
I.J. Modern Education and Computer Science, 2019, 12, 14-20
Published Online December 2019 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2019.12.02

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 12, 14-20

A Framework for Software Defect Prediction

Using Feature Selection and Ensemble Learning

Techniques

Faseeha Matloob, Shabib Aftab, Ahmed Iqbal

Department of Computer Science, Virtual University of Pakistan

Email: faseeham7@gmail.com, shabib.aftab@gmail.com, ahmedeqbal@gmail.com

Received: 14 October 2019; Accepted: 30 October 2019; Published: 08 December 2019

Abstract—Testing is one of the crucial activities of

software development life cycle which ensures the

delivery of high quality product. As software testing

consumes significant amount of resources so, if, instead

of all software modules, only those are thoroughly tested

which are likely to be defective then a high quality

software can be delivered at lower cost. Software defect

prediction, which has now become an essential part of

software testing, can achieve this goal. This research

presents a framework for software defect prediction by

using feature selection and ensemble learning techniques.

The framework consists of four stages: 1) Dataset

Selection, 2) Pre Processing, 3) Classification, and 4)

Reflection of Results. The framework is implemented on

six publically available Cleaned NASA MDP datasets

and performance is reflected by using various measures

including: F-measure, Accuracy, MCC and ROC. First

the performance of all search methods within the

framework on each dataset is compared with each other

and the method with highest score in each performance

measure is identified. Secondly, the results of proposed

framework with all search methods are compared with

the results of 10 well-known supervised classification

techniques. The results reflect that the proposed

framework outperformed all of other classification

techniques.

Index Terms—Feature Selection, Ensemble Classifier,

Hybrid Classifier, Machine Learning Techniques,

Software Defect Prediction

I. INTRODUCTION

Today, we are living in modern digital era where we

need the software applications for most of our day to day

and business activities. This shift did not occur within a

day or week, instead the process started more than two

decades before. The reliability of software applications is

directly proportional to the quality of software, higher the

quality, more reliable the softwares are. High quality

softwares at lower cost has always been the main concern

of customers and developers however defects are

inevitable due to the large size and high complexity in

required applications [11,12], [17,18,19]. Software

testing is considered as one of the crucial activities of

software development life cycle which ensures the

delivery of high quality software [29]. It has also been

reported that software testing consumes high amount of

resources in development life cycle, therefore an effective

and efficient mechanism is required to locate and fix the

defects with lower cost. Software Defect Prediction (SDP)

is an effective way to resolve this issue which ensures the

high quality of software with limited amount of resources

[11,12], [17,18], [20], [29]. With this approach the

software modules which are predicted as defective can be

tested thoroughly as compared to those modules which

are predicted as non-defective [11,12], [29]. Machine

learning techniques have been widely used for software

defect prediction since last two decades. These

techniques are categorized as 1) Supervised, 2)

Unsupervised, and 3) Hybrid [1,2]. In supervised learning,

the classes are known in advance. These learning

techniques need the pre-classified data (training data) for

training, during which classification rules are made and

then these rules are used to classify the unseen data (test

data). In unsupervised learning, classes are not-known,

these techniques use particular algorithms to explore and

identify the structure of data. The hybrid learning or semi

supervised learning approach integrates the both:

supervised and unsupervised techniques. The objective of

this research is to contribute to improve the prediction of

defect prone software modules. For this purpose, a

framework is presented for software defect prediction by

using the feature selection and ensemble learning

techniques. The proposed framework consists of four

stages: 1) Dataset Selection, 2) Data Preprocessing, 3)

Classification, and 4) Reflection of Results. Six

publically available NASA MDP Datasets are used for

the implementation of proposed framework. Pre-

processing stage of the proposed framework consists of

three activities: Normalization, Feature Selection and

Class Balancing. All of these activities aim to improve

the structure of data so that higher results can be achieved

from classification process. Classification stage uses

‘Stacking’ technique to implement the ensemble learning.

