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Abstract—With the sudden growth of the internet and 

digital documents available on the web, the task of 

organizing text data has become a major problem. In 

recent times, text classification has become one of the 

main techniques for organizing text data. The idea behind 

text classification is to classify a given piece of text to a 

predefined class or category. In the present research work, 

SVM has been used with linear kernel using the One-V-

Rest strategy. The SVM is trained using various data sets 

collected from various sources. It may so happen that 

some particular words were not so common around 5-6 

years ago, but are currently prevalent due to recent trends. 

Similarly, new discoveries may result in the coinage of 

new words. This process can also be applied to text blogs 

which can be crawled and then analyzed. This technique 

should in theory be able to classify blogs, tweets or any 

other document with a significant amount of accuracy. In 

any text classification process, preprocessing phase takes 

the most amount of time – cleaning, stemming, 

lemmatization etc. Hence, the authors have used a 

multithreading approach to speed up the process. The 

authors further tried to improve the processing time of the 

algorithm using GPU parallelism using CUDA. 

 

Index Terms—Stemming, lemmatization, SVM, 

mutithreading, CUDA. 

 

I.  INTRODUCTION 

With the rapid growth and expansion of the internet, 

classifying digital text documents has been an area of 

constant research. Text classification can be used to 

categorize news articles, blog posts, open bulletin boards, 

online forums, etc. Text classification is essential as it 

helps find relevant information based on a user’s search 

string and helps associate one document with another. In 

recent times, Natural Language Processing (NLP), 

Machine learning and Data mining techniques work in 

tandem to automate text classification. Properly 

representing, annotating and summarizing presents 

various challenges – which need to be taken care of for an 

efficient and accurate classification. 

Multithreading is a technique by which a piece of code 

or a set of instructions is used by multiple processors 

simultaneously, each at a different stage of execution, for 

achieving parallelism and thus reduce overall execution 

time of the program. Multithreading is very popular in the 

modern era with various CPUs of Intel and AMD 

providing this as a feature, with each consumer grade 

processor offering anywhere from 2 to 64 threads. This 

feature is specific for CPUs. Parallelism on Graphics 

Processing Units (GPUs) is gaining attention with each 

graphic processor die having thousands of cores. A core 

on a GPU is weaker than that on a CPU in the sense that 

they are not capable of executing complex instructions 

like stemming and lemmatization – but are highly 

optimized for crunching numbers – and when about three 

thousand cores work in tandem, numeric calculations 

become a breeze. The sheer number of cores on a GPU 

offers an amount of parallelism which is orders greater 

than what CPU cores can offer. nVidia – a manufacturer 

of GPUs, had created a platform called CUDA, which 

allows developers to harness the raw power of the cores 

on their devices. The authors have utilized both 

multithreading and the CUDA platform to massively 

decrease the overall execution time of their algorithm. 

Classification of documents into a fixed number of 

predefined classes is the main objective of text 

categorization. A particular document may get classified 

into multiple categories, a single category or no category 

at all. This process of classification can be automated by 

using classifiers which need to be trained using labelled 

examples – this is called supervised learning [1]. 

Text classification has a wide scope of application, 

such as: relevance feedback, netnews filtering, 

reorganizing a document collection, spam filtering, 
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language identification, readability assessment, sentiment 

analysis etc. Text classification can be used in the field of 

business decision making, medicine and so on. 

 

II. RELATED WORK 

For the purpose of text classification [2], a lot of 

different methodologies are used as depicted in [3,4].  

Naive Bayes classifier [5], k-nearest neighbor algorithms, 

Decision trees such as ID3 or C4.5, Artificial neural 

networks etc. being some of the approaches used. The 

authors have chosen Support Vector Machine (SVM) for 

this implementation. SVM by nature is binary classifier, 

and for classifying text into N-number of classes, special 

strategies needs to be used to make SVM work like an N-

class classifier.   SVMs are often referred to as universal 

classifiers in the literature. This is especially because, by 

the use of an appropriate kernel function, SVMs can be 

used to learn polynomial classifiers, radial basic function 

networks and many more. SVMs have a striking property 

that their ability to learn is unrelated to the dimensionality 

of the feature space. This allows generalizing data even in 

the presence of many features. Text documents have 

numerous features and since SVMs use overfitting 

protection, which does not particularly depend on the 

number of features, they have the potential to perform 

well in such situations. A document vector, representing a 

particular document would essentially be a sparse vector. 

Kivinen et. al. [6] have provided evidence that additive 

algorithms, which share a similar inductive bias like 

SVMs are suitable for solving problems related to sparse 

instances [1]. 

While some classification algorithms naturally permit 

the use of more than two classes, others are by nature 

binary algorithms (allows classifying into two classes); 

like SVM; these can, however, be turned into 

multinomial classifiers by a variety of strategies [15]. If 

there are N different classes, One-vs-Rest (OVR) type of 

classifier will train one classifier per class in total N 

different binary classifiers. For the ith classifier, let the 

positive examples be all the points in class I (i.e. all the 

labels which has class i as its label), and let the negative 

examples be all the points not in class i. Let fi be the ith 

classifier [15]. Making decisions means applying all 

classifiers to an unseen sample x and predicting the label 

i for which the corresponding classifier reports the 

highest confidence score: 

 

f(x) = arg max fi(x), where ‘i’ varies from 0 to N 
 

Although this strategy is popular, it is a heuristic that 

suffers from several problems. At first, the scale of the 

confidence values may differ between the binary 

classifiers. Moreover, even if the class distribution is 

balanced in the training set, the binary classification 

learners see unbalanced distributions because typically 

the set of negatives they see is much larger than the set of 

positives [16].  

Another type of classification approach is One-vs-One 

(OVO) which is also known as all-pairs or All-vs-All 

classification. After building (N(N−1))/2 classifiers, one 

classifier to distinguish each pair of classes i and j. Each 

receives the samples of a pair of classes from the original 

training set, and must learn to distinguish these two 

classes [16]. Let fij be the classifier where class i were 

positive examples and class j were negative [15]. At 

prediction time, a voting scheme is applied: all 

(N(N−1))/2 classifiers are applied to an unseen sample 

and the class that got the highest number of "+1" 

predictions gets predicted by the combined classifier. 

 

f(x) = arg max (∑ fij(x)). 

