,18,

19,20,2

4,26,27,

33,34 

13,23,2

5,27,30

,33,39 

1,3,4,5,10

,11, 

16,20,21,

22,24, 

27,28,29,

30, 32, 34 

3,4,9,11,14,

19,20,31,34

,35 

PSO 

1,2,4,7

,14,16,

21,22,

27,33,

35,39 

4,21 
9,20,21,

24,38 

2,6,14,

16,22,2

5,27,30

,31 

2,4,10,14,

16,27,30,

34,37,39 

3,4,13,14 

RS 

2,7,11,

20,21,

22,23,

24,25,

26,27,

33,34,

35, 39 

2,4 

1,2,6,7,

13,14,1

5,18,21,

22,25,2

6,29,30,

31 

1,2,6,7,

9,11,13

,16,23,

24,27,2

9,30,31

,33,34,

35,37,3

9 

1,4,5,6,8,

9,10,14,1

6,29,30,3

2,37,38,3

9 

2,6,7,9,11,1

3,14,16,21,

22,23,24,25

,26,27,29,3

0,31,33,34,

36,37,38,39 

LFS 

1,4,5,2

2,24,3

6 

4,5,1

4 
9,21,38 

1,17,21

,26,31 

3,4,5,10,2

3,25,27,3

7 

2,4,7,8,9,14

,17,18,29,3

0,32,36 

 

For classification, we have used a well-known 

ensemble learning technique, “Stacking”, along with 

MLP as Meta classifier. Moreover the base classifiers 

include: 1) Decision Tree (DT), 2) Random Forest (RF), 

3) Support Vector Machine (SVM), 4) K Nearest 

Neighbor (kNN) and 5) Bayes Net (BN). Parameter 

tuning is also performed using trial and error approach. 

For MLP, we used the learning rate of 0.1, momentum 

0.9 and epochs 1000. For DT, confidence factor is set to 

0.1. For SVM, the RBF kernel is used along with Gamma 

equal to 10. Default parameters are used for the rest of 

properties. Moreover, 80 % data is used for training 

purpose and remaining 20 % is used for testing. 

 

IV. RESULTS AND DISCUSSION 

The results of proposed framework are evaluated by 

using various measures such as: F-measure, Accuracy, 

MCC and ROC. These measures are calculated by using 

the parameters of confusion matrix (Fig. 2).which are 

given below [11,12],[29]:  

 

 
Fig. 2. Confusion Matrix. 

True Positive (TP): “Instances which are actually 

positive and also classified as positive”. 

False Positive (FP): “Instances which are actually 

negative but classified as positive”. 

False Negative (FN): “Instances which are actually 

positive but classified as negative”. 

True Negative (TN): “Instances which are actually 

negative and also classified as negative”. 

To calculate the F-measure, we have to calculate the 

Precision and Recall first as F-measure is the average of 

these two measures. The calculation formula of each of 

the used measure is given below: 

 

Precision
( )

TP

TP FP



                          (1) 

 

Re
( )

TP
call

TP FN



                        (2) 

 

Precision * Recall * 2
F-measure

(Precision + Recall)
                 (3) 

 

TP TN
Accuracy

TP TN FP FN




  
         (4) 

 

1

2

r rTP FP
AUC

 
                        (5) 

 

( )( )( )( )

TN TP FN FP
MCC

FP TP FN TP TN FP TN FN

  


   
  (6) 

 

The proposed framework is implemented on six 

cleaned NASA MDP Datasets (D’’) by using six widely 

used search methods along with MLP as feature subset 

evaluator. The search methods include: Best First (BF), 

Greedy Stepwise (GS), Genetic Algorithm/Search (GA), 

Particle Swarm Optimization (PSO), Rank Search (RS) 

and Linear Forward Selection (LFS). The obtained results 

are discussed in the tables from Table 4 to Table 9. 