Performance of the proposed framework is analyzed by

using various measures including: F-measure, Accuracy,

MCC and ROC. The results of the proposed framework

mailto:shabib.aftab@gmail.com

 A Framework for Software Defect Prediction Using Feature Selection and Ensemble Learning Techniques 15

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 12, 14-20

are evaluated in two ways: first, the performance of

search methods on each dataset is evaluated within the

framework by comparing with each other in all accuracy

measures. Secondly, all the results of proposed

framework (including all search methods) are compared

with the results of 10 widely used base classifiers from a

published research. The classifiers include: “Naïve Bayes

(NB), Multi-Layer Perceptron (MLP), Radial Basis

Function (RBF), Support Vector Machine (SVM), K

Nearest Neighbor (KNN), kStar (K*), One Rule (OneR),

PART, Decision Tree (DT), and Random Forest (RF)”. It

is observed that the proposed framework performed well

as compared to all of the base classifiers.

II. RELATED WORK

Many researchers have used machine learning

techniques to solve the binary classification problems

such as Sentiment Analysis [1,2,3,4,5,6], Rainfall

Prediction [7,8], Network Intrusion Detection [9,10], and

Software Defect Prediction [11,12,13,14,15,16]. Some of

the studies related to software defect prediction are

discussed here. Researchers in [11] performed a

performance analysis by using various machine learning

techniques on software defect prediction. The experiment

is performed on twelve cleaned NASA datasets. The

classification techniques include: “Naïve Bayes (NB),

Multi-Layer Perceptron (MLP). Radial Basis Function

(RBF), Support Vector Machine (SVM), K Nearest

Neighbor (KNN), kStar (K*), One Rule (OneR), PART,

Decision Tree (DT), and Random Forest (RF)”. The

performance is analyzed by using Precision, Recall, F-

Measure, Accuracy, MCC, and ROC Area. Researchers

in [12] proposed a feature selection based ensemble

classification framework. The framework is implemented

in two dimensions, one with feature selection and second

without feature selection. The performance is analyzed by

using Precision, Recall, F-measure, Accuracy, MCC and

ROC. For experiment, 12 cleaned publically available

NASA datasets are used. The results of proposed

framework are compared with other widely used

classification techniques including: “Naïve Bayes (NB),

Multi-Layer Perceptron (MLP), Radial Basis Function

(RBF), Support Vector Machine (SVM), K Nearest

Neighbor (KNN), kStar (K*), One Rule (OneR), PART,

Decision Tree (DT), and Random Forest (RF)”. The

framework outperformed other classification techniques

in some of the datasets however it also has been noted

that the class imbalance issue could not be fully resolved.

In [13], the researchers used six classification techniques

to predict the software defects. The classifications

techniques include: Discriminant Analysis, Principal

Component Analysis (PCA), Logistic Regression (LR),

Logical Classification, Holographic Networks, and

Layered Neural Networks. Back-propagation technique

was used in ANN for training. Performance was

evaluated by various measures including: Verification

Cost, Predictive Validity, Achieved Quality and

Misclassification Rate. The results reflected that, no

classification technique performed 100 % accurately

(without the error). In [14], the researchers used SVM to

predict the software bugs in NASA datasets. The datasets

include: PC1, CM1, KC1 and KC3. The performance of

SVM is compared with other techniques such as: Logistic

Regression (LR), K-Nearest Neighbors (KNN), Decision

Trees, Multilayer Perceptron (MLP), Bayesian Belief

Networks (BBN), Radial Basis Function (RBF),

Random Forest (RF), and Naïve Bayes, (NB). The

results reflected that SVM out performed some of the

others classification techniques. In [15], the researchers

discussed about the significance of metric selection for

software bug prediction. They discussed that some

metrics are more important than others while predicting

the software defects. They used ANN model to identify

the significant metrics. The selected metrics were then

used by the researchers to predict the software defects

through another ANN model. Performance of the

proposed method was compared with Gaussian kernel

SVM and JM1 dataset from NASA MDP repository was

used for experiment. The results reflected that SVM

performed better than ANN in binary defect classification.

In [16], the researchers presented an integrated method

which consists of Hybrid Genetic algorithm and Deep

Neural Network. The Hybrid Genetic algorithm selects

the optimum features and Deep Neural Network performs

the prediction by classifying the modules as defective and

non-defective. The experiments were performed on

various datasets from PROMISE repository. The results

reflected that the proposed approach showed higher

performance as compared to other techniques.