          I           j 

 

This is much less sensitive to the problems of 

imbalanced datasets but is much more computationally 

expensive and some regions of its input space may 

receive the same number of votes. 

Viewed naively, OVO seems faster and more memory 

efficient. It requires O(N2) classifiers instead of O(N), but 

each classifier is, on average much smaller. If the time to 

build a classifier is super linear in the number of data 

points, OVO is a better choice. 
 

III. PROPOSED ALGORITHM 

The proposed algorithm, as discussed in this paper has 

two major segments, viz., training and classification.  

A Algorithm: Training 

1. Collect labeled dataset 

2. Create the following empty arrays: 

a. 2D array, named data, to store the resultant 

cleaned, tokenized documents  

b. 1D array, named label, to store labels 

corresponding to each document. 

c. 1D array, named uniqueLabels, to store the 

unique labels present in the dataset  

3. For each document present in the dataset, do the 

following: 

a. Convert the document to lower case 

b. Tokenize the lower case document and generate 

the wordset  

c. Remove the following from the wordset: 

i. Punctuations 

ii. Stopwords 

iii. Custom stopwords based on training dataset (if 

required) 

iv. Custom elements, such as numbers, roman 

numerals etc. as per requirement based on 

training dataset 

d. For each word present in the wordset, do the 

following: 

i. Tag the word with its corresponding parts of 

speech tag 

ii. Perform stemming by finding out 

morphological root of the word using the parts 

of speech tag as one of the parameters 

iii. Perform lemmatization on the stemmed word 

to generate clean word. 
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iv. Add the cleaned word to the cleaned wordset 

e. Add the cleaned wordset to data array 

f. If the label of the current document is not 

present in the uniqueLabels array, then add it. 

g. Find out the index of the label of the current 

document in the uniqueLabels array and add 

that index to the label array. In this way, it is 

ensured that labels are represented in a 

numerical format. 

4. Save the uniqueLabels array to disk for the 

classification phase. 

5. Create a hashtable, named vocabulary, to store all the 

unique words present in all the documents. 

6. Create the following arrays, for CSR Matrix 

generation: 

a. 1D array, named indices, which stores the index 

of the current word in the vocabulary. This will 

store all the indices of the words present in all 

the documents one after the other. 

b. 1D array, named indPtr, to store the index 

pointers, which indicates the beginning and end 

of each document in the indices array. Initialize 

it by adding 0 to indicate the beginning of the 

first document. 

7. For each cleaned wordset in the data array: 

a. For each word present in the current wordset: 

i. Check whether the current word is absent in 

the vocabulary hashtable. If yes, then calculate 

the current length of the vocabulary hashtable, 

which will be used to represent this word 

numerically. Then, using this word as key and 

this numeric value as value, form the <key-

value> pair and add it to the vocabulary 

hashtable. 

ii. Use the word as key to obtain the 

corresponding value from the vocabulary 

hastable and add it to the indices array. 

b. Calculate the current length of the indices array 

and store it to the indPtr array to mark the 

ending of the current and beginning of the next 

document.  

8. Save the vocabulary hashtable to disk to use it during 

the classification phase. 

9. Generate the CSR Matrix using the indices, indPtr as 

parameters along with a special array which contains 

all ones and of the same length as the indices array, 

to denote that each of those words whose indices are 

stored have been encountered once in the document. 

10. Calculate the Term Frequency – Inverse Document 

Frequency using the CSR Matrix as parameter and 

generate TFIDF Transformed CSR Matrix. 

11. Train the SVM with Linear kernel using the 

Transformed CSR Matrix. As Linear SVM is a 

binary classifier, and here a multiclass classification 

is required, One-Vs-Rest (OVR or OVA) strategy is 

used for reducing the problem of multiclass 

classification to multiple binary classification 

problems. 

12. Save the trained classifier to disk for the 

classification phase. 

B. Algorithm: Classification 

1. Collect test dataset. This dataset may or may not 

contain labels. If labels are present, it then can be 

used to test the accuracy of the classifier. In this 

implementation, labeled dataset is used for testing 

purposes. 

2. Create the following empty arrays: 

a. 2D array, named testData, to store the resultant 

cleaned, tokenized test documents  

b. 1D array, named testLabel, to store labels 

corresponding to each test document.  

3. Fetch the uniqueLabels array from disk, generated 

during the training process. 

4. For each document present in the test dataset, do the 

following: 

a. Convert the document to lower case 

b. Tokenize the lower case document and generate 

the wordset  

c. Remove the following from the wordset: 

i. Punctuations 

ii. Stopwords 

iii. Custom stopwords based on training dataset (if 

required) 

iv. Custom elements, such as numbers, roman 

numerals etc. as per requirement based on 

training dataset 

d. For each word present in the wordset, do the 

following: 

i. Tag the word with its corresponding parts of 

speech tag 

ii. Perform stemming by finding out 

morphological root of the word using the parts 

of speech tag as one of the parameters 

iii. Perform lemmatization on the stemmed word 

to generate clean word. 

iv. Add the cleaned word to the cleaned wordset 

e. Add the cleaned wordset to testData array 

f. Find out the index of the label of the current 

document in the uniqueLabels array and add 

that index to the testLabel array. In this way, 

accuracy of the classifier can be checked at the 

end of classification phase by comparing labels 

present in the testLabel array with the predicted 

labels. 

5. Fetch vocabulary hashtable from disk, generated 

during training phase. 

6. Create the following arrays, for CSR Matrix 

generation: 

a. 1D array, named indicesTest, which stores the 

index of the current word in the vocabulary. 

This will store all the indices of the words 

present in all the test documents one after the 

other. 

b. 1D array, named indptrTest, to store the index 

pointers, which indicates the beginning and end 

of each test document in the indicesTest array. 

Initialize it by adding 0 to indicate the 

beginning of the first test document. 

7. For each cleaned wordset in the testData array: 

a. For each word present in the current wordset:
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i. Check whether the current word is present in 

the vocabulary hashtable. If yes, use the word 

as key to obtain the corresponding value from 

the vocabulary hastable and add it to the 

indicesTest array. 

b. Calculate the current length of the indicesTest 

array and store it to the indptrTest array to mark 

the ending of the current and beginning of the 

next test document.  