Performance measures including: F-measure, Accuracy, 

MCC and ROC for the defective class (‘Y’) with each 

search method are discussed in these tables. Highest 

scores are highlighted in bold for easy identification. 
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Table 4. KC1 Results 

Search 

Method 
F-Measure MCC ROC Accuracy 

BF 0.617 0.578 0.882 86.6379 

GS 0.614 0.54 0.784 85.3448 

GA 0.72 0.644 0.83 87.931 

PSO 0.702 0.61 0.862 85.3448 

RS 0.645 0.564 0.853 85.7759 

LFS 0.617 0.578 0.882 86.6379 

 

Results of KC1 datasets are shown in Table 4. It can be 

seen that, in F-Measure, MCC, and Accuracy: GA 

performed better whereas in ROC, BF and LFS both 

performed better. 

Table 5. KC3 Results 

Search 

Method 
F-Measure MCC ROC Accuracy 

BF 0.4 0.312 0.876 84.6154 

GS 0.4 0.312 0.876  84.6154 

GA 0.727 0.687 0.941 92.3077 

PSO 0.5 0.465 0.832 89.7436 

RS 0.316 0.193 0.638 66.6667 

LFS 0.5 0.465 0.776 89.7436 

 

The results of KC3 dataset is reflected in Table 5. The 

results shows that GA performed better in all the 

measures.  

Table 6. MC2 Results 

Search 

Method 
F-Measure MCC ROC Accuracy 

BF 0.762 0.59 0.773 80 

GS 0.7 0.5 0.65 76 

GA 0.667 0.61 0.763 80 

PSO 0.842 0.75 0.84 88 

RS 0.889 0.84 0.88 92 

LFS 0.762 0.59 0.773 80 

 

Table 6 reflects the results of MC2 datasets. It can be 

seen that RS performed better in all of the performance 

measures.  

Table 7. MW1 Results 

Search 

Method 
F-Measure MCC ROC Accuracy 

BF 0.667 0.645 0.688 96 

GS -  - - - 

GA 0.5 0.477 0.957 92 

 

PSO 0.571 0.546 0.652 94 

RS 0.667 0.645 0.965 96 

LFS 0.667 0.645 0.716 96 

 

The results of MW1 dataset is shown in Table 7. It can 

be seen that RS outperformed in all four measures 

whereas BF and LFS performed better in F-measure, 

MCC and Accuracy. Moreover, no result was mentioned 

with GS as subset no was generated from this 

combination.    

Table 8. PC4 Results 

Search 

Method 
F-Measure MCC ROC Accuracy 

BF 0.702 0.671 0.955 93.3071 

GS 0.8 0.79 0.937 95.6693 

GA 0.793 0.772 0.97 95.2756 

PSO 0.588 0.569 0.933 91.7323 

RS 0.71 0.67 0.934 92.9134 

LFS 0.774 0.743 0.937 94.4882 

 

Table 8 shows the results of PC4 datasets. It can be 

seen that GS outperformed in three measures: F-measure, 

MCC and Accuracy whereas GA performed better in 

ROC.   

Table 9. 1PC5 Results 

Search 

Method 
F-Measure MCC ROC Accuracy 

BF 0.76 0.674 0.922 87.3156 

GS 0.698 0.602 0.827 84.9558 

GA 0.811 0.747 0.913 90.2655 

PSO 0.709 0.608 0.863 84.9558 

RS 0.778 0.698 0.936 88.2006 

LFS 0.76 0.674 0.922 87.3156 

 

Results of PC5 dataset is shown in Table 9 which 

reflect that GA performed better in terms of F-measure, 

MCC and Accuracy whereas RS outperformed other 

search methods in ROC. In this study, the results of 

proposed framework (including all search methods) in 

each dataset are compared with the results of a published 

paper [11], in which many machine learning techniques 

are used for software defect prediction on NASA MDP 

cleaned datasets (D’’). The used machine learning 

techniques include: Naïve Bayes (NB), Multi-Layer 

Perceptron (MLP). Radial Basis Function (RBF), Support 

Vector Machine (SVM), K Nearest Neighbor (KNN), 

kStar (K*), One Rule (OneR), PART, Decision Tree (DT), 

and Random Forest (RF). Table 10 presents the highest 

scores of base classifiers from [11] on the same datasets 

which are used in this research. The name of the base 

classifier is also mentioned along with the score.  
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Table 10. Performance of Base Classifiers [11] 

P-

Measure 
KC1 KC3 MC2 MW1 PC4 PC5 

F-measure 
0.454 

(RF) 