III. MATERIALS AND METHODS

This paper presents a feature selection based ensemble

classification framework (Fig. 1) for software defect

prediction. The framework consists of four stages: 1)

Dataset selection, 2) Data Preprocessing, 3) Classification,

and 4) Results. The proposed framework is implemented

in WEKA as it is one of the widely used data mining

tools.

To analyze the performance of proposed framework,

six benchmark cleaned NASA MDP datasets are used

including KC1, KC3, MC2, MW1, PC4 and PC5 (Table

1). These datasets reflect the historical data of NASA

software systems. Each dataset consists of several

features (one dependent feature and many independent

feature). The independent features in each dataset are

shown in Table 2. The dependent feature is the one which

is going to be predicted on the basis of independent

features. Dependent feature/attribute is also known as

target class and consists of one value from two of the

following: ‘Y’ or ‘N’. ‘Y’ reflects that the particular

instance (software module) is defective and ‘N’ reflects

that it is non-defective. Two cleaned version of NASA

datasets are provided by [22]. DS’ and DS’’. DS’ version

includes duplicate and inconsistent instances whereas

DS’’ does not include duplicate and inconsistent

instances. We have used D’’ version, taken from [23].

16 A Framework for Software Defect Prediction Using Feature Selection and Ensemble Learning Techniques

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 12, 14-20

This cleaned version is already used by [11,12], [24,25,

26].

Fig. 1. Proposed Framework

Table 1. Nasa Cleaned Dataset D’’ [22]

Datasets Attributes Modules Defective
Non-

Defective

Defective

(%)

KC1 22 1162 294 868 25.3

KC3 40 194 36 158 18.5

MC2 40 124 44 80 35.4

MW1 38 250 25 225 10

PC4 38 1270 176 1094 13.8

PC5 39 1694 458 1236 27.0

Table 2. Features of D’’ Datasets

N

O

Attributes KC1 KC3 MC2 MW1 PC4 PC5

1. LOC_BLANK

2.
BRANCH_CO

UNT

3. CALL_PAIRS

4.

LOC_CODE_

AND_COMM

ENT

5.
LOC_COMM

ENTS

6.
CONDITION_

COUNT

7.

CYCLOMATI

C_COMPLEX

ITY

8.
CYCLOMATI

C_DENSITY

9.
DECISION_C

OUNT

10.
DECISION_D

ENSITY

11.
DESIGN_CO

MPLEXITY

12.
DESIGN_DE

NSITY

13.
EDGE_COUN

T

14.

ESSENTIAL_

COMPLEXIT

Y

15.
ESSENTIAL_

DENSITY

16.
LOC_EXECU

TABLE

17.
PARAMETER

_COUNT

18.

GLOBAL_DA

TA_COMPLE

XITY

19.
GLOBAL_DA

TA_DENSITY

20.
HALSTEAD_

CONTENT

21.
HALSTEAD_

DIFFICULTY

22.
HALSTEAD_

EFFORT

23.
HALSTEAD_

ERROR_EST

24.
HALSTEAD_

LENGTH

25.
HALSTEAD_

LEVEL

26.
HALSTEAD_

PROG_TIME

27.
HALSTEAD_

VOLUME

28.

MAINTENAN

CE_SEVERIT

Y

29.

MODIFIED_C

ONDITION_C

OUNT

30.

MULTIPLE_C

ONDITION_C

OUNT

31.
NODE_COUN

T

32.

NORMALIZE

D_CYLOMA

TIC_COMPL

EXITY

33.
NUM_OPERA

NDS

34.
NUM_OPERA

TORS

35.

NUM_UNIQU

E_OPERAND

S

36.

NUM_UNIQU

E_OPERATO

RS

37.
NUMBER_OF

_LINES

38.
PERCENT_C

OMMENTS

39. LOC_TOTAL

Pre-processing is the second stage of proposed

framework and further consists of three activities, 1)

Normalization, 2) Feature Selection, and 3) Class

Balancing. The process of normalization aims to bring the

values of complete dataset into the range of 0 to 1 for

effective classification results. For feature selection, we

used the wrapper approach with Artificial Neural

Network (MLP) as feature subset evaluator and for

training, full datasets are used. Six search methods are

 A Framework for Software Defect Prediction Using Feature Selection and Ensemble Learning Techniques 17

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 12, 14-20

used including: Best First (BF), Greedy Stepwise (GS),

Genetic Algorithm/Search (GA), Particle Swarm

Optimization (PSO), Rank Search (RS) and Linear

Forward Selection (LFS). For each of the used dataset,

we got 6 subsets except the case with MW1 with GS

which did not generate any subset (Table 3). To handle

the class imbalance issue [27,28] resampling is performed

on all the datasets by using the ‘Resample package’

provided by Weka. We have chosen the resampling with

replacement technique in which a random subsample of

dataset is produced where each instance in dataset has

equal chance of being selected and an instance can be

selected multiple times. This is basically an oversampling

technique for minority class. However, in Weka

implementation, it samples majority class as well.