8. Generate the CSR Matrix using the indicesTest, 

indptrTest as parameters along with a special array 

which contains all ones and of the same length as the 

indicesTest array, to denote that each of those words 

whose indices are stored have been encountered once 

in the test document. During this, the dimensions of 

the matrix should be equal to [length of testData 

array, length of vocabulary hashtable], to make the 

number of features used during training and 

classification phases the same.  

9. Calculate the Term Frequency – Inverse Document 

Frequency using the CSR Matrix as parameter and 

generate TFIDF Transformed CSR Matrix. 

10. Fetch the classifier from disk, generated after the 

training phase. 

11. Use the classifier to predict labels for each test 

document, using the Transformed CSR Matrix as 

parameter.  

12. Compare the predicted labels with the labels present 

in the testLabels array to calculate the accuracy of 

the classifier. 

The algorithm which is discussed before has various 

components as depicted below: 

1)  Pre-processing 

Before the documents can be used in the algorithm, 

some preprocessing is required. First, the documents need 

to be converted into lower case. This is done so that 

words like “Test” and “test” are treated as the same word. 

Next, the document is tokenized to generate the wordset, 

so that each word, punctuation, numbers can be identified 

separately. For this, word_tokenize() method of 

ntlk.tokenize module is used. As opposed to this, had 

string.split() method, based on spaces, been used, the 

string, “Welcome, Hello World!” would have resulted in 

3 tokens, viz., “Welcome,” , “Hello” and “World!” which 

does not serve the purpose. word_tokenize() would result 

in 5 tokens, viz., “Welcome”, “,”, “Hello”, “World” and 

“!” from which each word, punctuation can be identified 

separately. 

Now, punctuations need to be removed from the 

wordset as they are useless during classification. Next, 

stopwords need to be removed from the wordset. Some 

extremely common words which would appear to be of 

little value in helping select documents matching a user 

need are excluded from the vocabulary entirely. These 

words are called stop words [17]. Custom stopwords can 

also be removed if the dataset demands for it. For 

example, words like “volume”, “edition”, “part”, etc. can 

also be treated as stop words in the context of book name 

classification as they possess no actual benefit to the 

classification process.  

2)  Stemming and Lemmatization 

In linguistic morphology and information retrieval, 

stemming is the process of reducing inflected (or 

sometimes derived) words to their word stem, base or 

root form—generally a written word form. The stem need 

not be identical to the morphological root of the word; it 

is usually sufficient that related words map to the same 

stem, even if this stem is not in itself a valid root. 

For grammatical reasons, documents are going to use 

different forms of a word, such as organize, organizes, 

and organizing. Additionally, there are families of 

derivationally related words with similar meanings, such 

as democracy, democratic, and democratization. In many 

situations, it seems as if it would be useful for a search 

for one of these words to return documents that contain 

another word in the set. 

The goal of both stemming and lemmatization is to 

reduce inflectional forms and sometimes derivationally 

related forms of a word to a common base form.  

Stemming usually refers to a crude heuristic process 

that chops off the ends of words in the hope of achieving 

this goal correctly most of the time, and often includes 

the removal of derivational affixes. Lemmatization 

usually refers to doing things properly with the use of a 

vocabulary and morphological analysis of words, 

normally aiming to remove inflectional endings only and 

to return the base or dictionary form of a word, which is 

known as the lemma. If confronted with the token saw, 

stemming might return just ‘s’, whereas lemmatization 

would attempt to return either see or saw depending on 

whether the use of the token was as a verb or a noun. The 

two may also differ in that stemming most commonly 

collapses derivationally related words, whereas 

lemmatization commonly only collapses the different 

inflectional forms of a lemma [19]. 

3)  Bag-of-words Representation 

The bag-of-words model is a simplifying 

representation used in natural language processing and 

information retrieval (IR). In this model, a text (such as a 

sentence or a document) is represented as the bag 

(multiset) of its words, disregarding grammar and even 

word order but keeping multiplicity [21]. The bag-of-

words model is commonly used in methods of document 

classification where the (frequency of) occurrence of each 

word is used as a feature for training a classifier. 

For example, two simple text documents are 

considered here: 

1. John likes to watch movies. Mary likes movies too. 

2. John also likes to watch football games. 

Based on these documents, vocabulary (i.e. list of 

words) can be constructed as: 

[ 

     "John", "likes", "to", "watch", "movies", "also",   

               "football", "games", "Mary", "too" 

]
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In practice, the Bag-of-words model is mainly used as 

a tool of feature generation. After transforming the text 

into a "bag of words", various measures to characterize 

the text can be calculated. The most common type of 

characteristics, or features calculated from the Bag-of-

words model is term frequency, namely, the number of 

times a term appears in the text. For the example above, 

the following two lists can be constructed to record the 

term frequencies of all the distinct words: 

 

(1) [1, 2, 1, 1, 2, 0, 0, 0, 1, 1] 

(2) [1, 1, 1, 1, 0, 1, 1, 1, 0, 0] 

 

Each entry of the lists refers to count of the 

corresponding entry in the list (this is also the histogram 

representation). For example, in the first list (which 

represents document 1), the first two entries are "1,2". 

The first entry corresponds to the word "John" which is 

the first word in the list, and its value is "1" because 

"John" appears in the first document 1 time. Similarly, 

the second entry corresponds to the word "likes" which is 

the second word in the list, and its value is "2" because 

"likes" appears in the first document 2 times. This list (or 

vector) representation does not preserve the order of the 

words in the original sentences, which is just the main 

feature of the Bag-of-words model. This kind of 

representation has several successful applications, for 

example email filtering [21].  

This can be represented using a 2D array as:  

 

 
 

Where row index denotes the document number and 

column index denotes the word index in the vocabulary. 

Whenever a word is encountered in a document, element 

present in that particular index [row, column] is 

incremented. All non-zero values in that matrix denote 

the number of occurrences of the word in a document. 

As most documents will typically use a very small 

subset of the words used in the total dataset, the resulting 

matrix will have many feature values that are zeros. For 

instance, a collection of 10,000 short text documents 

(such as emails) will use a vocabulary with a size in the 

order of 100,000 unique words in total while each 

document will use 100 to 1000 unique words individually. 