0.421 

(NB) 

0.667 

(PART) 

0.632 

(MLP) 

0.583 

(DT) 

0.531 

(DT) 

MCC 
0.347 

(RBF) 

0.309 

(NB) 

0.444 

(NB) 

0.589 

(MLP) 

0.516 

(RF) 

0.361 

(DT) 

ROC 
0.751 

(RF) 

0.807 

(RF) 

0.795 

(NB) 

0.843 

(MLP) 

0.945 

(RF) 

0.805 

(RF) 

Accuracy 

78.796

6 

(RBF) 

82.758

6 

(MLP, 

SVM, 

OneR) 

78.3784 

(PART) 

90.666

7 

(MLP) 

90.2887 

(RF) 

75.9843 

(RF) 

 

While comparing the results of proposed framework on 

KC1 Dataset (Table 4) with the highest scores of base 

classifiers (Table 10) it has been observed that all of the 

used research methods in proposed framework 

outperformed the highest scores of base classifiers. As the 

Table 10 reflects only the highest scores from 10 base 

classifiers so obviously the proposed framework 

outperformed all of them (on KC1 dataset).  

After comparing the results of KC3 dataset (Table 5) 

with Table [10], it can be seen that the proposed 

framework with GA, PSO, and LFS outperformed in F-

Measure however in MCC, and Accuracy all search 

methods performed well except RS. In ROC, except RS 

and LF remaining four methods performed well. 

While comparing the results of MC2 datasets from 

Table 6 with Table 10, it can be seen that the proposed 

framework with all search methods outperformed in F-

Measure except GA which showed equal score to the 

PART (Table 10). In MCC, all the search methods 

performed well however, In ROC, PSO and RS 

performed well and finally in Accuracy, Except GS, all 

search methods performed well. 

When the results of MW1 dataset (Table 7) are 

compared with Table 10, it is observed that the proposed 

framework with BF, RS, and LFS performed better in F-

Measure and MCC, Moreover, only RS and GA 

performed better in ROC whereas all search methods 

performed better in Accuracy.  

PC4 results are shown in Table 8, which reflect that in 

comparison of Table 10, the proposed framework 

performed well with all search methods in F-Measure, 

MCC and Accuracy However, in ROC, BF and GA 

performed better. 

The results of PC5 dataset are shown in Table 9. It can 

be seen that proposed framework outperformed with all 

search methods when compared with highest scores of 

base classifiers (Table 10).  

It has been observed from the results of Table 4 to 

Table 9 that the overall performance of proposed 

framework with either one or more than one search 

methods is much better than the base classifiers. 

Moreover not a single search method outperformed the 

base classifiers in all datasets, furthermore the correlation 

among the used accuracy measures also need to be 

explored as most of the methods performed in one or two 

measures and in remaining measures other methods 

performed well.  

 

V. CONCLUSION  

Software defect prediction is considered as one of the 

widely focused research areas since the last two decades 

due to its promise to provide a high quality software at 

lower cost. This paper presented a feature selection based 

ensemble classification framework for effective software 

defect prediction. The framework consists of four stages: 

including: 1) Dataset Selection, 2) Pre Processing, 3) 

Classification, and 4) Reflection of Results. 

Preprocessing stage further consists of three important 

activities including: Normalization, Feature Selection and 

Class Balancing. For feature selection, Wrapper approach 

is used in which MLP is selected as Feature Subset 

Evaluator along with six search methods including: BF, 

GS, GA, PSO, RS and LFS. The proposed framework is 

implemented on six Cleaned NASA MDP datasets and 

the performance is analyzed in terms of F-measure, 

Accuracy, MCC and ROC. Performance evaluation is 

performed in two dimensions: at first, the scores of all 

search methods within the framework are compared with 

each other and secondly, the results of proposed 

framework with all search methods are compared with 

the results of 10 well-known machine learning classifiers 

from a published paper. The results reflected the higher 

performance of proposed framework as compared to all 

classifiers. As not a single search method outperformed 

the base classifiers in all datasets so it is suggested for 

future that for feature selection a hybrid approach should 

be used or developed which can improve the accuracy.   
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