Table 3. Feature Subsets

FS KC1 KC3 MC2 MW1 PC4 PC5

BF

1,4,5,2

2,24,3

6

4,5,7 9,21,38
3,6,28,

30,32

2,3,4,5,9,

10,16,

23,25,27,

35,37

2,4,7,8,9,14

,17,18,29,

30, 32, 36

GS
1,4,16,

36
4,5,7 21

No

Subset

3,4,10,34,

37

7,18,36

GA

1,4,5,1

6,21,2

6,35,3

6,39

4,15,

16,25

,34,3

9

1,11,18,

19,20,2

4,26,27,

33,34

13,23,2

5,27,30

,33,39

1,3,4,5,10

,11,

16,20,21,

22,24,

27,28,29,

30, 32, 34

3,4,9,11,14,

19,20,31,34

,35

PSO

1,2,4,7

,14,16,

21,22,

27,33,

35,39

4,21
9,20,21,

24,38

2,6,14,

16,22,2

5,27,30

,31

2,4,10,14,

16,27,30,

34,37,39

3,4,13,14

RS

2,7,11,

20,21,

22,23,

24,25,

26,27,

33,34,

35, 39

2,4

1,2,6,7,

13,14,1

5,18,21,

22,25,2

6,29,30,

31

1,2,6,7,

9,11,13

,16,23,

24,27,2

9,30,31

,33,34,

35,37,3

9

1,4,5,6,8,

9,10,14,1

6,29,30,3

2,37,38,3

9

2,6,7,9,11,1

3,14,16,21,

22,23,24,25

,26,27,29,3

0,31,33,34,

36,37,38,39

LFS

1,4,5,2

2,24,3

6

4,5,1

4
9,21,38

1,17,21

,26,31

3,4,5,10,2

3,25,27,3

7

2,4,7,8,9,14

,17,18,29,3

0,32,36

For classification, we have used a well-known

ensemble learning technique, “Stacking”, along with

MLP as Meta classifier. Moreover the base classifiers

include: 1) Decision Tree (DT), 2) Random Forest (RF),

3) Support Vector Machine (SVM), 4) K Nearest

Neighbor (kNN) and 5) Bayes Net (BN). Parameter

tuning is also performed using trial and error approach.

For MLP, we used the learning rate of 0.1, momentum

0.9 and epochs 1000. For DT, confidence factor is set to

0.1. For SVM, the RBF kernel is used along with Gamma

equal to 10. Default parameters are used for the rest of

properties. Moreover, 80 % data is used for training

purpose and remaining 20 % is used for testing.

IV. RESULTS AND DISCUSSION

The results of proposed framework are evaluated by

using various measures such as: F-measure, Accuracy,

MCC and ROC. These measures are calculated by using

the parameters of confusion matrix (Fig. 2).which are

given below [11,12],[29]:

Fig. 2. Confusion Matrix.

True Positive (TP): “Instances which are actually

positive and also classified as positive”.

False Positive (FP): “Instances which are actually

negative but classified as positive”.

False Negative (FN): “Instances which are actually

positive but classified as negative”.

True Negative (TN): “Instances which are actually

negative and also classified as negative”.

To calculate the F-measure, we have to calculate the

Precision and Recall first as F-measure is the average of

these two measures. The calculation formula of each of

the used measure is given below:

Precision
()

TP

TP FP

 (1)

Re
()

TP
call

TP FN

 (2)

Precision * Recall * 2
F-measure

(Precision + Recall)
 (3)

TP TN
Accuracy

TP TN FP FN

 (4)

1

2

r rTP FP
AUC

 (5)

()()()()

TN TP FN FP
MCC

FP TP FN TP TN FP TN FN

 (6)

The proposed framework is implemented on six

cleaned NASA MDP Datasets (D’’) by using six widely

used search methods along with MLP as feature subset

evaluator. The search methods include: Best First (BF),

Greedy Stepwise (GS), Genetic Algorithm/Search (GA),

Particle Swarm Optimization (PSO), Rank Search (RS)

and Linear Forward Selection (LFS). The obtained results

are discussed in the tables from Table 4 to Table 9.