In order to be able to store such a matrix in memory but 

also to speed up algebraic operations a sparse matrix is 

used [22]. For the same, Compressed Sparse Row matrix 

or CSR Matrix is used in this implementation. 

4)  Vocabulary generation using Hashtable 

In this implementation, the vocabulary is constructed 

using a hashtable, where words are treated as keys and a 

numeric representation of that word as value to form 

every key-value pair. Unlike arrays, hashtables do not 

have any indices. So, the length of the hashtable before 

inserting the newly encountered word is treated as the 

numerical representation of that word.  

As an example, the following two documents are 

considered: 

1. John likes to watch movies. Mary likes movies too. 

2. John also likes to watch football games. 

This forms the vocabulary hashtable as : - 

{ 

    "John"   : “0”, 

    "likes"   : “1” , 

    "to"   :  “2”, 

    "watch"   :  “3”, 

    "movies"  : “4”, 

    "also"  : “5”, 

    "football"  : “6”, 

    "games"  : “7”, 

    "Mary"  : “8”, 

    "too"  : “9” 

} 

Hashtable is used instead of an array is to improve the 

search-time complexity to O(1).  

5)  CSR Matrix Generation 

The compressed sparse row (CSR) or compressed row 

storage (CRS) format represents a matrix M by three 

(one-dimensional) arrays, that respectively contain 

nonzero values, the extents of rows, and column indices. 

It is similar to Coordinate list (COO) but compresses the 

row indices, hence the name. This format allows fast row 

access and matrix-vector multiplications (Mx). COO 

stores a list of (row, column, value) tuples. Ideally, the 

entries are sorted (by row index, then column index) to 

improve random access times. This is another format 

which is good for incremental matrix construction [23].  

For example,  

A matrix, 

 

 
 

can be represented using CSR matrix as, 

(1, 1)        2 

(1, 3)        4 

(2, 3)        1  

During the classification phase, while creating the CSR 

Matrix, the dimension should be set to [length of testData 

array, length of vocabulary hashtable], to make the 

number of features used during training and classification 

phases the same. 

6)  Term Frequency – Inverse Document Frequency 

Term frequency–inverse document frequency is a 

numerical statistic that is intended to reflect how 

important a word is to a document in a collection or 

corpus [18]. It is often used as a weighting factor in 

information retrieval, text mining, and user modeling. 

The TF-IDF value increases proportionally to the number 

of times a word appears in the document, but is often 

offset by the frequency of the word in the corpus, which 

helps to adjust for the fact that some words appear more 



16 Text Classification Using SVM Enhanced by Multithreading and CUDA  

Copyright © 2019 MECS                                                    I.J. Modern Education and Computer Science, 2019, 1, 11-23 

frequently in general. Nowadays, TF-IDF is one of the 

most popular term-weighting schemes [24].  

In this implementation, the normalized TF-IDF is 

stored as a CSR Matrix. 

7)  Support Vector Machine 

A support vector machine constructs a hyper-plane or 

set of hyper-planes in a high or infinite dimensional space, 

which can be used for classification, regression or other 

tasks. Intuitively, a good separation is achieved by the 

hyper-plane that has the largest distance to the nearest 

training data points of any class (so-called functional 

margin), since in general the larger the margin the lower 

the generalization error of the classifier [7,27]. 

8)  Multiclass Classification: One-Vs-Rest 

This strategy consists in fitting one classifier per class. 

For each classifier, the class is fitted against all the other 

classes. In addition to its computational efficiency (only 

n_classes classifiers are needed), one advantage of this 

approach is its interpretability. Since each class is 

represented by one classifier only, it is possible to gain 

knowledge about the class by inspecting its 

corresponding classifier [28]. After an extensive trial and 

error testing, OVR Strategy was chosen for this algorithm. 

It was found that OVR strategy gives more accuracy for 

most of the datasets which were used for testing this 

algorithm. Working methodology of the OVR strategy is 

already explained earlier.  

The algorithm which has been elaborated in the 

previous paragraphs has been enhanced with the uses of 

multi-threading and CUDA as described below: 

a)  Multi-threading 

To implement multithreading, some changes need to be 

done in the previously proposed algorithms. In the step 3 

of training and in the step 4 of classification algorithm, 

where each document is processed from the dataset, 

multithreading can be used, so that multiple documents 

can be processed simultaneously. Number of threads that 

can be created will depend upon the CPU capabilities. 

List of unique labels has to be a shared variable, because 

during training phase, whenever any of the threads finds a 

new unique label, it needs to add it to this list, and when 

one thread updates the unique labels list, all the other 

threads should get this updated list. So, updating unique 

labels list needs to be treated as a critical section, and 

lock needs to be acquired while entering this critical 

section and needs to be released while leaving. During 

testing phase, this critical section is not required as 

nothing will be added to the unique labels list. Each 

thread will be given a near equal subset of the dataset and 

will create their own data and labels array. At the end, 

individual arrays created by each thread needs to be 

merged to obtain the complete data and label array for the 

given dataset. To add this enhancement, the following 

changes needs to be done: 

 

 

1. Set number_of_threads according to the CPU 

Capibilites 

2. Set data_per_thread = dataset_size / 

number_of_threads 

3. Create dataQueue and labelQueue to store individual 

data and label arrays obtained by each thread 

4. Create a 1D array to store the list of threads 

5. Repeat for i varriying 0 to number_of_threads-1 

a. Calculate start_index = i * data_per_thread and 

end_index = ((i+1) * data_per_thread) -1. This 

start_index and end_index denote the start and end 

index of the dataset which the current thread 

(Thread ID i) will be working with. 

b. Create a new thread and pass the folliwng: i as 

thread ID, dataset (including labels), start_index, 

end_index, dataQueue, labelQueue, type of thread 

- "Train" or "Test" 

c. Add the newly created thread to the list of threads 

d. Start the newly created thread. 

6. Increment i by 1 

7. Create a new thread and pass the folliwng: i as thread 

ID, dataset (including labels), start_index, end_index, 

dataQueue, labelQueue, type of thread - "Train" or 

"Test". start_index is calculated same as earlier, but 

end_index = dataset_size - 1. This thread is created 

outside of the loop, sperately, becasue, if dataset_size 

is not divisible by number_of_threads, then using the 

formula used above for end_index will miss out last 

few data.For this same reason, the above loop itirates 

one less time (0 to number_of_threads - 1 instead of 

0 to number_of_threads). 

8. Add the newly created thread to the list of threads 

9. Start the newly created thread 

10. Do the following in the body of each thread, which 

all of the threads will execute: 

a. For each document present in the provided subset 

of the dataset, given to the current thread, do the 

following: 

i. Convert the document to lower case 

ii. Tokenize the lower case document and 

generate the wordset 

iii. Remove the following from the wordset: 

1. Punctuations 

2. Stopwords 

3. Custom stopwords based on training 

dataset (if required) 

4. Custom elements, such as numbers, roman 

numerals etc. as per requirement based on 

training dataset 

iv. For each word present in the wordset, do 

the following: 

1. Tag the word with its corresponding parts 

of speech tag 

2. Perform stemming by finding out 

morphological root of the word using the 

parts of speech tag as one of the parameters
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3. Perform lemmatization on the stemmed 

word to generate clean word 

4. Add the cleaned word to the cleaned 

wordset 

v. Add the cleaned wordset to data array of 

the current thread 

vi. If type of thread is "Train": 

1. Check if the label of the current document 

is present in the uniqueLabels array or not. 

If yes, then aquire lock and then add it. 

After adding, release the lock. 

2. Find out the index of the label of the 

current document in the uniqueLabels 

array and add that index to the label array 

of the current thread. 

vii. If type of thread is "Test": 

1. Check if the label of the current document 

is present in the uniqueLabels array or 

not.If yes, then add its index, if not, then 

add -1 to the label array of the current 

thread. 

b. Aquire a lock, as another ciritical section 

is encountered. Put data and label array 

of the current thread to the dataQueue 

and labelQueue respectively. Release the 

lock. 

11. Wait for all threads to finish their work 

12. Fetch all individual data and label arrays created by 

al the threads from the dataQueue and labelQueue 

respectively and merge them together to obtain 

combined data array and label array 

13. Continue the original training and classification 

algorithm after this 

b)  GPU Parallelism using CUDA 

CUDA or Compute Unified Device Architecture is a 

parallel computing platform and application 

programming interface (API) model created by nVidia. It 

enables programmers to use a CUDA-enabled GPU for 

general purpose processing – an approach termed 

GPGPU (General-Purpose computing on Graphics 

Processing Units). The CUDA platform is a software 

layer that gives direct access to the GPU's virtual 

instruction set and parallel computational elements, for 

the execution of compute kernels. CUDA supports 

programming frameworks such as OpenACC and 

OpenCL to simplify parallel programming of 

heterogeneous CPU/GPU systems. 

GPU based parallel programming can increase the 

speed of some algorithms significantly. In this project, 

authors have tried to use GPU parallelism for the 

document processing phase, but that attempt was 

unsuccessful because CUDA only supports those data 

types which have fixed shapes of its own. Another place 

where GPU parallelism can be applied, is during creation 

of the CSR Matrix, which is the step 7 of both training 

and classification algorithm. Based on the GPU 

capabilities, number of threads and blocks has to be 

chosen. Each thread will be given a near equal subset of 

the data and label array and will create their own label, 

indPtr and indices array. At the end, individual arrays 

created by each thread needs to be merged one after 

another to obtain the complete label, indPtr and indices 

array for the whole dataset. During this process, the 

ordering of data is changed randomly based on thread 

execution. For this reason, label array is also sent to each 

thread and a new combined label array is created at the 

end. Vocabulary hashtable has to be created during this 

process. This has to be shared among all the threads. So, 

inserting any data into the hashtable has to be treated as a 

critical section. So, this operation has to be performed as 

an atomic operation. If CUDA is not available, OpenCL 

based GPU parallelism can also be used in this place a 

similar manner. If neither is available, a same kind of 

algorithm can be used using multithreading. To add this 

enhancement, the following changes needs to be done: 

 

1. Retrieve maximum capabilities of the GPU using 

cudaGetDeviceProperties function. This will provide 

maxThreadsPerBlock, maxThreadsDimesnion, 

maxGridSize and calculate the number_of_threads 

that will be created by multiplying values of 

maxTheadsDimension 

2. Set data_per_thread = dataset_size / 

number_of_threads 

3. Create indPtrQueue, indicesQueue and labelQueue to 

store individual indPtr, indices and label arrays 

obtained by each thread. 

4. Launch kernel where dimensions are set based on 

maximum GPU capibilites and send the data and 

labels array along with the value of data_per_thread 

and number_of_threads. 

5. Inside the kernel function, do the follwing: 

a. Calculate start_index = i * data_per_thread and 

end_index = ((i+1) * data_per_thread) -1. If 

current_thread_id = number_of_threads - 1 (i.e. if 

the current thread is the last thread), then set 

end_index = dataset_size - 1. This is done, becasue, 

if dataset_size is not divisible by 

number_of_threads, then using the formula used 

before for end_index will miss out last few data. 

b. Create a subset_data array from data array, from 

index number start_index to end_index. 

c. Create two 1D arrays - indices and indPtr, which 

will be used to store relevant data for the current 

subset_data. 

d. For each cleaned wordset in the subset_data array: 

i. For each word present in the current wordset: 

1. Check whether the current word is absent 

in the vocabulary hashtable. If yes, then 

calculate the current length of the 

vocabulary hashtable, which will be used 

to represent this word numerically. Then, 

using this word as key and this numeric 

value as value, form the <key-value> pair 

and add it to the vocabulary hashtable. 

Adding data to the hashtable has to be 

performed as an atomic operation. 
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2. Use the word as key to obtain the 

corresponding value from the vocabulary 

hastable and add it to the indices array. 

ii. Calculate the current length of the indices array 

and store it to the indPtr array to mark the ending 

of the current and beginning of the next document. 

e. Put indPtr, indices & label array to the 

indPtrQueue, indicesQueue and 

labelQueue array respectively. This 

operation needs to be performed as an 

atomic operation. 