Performance measures including: F-measure, Accuracy,

MCC and ROC for the defective class (‘Y’) with each

search method are discussed in these tables. Highest

scores are highlighted in bold for easy identification.

18 A Framework for Software Defect Prediction Using Feature Selection and Ensemble Learning Techniques

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 12, 14-20

Table 4. KC1 Results

Search

Method
F-Measure MCC ROC Accuracy

BF 0.617 0.578 0.882 86.6379

GS 0.614 0.54 0.784 85.3448

GA 0.72 0.644 0.83 87.931

PSO 0.702 0.61 0.862 85.3448

RS 0.645 0.564 0.853 85.7759

LFS 0.617 0.578 0.882 86.6379

Results of KC1 datasets are shown in Table 4. It can be

seen that, in F-Measure, MCC, and Accuracy: GA

performed better whereas in ROC, BF and LFS both

performed better.

Table 5. KC3 Results

Search

Method
F-Measure MCC ROC Accuracy

BF 0.4 0.312 0.876 84.6154

GS 0.4 0.312 0.876 84.6154

GA 0.727 0.687 0.941 92.3077

PSO 0.5 0.465 0.832 89.7436

RS 0.316 0.193 0.638 66.6667

LFS 0.5 0.465 0.776 89.7436

The results of KC3 dataset is reflected in Table 5. The

results shows that GA performed better in all the

measures.

Table 6. MC2 Results

Search

Method
F-Measure MCC ROC Accuracy

BF 0.762 0.59 0.773 80

GS 0.7 0.5 0.65 76

GA 0.667 0.61 0.763 80

PSO 0.842 0.75 0.84 88

RS 0.889 0.84 0.88 92

LFS 0.762 0.59 0.773 80

Table 6 reflects the results of MC2 datasets. It can be

seen that RS performed better in all of the performance

measures.

Table 7. MW1 Results

Search

Method
F-Measure MCC ROC Accuracy

BF 0.667 0.645 0.688 96

GS - - - -

GA 0.5 0.477 0.957 92

PSO 0.571 0.546 0.652 94

RS 0.667 0.645 0.965 96

LFS 0.667 0.645 0.716 96

The results of MW1 dataset is shown in Table 7. It can

be seen that RS outperformed in all four measures

whereas BF and LFS performed better in F-measure,

MCC and Accuracy. Moreover, no result was mentioned

with GS as subset no was generated from this

combination.

Table 8. PC4 Results

Search

Method
F-Measure MCC ROC Accuracy

BF 0.702 0.671 0.955 93.3071

GS 0.8 0.79 0.937 95.6693

GA 0.793 0.772 0.97 95.2756

PSO 0.588 0.569 0.933 91.7323

RS 0.71 0.67 0.934 92.9134

LFS 0.774 0.743 0.937 94.4882

Table 8 shows the results of PC4 datasets. It can be

seen that GS outperformed in three measures: F-measure,

MCC and Accuracy whereas GA performed better in

ROC.

Table 9. 1PC5 Results

Search

Method
F-Measure MCC ROC Accuracy

BF 0.76 0.674 0.922 87.3156

GS 0.698 0.602 0.827 84.9558

GA 0.811 0.747 0.913 90.2655

PSO 0.709 0.608 0.863 84.9558

RS 0.778 0.698 0.936 88.2006

LFS 0.76 0.674 0.922 87.3156

Results of PC5 dataset is shown in Table 9 which

reflect that GA performed better in terms of F-measure,

MCC and Accuracy whereas RS outperformed other

search methods in ROC. In this study, the results of

proposed framework (including all search methods) in

each dataset are compared with the results of a published

paper [11], in which many machine learning techniques

are used for software defect prediction on NASA MDP

cleaned datasets (D’’). The used machine learning

techniques include: Naïve Bayes (NB), Multi-Layer

Perceptron (MLP). Radial Basis Function (RBF), Support

Vector Machine (SVM), K Nearest Neighbor (KNN),

kStar (K*), One Rule (OneR), PART, Decision Tree (DT),

and Random Forest (RF). Table 10 presents the highest

scores of base classifiers from [11] on the same datasets

which are used in this research. The name of the base

classifier is also mentioned along with the score.