6. Wait for all the threads to finish their operations. 

7. Add 0 to indPtr. 

8. Clear all the values of labels array. 

9. For each value in indPtrQueue, indicesQueue and 

labelQueue, do the following: Size of all the queues 

are same, so one element will be taken from each. 

a. Append the current indices array fetched from 

indicesQueue to the existing indices array. 

b. Append the current labels array fetched from 

labelsQueue to the existing labels array. 

c. j = last_index_of (indPtr) 

d. last_value = indPtr[j] 

e. individual_indPtr = current indPtr array fetched 

from indPtrQueue 

f. Repeat for k varying from 0 to 

size_of(individual_indPtr) – 1 

i. indPtr[k+j] = individual_indPtr[k] + 

last_value 

10. Continue the original training and classification 

algorithm after this. 

 
 

 

IV. TEST CASES 

The testing phase makes use of four data sets out of 

which three are publicly available and the last dataset was 

collected from live twitter feeds. 

The datasets are: - 

 

1. List of books from Library Genesis Project. 

2. 20 news group dataset from scikit-learn. 

3. 4 out of 20 categories in 20 news group. 

4. Twitter data set collected using Twitter Streaming 

API. 

A.  List of books from Library Genesis Project 

Based in Russia, this is the largest and longest running 

currently openly available collection of ebooks. Headed 

by a team led by bookwarrior and Bill_G (of fiction 

torrent fame), they have several initiatives: 

 

i. Over 1.5 million files of mainly non-fiction 

ebooks. 

ii. An equivalent number of mainly fiction 

ebooks. 

iii. 20 million+ papers from journals of science, 

history, art etc. 

iv. Comics, magazines and paintings; totally 

amounting to at least 100 TB. [29] 

An SQL file is hosted by the Library Genesis Project 

which contains the list of books that they host. This file is 

open source and can be used by the community. It is 

licensed under Apache License version 2.0 [30]. This 

SQL file is used to fetch the names of the books which 

belong to certain subjects. The subjects which are taken 

into consideration are – Chemistry, Physics, Biology, 

Mathematics, Psychology and Computer Science. The 

training data set contains approximately 90,000 book 

names. Certain stop words, like “volume”, “part”, 

“edition”, etc. are stop words which specifically pertain 

to book names. Hence, such stop words have to be 

considered in the cleaning phase. Each label has to be 

denoted by a numeric value as SVMs can only work with 

numeric values. The names of subjects are converted into 

numeric values by the program reading it. 

Another sheet containing hundred book names of each 

subject is created manually using publicly known books 

and saved as an Excel file. This data set is used to test the 

accuracy of the classifier. The book classifier correctly 

classified the books from the testing data set with an 

accuracy of nearly 76.77%. 

B.  20 News group dataset from scikit-learn 

The 20 newsgroups dataset comprises around 18000 

newsgroups posts on 20 topics split in two subsets: one 

for training (or development) and the other one for testing 

(or for performance evaluation). The split between the 

train and test set is based upon messages posted before 

and after a specific date. [31] The training data set 

contains of 11,314 posts and the testing data set contains 

7,532 posts. [32]. Against each post, there is an associated 

label which will be one of the 20 possible labels. Each of 

these twenty labels are internally represented as numbers, 

instead of strings as SVMs can only work with numeric 

data. There are unnecessary metadata like “summary”, 

“from”, “subject”, etc. which are not related to any topic 

whatsoever and only degrades the accuracy of the 

classifier. To improve the accuracy, these headers and 

footers are removed and then proceed as normal with 

creating the classifier. The accuracy of the classifier 

before removing the headers was 57.67% using an SVM 

with Linear kernel with One-Vs-Rest (OVR or OVA). 

The accuracy of the same dataset, using the same SVM 

and Linear kernel, but after removing the headers and 

footers, reached a significant 61.34%. To further improve 

the accuracy, standard stop words were removed. Since 

these are normal day to day posts, written by humans, 

there are no context specific stop words. To do this, the 

NLTK package contains a list of such standard stop 

words which occur very frequently in the English corpus. 

Each post is checked for words which are present in this 

list of stop words. After removing such stop words, an 

accuracy of 68.77% was achieved with the same SVM 

with Linear kernel with One-Vs-Rest (OVR or OVA). 

C. 4 out of 20 categories in 20 news group dataset from 

scikit-learn 

Four of the 20 categories are considered for further 

testing. The four categories are – alt.atheism, 
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soc.religion.christian, comp.graphics and sci.med. Here, 

two categories, viz., alt.atheism and soc.religion.christian 

are closely related to each other, which would help 

analyze how good the classifier is at correctly identifying 

posts from these two classes. This would help identify 

exceptionally well trained classifiers as only the best 

classifiers would be able to correctly classify posts from 

these groups – thus increasing the overall percentage 

which would be indicative of the fact that it is an efficient 

classifier. The other two classes, viz., comp.graphics and 

sci.med are totally unrelated and have been selected as a 

control setup for cases when the classifier might not have 

been properly trained. If a classifier routinely incorrectly 

identifies test data from these two categories then it can 

be safely concluded that the classifier has been trained 

improperly. 

The training data set contains 2,257 posts and the test 

data set contains 1,502 posts when the afore mentioned 4 

out of 20 categories are selected. The accuracy of an 

SVM with Linear kernel with One-Vs-Rest (OVR or 

OVA) using this training and test data set reached 

82.16%. 

D.  Twitter data set collected using Twitter Streaming 

API 

The Twitter Streaming APIs give developers low 

latency access to Twitter’s global stream of Tweet data. 

Public streams, which have been used in this 

implementation, are streams of the public data flowing 

through Twitter. These are suitable for following specific 

users or topics, and data mining. A streaming client will 

be pushed messages indicating Tweets and other events 

have occurred, without any of the overhead associated 

with polling a REST endpoint. The streaming process 

gets the input Tweets and performs any parsing, filtering, 

and/or aggregation needed before storing the result to a 

data store. The HTTP handling process queries the data 

store for results in response to user requests. The benefits 

from having a real-time stream of Tweet data make the 

integration worthwhile for many types of apps [33]. 

For the present research work, some popular categories 

were thought of, viz., Movie, Food, Politics and Sports. 

Then, probable related keywords were chosen for each 

category to make up a list of search strings for each 

category. These additional related terms or keywords help 

to find more sample tweets from the live feed. These four 

categories are clearly disjoint and will help increase the 

accuracy of the classifier. For example, Food and Politics 

are in no way related to each other, neither are Sports and 

Movie. Sure enough, there can be cases where a person 

has tweeted about a movie which is based on some sport; 

but those would be fairly rare. The list of keywords 

chosen for each category is as follows:- 

 

1. Movie- “hollywood”, “movie”, “actor”, “grammy”, 

“ironman”, “superman”, “spiderman”, “pokemon”, 

“captain america”, “tintin”, “the blacklist” 

2. Food- “food”, “cuisine”, “tasty”, “yummy”, “yum” 

3. Politics- “politics”, “political”, “vote”, “trump”, 

“obama” 

4. Sports- “sports”, “cricket”, “baseball”, “basketball”, 

“football”, “olympics” 

 

This data collection process based on keywords was 

run on a Microsoft Azure Virtual Machine with a Python 

application running in four individual command prompts, 

one for each category. At the end of 48 hours, the data 

collected was assimilated and was put together and 

labelled as the training data set in a JSON file. This same 

process was run for another 24 hours, and at the end, the 

data was put together and labelled as test data also in 

JSON format. The total number of cleaned tweets in the 

training dataset resulted to 12 lakhs and the total number 

of cleaned tweet in the testing data set amounted to 8 

lakhs. The data collection process lasted for 72 hours in 

total. This data set was biased more towards the 

“Politics” category. There were almost double or triple 

times the number of tweets of “movie” category in 

“politics” category. The other categories had more or less 

the same number of tweets. 

The Twitter Streaming API returns a JSON object 

which contains a number of fields out of which there is a 

“text” field which contains the main tweet. The other 

fields are just meta-data like date of post, time, username, 

etc. The “text” field is in raw byte format, indicated by a 

“\b” right at the beginning of the text string.  The string 

corresponding to the “text” field needs to be cleaned 

since it contains indicators like “RT” if it is a retweet, 

hashtags, links to external websites, special characters, 

emojis, etc. 

The cleaning phase involves removing unnecessary 

links, special characters and other such substrings as 

mentioned afore. The following substrings are removed 

from the string corresponding to the “text” field:- 

 

1. New line characters are replaced with a single space. 

2. HTML sequences like &amp; &alt; are removed 

using regular expressions. 

3. Twitter handles are removed using regular 

expressions. The string is searched for ‘@’. Anything 

following that is removed, unless a space is encountered, 

and the search process continues to the next substring. 

4. External links like http, https, www, ftp are also 

removed using regular expressions. 

5. Websites are removed by checking whether a dot 

(‘.’) exists in the third or the fourth position from the end 

of the string. 

6. The “\b” indicator at the beginning of the string is 

removed. 

7. The “RT” – retweet indicator is also removed. 

8. For hashtags, anything after the “#” symbol is 

considered as a word for further processing. 

9. Emojis are expressed in the string as hexadecimal 

characters which begin with “\x”. Such substrings are 

identified in the string and are removed. This also 

removes any unprintable characters that a Twitter user 

might have put in his tweet. 

 

All these words are striped off of white spaces and are 

added to a list. This list now contains the cleaned words 
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which are then added with a corresponding label. The 

label is the category currently under consideration. This 

results in a two-attribute format, where the first attribute 

denotes the list of cleaned words from the initial string 

and the second attribute denotes the category. A list of 

these tuples is created to get the final list for that 

category. This process is repeated for all the four 

categories. At the end of the cleaning process, four 2-

dimensional lists are created, each list for each category. 

All these lists are saved in a JSON file. This is what is fed 

into the rest of the program for the training as well as 

classification phases. 

One key-value pair of this dataset is like:- 

"President Trump and his majorities in the House and 

Senate regroup after failure to pass the health care bill": 

"Politics", where the tweet is the key and the category is 

the value. 

 

V. RESULTS AND DISCUSSION 

A.  Accuracy Comparisons 

For comparing accuracy, various classifiers are 

compared during testing. SVM with linear kernel with 

both OVO strategy and OVR strategy are compared in 

this manner. SVM with RBF and Polynomial kernel both 

were tested with OVR strategy, as OVO is not supported 

by API. Linear, RBF and Polynomial kernels are 

compared in this manner. SVM is also compared with 

many other classifiers which are inherently Multiclass 

classifiers, like K-Neighbors, Decision Tree, Random 

Forest, Ada Boost, Bernoulli Naive Bayes and 

Multinomial Naive Bayes Classifiers. From pre-

processing to Transformed CSR Matrix generation using 

TF-IDF all the steps of this algorithm is followed for all 

the classifiers. Only the last step where the output of TF- 

Table 1. F1 Score and Accuracy in a scale of 0 to 1 for all the classifiers 

used for 20 Newsgroup Corpus and 4 of 20 Newsgroup 

 20 Newsgroup Corpus 4 of 20 Newsgroup 

F1 Accuracy F1 Accuracy 

Linear  

SVM-OVO  
0.660234 0.671402 0.804991 0.813582 

Linear 

SVM-OVR 
0.675375 0.687732 0.812527 0.821571 

RBF SVM-

OVR 
0.627826 0.658125 0.739714 0.766977 

Polynomial 

SVM-OVR 
0.184571 0.138078 0.731497 0.748336 

K-

Neighbors 

Classifier 

0.054097 0.065454 0.658187 0.663782 

Decision 

Tree 
0.397888 0.406930 0.565576 0.579228 

Random 

Forest 

Classifier 

0.439937 0.452735 0.655613 0.667776 

Ada Boost 

Classifier  
0.403365 0.403365 0.664652 0.673103 

Bernoulli 

NB  
0.420290 0.448221 0.658187 0.663782 

Multinomial 

NB 
0.600471 0.634758 0.648719 0.708389 

IDF is fed into the Linear SVM with OVR strategy is 

replaced with respective classifiers. Table 1 and table 2 

demonstrate the corresponding outputs obtained. The 

results have been shown correct up to 6 decimal places. 