 A Framework for Software Defect Prediction Using Feature Selection and Ensemble Learning Techniques 19

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 12, 14-20

Table 10. Performance of Base Classifiers [11]

P-

Measure
KC1 KC3 MC2 MW1 PC4 PC5

F-measure
0.454

(RF)

0.421

(NB)

0.667

(PART)

0.632

(MLP)

0.583

(DT)

0.531

(DT)

MCC
0.347

(RBF)

0.309

(NB)

0.444

(NB)

0.589

(MLP)

0.516

(RF)

0.361

(DT)

ROC
0.751

(RF)

0.807

(RF)

0.795

(NB)

0.843

(MLP)

0.945

(RF)

0.805

(RF)

Accuracy

78.796

6

(RBF)

82.758

6

(MLP,

SVM,

OneR)

78.3784

(PART)

90.666

7

(MLP)

90.2887

(RF)

75.9843

(RF)

While comparing the results of proposed framework on

KC1 Dataset (Table 4) with the highest scores of base

classifiers (Table 10) it has been observed that all of the

used research methods in proposed framework

outperformed the highest scores of base classifiers. As the

Table 10 reflects only the highest scores from 10 base

classifiers so obviously the proposed framework

outperformed all of them (on KC1 dataset).

After comparing the results of KC3 dataset (Table 5)

with Table [10], it can be seen that the proposed

framework with GA, PSO, and LFS outperformed in F-

Measure however in MCC, and Accuracy all search

methods performed well except RS. In ROC, except RS

and LF remaining four methods performed well.

While comparing the results of MC2 datasets from

Table 6 with Table 10, it can be seen that the proposed

framework with all search methods outperformed in F-

Measure except GA which showed equal score to the

PART (Table 10). In MCC, all the search methods

performed well however, In ROC, PSO and RS

performed well and finally in Accuracy, Except GS, all

search methods performed well.

When the results of MW1 dataset (Table 7) are

compared with Table 10, it is observed that the proposed

framework with BF, RS, and LFS performed better in F-

Measure and MCC, Moreover, only RS and GA

performed better in ROC whereas all search methods

performed better in Accuracy.

PC4 results are shown in Table 8, which reflect that in

comparison of Table 10, the proposed framework

performed well with all search methods in F-Measure,

MCC and Accuracy However, in ROC, BF and GA

performed better.

The results of PC5 dataset are shown in Table 9. It can

be seen that proposed framework outperformed with all

search methods when compared with highest scores of

base classifiers (Table 10).

It has been observed from the results of Table 4 to

Table 9 that the overall performance of proposed

framework with either one or more than one search

methods is much better than the base classifiers.

Moreover not a single search method outperformed the

base classifiers in all datasets, furthermore the correlation

among the used accuracy measures also need to be

explored as most of the methods performed in one or two

measures and in remaining measures other methods

performed well.

V. CONCLUSION

Software defect prediction is considered as one of the

widely focused research areas since the last two decades

due to its promise to provide a high quality software at

lower cost. This paper presented a feature selection based

ensemble classification framework for effective software

defect prediction. The framework consists of four stages:

including: 1) Dataset Selection, 2) Pre Processing, 3)

Classification, and 4) Reflection of Results.

Preprocessing stage further consists of three important

activities including: Normalization, Feature Selection and

Class Balancing. For feature selection, Wrapper approach

is used in which MLP is selected as Feature Subset

Evaluator along with six search methods including: BF,

GS, GA, PSO, RS and LFS. The proposed framework is

implemented on six Cleaned NASA MDP datasets and

the performance is analyzed in terms of F-measure,

Accuracy, MCC and ROC. Performance evaluation is

performed in two dimensions: at first, the scores of all

search methods within the framework are compared with

each other and secondly, the results of proposed

framework with all search methods are compared with

the results of 10 well-known machine learning classifiers

from a published paper. The results reflected the higher

performance of proposed framework as compared to all

classifiers. As not a single search method outperformed

the base classifiers in all datasets so it is suggested for

future that for feature selection a hybrid approach should

be used or developed which can improve the accuracy.