Table 2. F1 Score and Accuracy in a scale of 0 to 1 for all the classifiers 

used for LibGen Books Dataset and Twitter Dataset 

 

LibGen Books 

Dataset 
Twitter Dataset 

F1 Accuracy F1 Accuracy 

Linear  

SVM-OVO  
0.488098 0.797979 0.936331 0.935820 

Linear 

SVM-OVR 
0.400390 0.767677 0.937314 0.936752 

RBF SVM-

OVR 
0.392233 0.760943 ----- ----- 

K-

Neighbors 

Classifier 

0.348024 0.643098 ----- ----- 

Decision 

Tree 
0.376014 0.690236 0.914752 0.913779 

Ada Boost 

Classifier  
0.427957 0.414141 0.887528 0.879945 

Bernoulli 

NB  
0.473471 0.741044 0.927057 0.926928 

Multinomial 

NB 
0.433427 0.686869 0.892711 0.893348 

 

As seen from the previous tables, some of the 

classifiers failed for certain datasets, like polynomial 

SVM with OVR and random forest for both LibGen and 

Twitter dataset, RBF SVM with OVR and K-Neighbors 

for Twitter dataset. These classifiers failed after they 

consumed a lot of CPU and eventually ran out of memory 

in the testing environment used – AMD FX-6100 Hexa-

core processor with 10 GB RAM. They failed because of 

the size of the dataset could not be handled by the 

classifier in the given testing environment.  

Figure 1 depicts a comparative study of the results as 

shown in table 1. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Accuracy comparison bar chart of various classifiers for 20 

Newsgroup and 4 of 20 Newsgroup datasets. 

20 Newsgroup consists of 20 different classes, so 

naturally the accuracy is less than 4 of 20 Newsgroup 

which contains 4 classes. Here, it is seen from figure 1 

that for both the cases performance of Linear SVM with 

OVR is better than all the other classifiers.  
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LibGen books dataset was classified using various 

classifiers using same training and testing data given to 

all the classifiers. Only in this dataset, as depicted in 

figure 2, it can be noticed that the accuracy of Linear 

SVM with OVO is slightly better than OVR. 

 

 

Fig.2．Accuracy comparison bar chart of various classifiers for 

LibGen dataset. 

As seen from figure 3, Twitter streaming dataset gave 

very high accuracy in all the classifiers, because of the 

extensive cleaning processes the dataset has went through 

and also for the proposed algorithm.  

Linear SVM with OVO and OVR gives almost the 

same accuracy as per the graph but the exact figures are 

OVO gives an accuracy of 0.935820206987 or about 93.4% 

where OVR gives 0.936752091088. So, it is noted that 

Linear SVM with OVR gives the most accurate result. 

 

 

Fig.3. Accuracy comparison bar chart of various classifiers for 

Twitter streaming dataset. 

B.  Accuracy Comparisons 

 

Fig.4. Execution speed comparison bar chart of base and enhanced 

algorithm for all the datasets 

The originally proposed base algorithm was later 

enhanced using two enhancements – multithreading and 

GPU parallelism using CUDA. 

For testing, at first, the base algorithm was executed. 

For the second test, the first enhancement, multithreading, 

was introduced. For the last test, both enhancements were 

used, i.e., multithreading and GPU parallelism. All the 

three tests were carried out on a Windows 10 Home 

Edition laptop with a dual-core Intel® Core ™ i3-2350M 

processor, clocked at 2.30 GHz with Hyper-Threading 

(enables it to have 4 threads), with 4 GB of RAM and 

nVidia® GeForce® 610M GPU with CUDA® compute 

capability of 2.1. 

After all the three tests, it was observed that multi-

threading has increased the speed of execution at a 

significant level if the dataset is large (LibGen Books and 

Tweets). For smaller datasets (20 Newsgroup and 4 of 20 

Newsgroup), the effect has not been that significant. After 

introducing GPU parallelism along with multi-threading, 

it was observed that for large datasets (LibGen Books and 

Tweets) execution speed has increased. But for small 

datasets like 20 Newsgroup, the execution speed decreases. 

For very small datasets like 4 of 20 Newsgroup, execution 

speed decreases significantly even worse than the base 

algorithm without any enhancements. For GPU 

parallelism using CUDA, data needed to be transferred 

from CPU to GPU and vice-versa. This extra overhead has 

caused the overall speed to decrease in case of small 

datasets. But for large datasets, the level of speed 

enhancement achieved has been more than the extra 

overhead, as there was a lot of data available to be worked 

on in parallel, so the overall execution speed has increased. 

 

VI. CONCLUSION 

While developing this system, a conscious effort has 

been made to create and develop a robust and efficient, 

making use of available tools, techniques and resources – 

that would generate an elegant system for automatic text 

classification. 

The present research work has successfully 

implemented an SVM with One-Vs-Rest strategy with an 

appreciable amount of accuracy for all the data sets that 

have been used to test the accuracy of the system. It has 

also provided a comparative study of most of the popular 

classifiers. The performance, accuracy and time for 

training each of the classifiers have been compared. To 

perform this study, the authors have made use of the 

scikit-learn package – almost all the popular classifiers, 

like Decision Tree, K-Neighbors Classifier, RBF – SVM 

with OVO and OVR, etc. are present. The authors have 

proposed enhancements to their base algorithm by using 

multi-threading and GPU parallelism. By doing so, the 

training time of the Linear-SVM classifier with OVR on 

the LibGen dataset was reduced to just 22.22% (multi-

threaded time * 100/single threaded time) of the time 

taken by the same classifier without multi-threading. This 

was achieved on a Windows 10 desktop PC with a hexa-

core AMD FX6100 processor, clocked at 3.6 GHz, with 
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10 GB of RAM, at an average of 8% CPU usage. All 

relevant statistics have been provided in the present paper. 

Further improvements in execution time can be 

achieved by using GPU parallelism while creating the 

classifier object. As forethought, this approach can be 

used to classify YouTube videos, blogs, Facebook posts, 

or any other form of digital document. The classifier can 

be trained in a perpetual manner so that the classifier is 

aware of recent trending words. Similarly, data sets 

formed using previous decade's newspapers or blogs 

would provide an insight to archaic words to the classifier, 

like "bedlam", "demit", "dight" or "grimalkin" – which are 

no longer used frequently in the English corpus – and can 

therefore be used to classify old digital documents as well. 

Also, data sets provided by organizations like 

commoncrawl, which offer petabytes of data collected 

over more than 7 years of web crawling. 

On a concluding note, the area of text classification is 

an ongoing research area and one could expect more 

efficient algorithms in the near future. With the size of the 

web ever increasing and the number of users sky-

rocketing, automatic text classification would be a 

pressing need felt by every single user.  
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