REFERENCES

[1] M. Ahmad, S. Aftab, I. Ali, and N. Hameed, “Hybrid

Tools and Techniques for Sentiment Analysis: A Review,”

Int. J. Multidiscip. Sci. Eng., vol. 8, no. 3, 2017.

[2] M. Ahmad, S. Aftab, S. S. Muhammad, and S. Ahmad,

“Machine Learning Techniques for Sentiment Analysis: A

Review,” Int. J. Multidiscip. Sci. Eng., vol. 8, no. 3, p. 27,

2017.

[3] M. Ahmad and S. Aftab, “Analyzing the Performance of

SVM for Polarity Detection with Different Datasets,” Int.

J. Mod. Educ. Comput. Sci., vol. 9, no. 10, pp. 29–36,

2017.

[4] M. Ahmad, S. Aftab, and I. Ali, “Sentiment Analysis of

Tweets using SVM,” Int. J. Comput. Appl., vol. 177, no. 5,

pp. 25–29, 2017.

[5] M. Ahmad, S. Aftab, M. S. Bashir, and N. Hameed,

“Sentiment Analysis using SVM: A Systematic Literature

Review,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 2,

2018.

[6] M. Ahmad, S. Aftab, M. S. Bashir, N. Hameed, I. Ali, and

Z. Nawaz, “SVM Optimization for Sentiment Analysis,”

Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 4, 2018.

[7] S. Aftab, M. Ahmad, N. Hameed, M. S. Bashir, I. Ali, and

Z. Nawaz, “Rainfall Prediction in Lahore City using Data

Mining Techniques,” Int. J. Adv. Comput. Sci. Appl., vol.

9, no. 4, 2018.

[8] S. Aftab, M. Ahmad, N. Hameed, M. S. Bashir, I. Ali, and

Z. Nawaz, “Rainfall Prediction using Data Mining

20 A Framework for Software Defect Prediction Using Feature Selection and Ensemble Learning Techniques

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 12, 14-20

Techniques: A Systematic Literature Review,” Int. J. Adv.

Comput. Sci. Appl., vol. 9, no. 5, 2018.

[9] A. Iqbal and S. Aftab, “A Feed-Forward and Pattern

Recognition ANN Model for Network Intrusion

Detection,” Int. J. Comput. Netw. Inf. Secur., vol. 11, no.

4, pp. 19–25, 2019.

[10] A. Iqbal, S. Aftab, I. Ullah, M. A. Saeed, and A. Husen,

“A Classification Framework to Detect DoS Attacks,” Int.

J. Comput. Netw. Inf. Secur., vol. 11, no. 9, pp. 40-47,

2019.

[11] A. Iqbal, S. Aftab, U. Ali, Z. Nawaz, L. Sana, M. Ahmad,

and A. Husen “Performance Analysis of Machine

Learning Techniques on Software Defect Prediction using

NASA Datasets,” Int. J. Adv. Comput. Sci. Appl., vol. 10,

no. 5, 2019.

[12] A. Iqbal, S. Aftab, I. Ullah, M. S. Bashir, and M. A. Saeed,

“A Feature Selection based Ensemble Classification

Framework for Software Defect Prediction,” Int. J. Mod.

Educ. Comput. Sci., vol. 11, no. 9, pp. 54-64, 2019.

[13] F. Lanubile, A. Lonigro, and G. Visaggio, “Comparing

Models for Identifying Fault-Prone Software

Components,” Proc. Seventh Int’l Conf. Software Eng.

and Knowledge Eng., pp. 312–319, June 1995.

[14] K. O. Elish and M. O. Elish, “Predicting defect-prone

software modules using support vector machines,” J. Syst.

Softw., vol. 81, no. 5, pp. 649–660, 2008.

[15] I. Gondra, “Applying machine learning to software fault-

proneness prediction,” J. Syst. Softw., vol. 81, no. 2, pp.

186–195, 2008.

[16] C. Manjula and L. Florence, “Deep neural network based

hybrid approach for software defect prediction using

software metrics,” Cluster Comput., pp. 1–17, 2018.

[17] S. Huda, S. Alyahya, M. M. Ali, S. Ahmad, J. Abawajy, J.

Al-Dossari, and J. Yearwood, “A Framework for

Software Defect Prediction and Metric Selection,” IEEE

Access, vol. 6, pp. 2844–2858, 2018.

[18] E. Erturk and E. Akcapinar, “A comparison of some soft

computing methods for software fault prediction,” Expert

Syst. Appl., vol. 42, no. 4, pp. 1872–1879, 2015.

[19] J. C. Riquelme, R. Ruiz, D. Rodr´ıguez, and J. Moreno,

“Finding defective modules from highly unbalanced

datasets,” Actas de los Talleres de las Jornadas de

Ingenier´ıa del Software y Bases de Datos, vol. 2, no. 1,

pp. 67–74, 2008.

[20] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning

for crosscompany software defect prediction,”

Information and Software Technology, vol. 54, no. 3, pp.

248–256, 2012.

[21] I.H. Witten and E. Frank, Data Mining: Practical Machine

Learning Tools and Techniques, second ed. Morgan

Kaufmann, 2005.

[22] M. Shepperd, Q. Song, Z. Sun and C. Mair, “Data Quality:

Some Comments on the NASA Software Defect Datasets,”

IEEE Trans. Softw. Eng., vol. 39, pp. 1208–1215, 2013.

[23] “NASA Defect Dataset.” [Online]. Available:

https://github.com/klainfo/NASADefectDataset.

[Accessed: 28-September-2019].

[24] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the

impact of classification techniques on the performance of

defect prediction models,” Proc. - Int. Conf. Softw. Eng.,

vol. 1, pp. 789–800, 2015.

[25] G. Czibula, Z. Marian, and I. G. Czibula, “Software

defect prediction using relational association rule mining,”

Inf. Sci. (Ny)., vol. 264, pp. 260–278, 2014.

[26] D. Rodriguez, I. Herraiz, R. Harrison, J. Dolado, and J. C.

Riquelme, “Preliminary comparison of techniques for

dealing with imbalance in software defect prediction,” in

Proceedings of the 18th International Conference on

Evaluation and Assessment in Software Engineering.

ACM, p. 43, 2014.

[27] U. R. Salunkhe and S. N. Mali, “A hybrid approach for

class imbalance problem in customer churn prediction: A

novel extension to under-sampling,” Int. J. Intell. Syst.

Appl., vol. 10, no. 5, pp. 71–81, 2018.

[28] N. F. Hordri, S. S. Yuhaniz, N. F. M. Azmi, and S. M.

Shamsuddin, “Handling class imbalance in credit card

fraud using resampling methods,” Int. J. Adv. Comput.

Sci. Appl., vol. 9, no. 11, pp. 390–396, 2018.

[29] A. Iqbal, S. Aftab, and F. Matloob, “Performance

Analysis of Resampling Techniques on Class Imbalance

Issue in Software Defect Prediction,” Int. J. Inf. Technol.

Comput. Sci., vol. 11, no. 11, pp. 44-54, 2019.

Authors’ Profiles

Faseeha Matloob is student of MS Computer Science with the

specialization of Software Engineering in Virtual University of

Pakistan. Her research interest includes Software Engineering

and Data Mining.

Shabib Aftab received MS Degree in

Computer Science from COMSATS Institute

of Information Technology Lahore, Pakistan,

and M.Sc degree in Information Technology

from Punjab University College of

Information Technology (PUCIT) Lahore,

Pakistan. Currently he is serving as Lecturer

Computer Science at Virtual University of

Pakistan. His research areas include Data Mining and Software

Process Improvement.

Ahmed Iqbal is student of MS Computer

Science with the specialization of Software

Engineering in Virtual University of Pakistan.

He received the degree, Master of

Information Technology (MIT) from Virtual

University of Pakistan in 2016. His research

interest includes Software Engineering and

Data Mining.

How to cite this paper: Faseeha Matloob, Shabib Aftab, Ahmed Iqbal, " A Framework for Software Defect Prediction

Using Feature Selection and Ensemble Learning Techniques", International Journal of Modern Education and Computer

Science(IJMECS), Vol.11, No.12, pp. 14-20, 2019.DOI: 10.5815/ijmecs.2019.12.02

