
I.J. Modern Education and Computer Science, 2019, 1, 11-23
Published Online January 2019 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2019.01.02

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 1, 11-23

Text Classification Using SVM Enhanced by

Multithreading and CUDA

Soumick Chatterjee
Otto von Guericke University, Magdeburg, Germany

Email: contact@soumick.com

Pramod George Jose

Department of Cyber Security and Networks, Amrita University, Coimbatore, India

Email: pramod.gj17@gmail.com

Debabrata Datta

Department of Computer Science, St. Xavier’s College (Autonomous), Kolkata, India

Email:debabrata.datta@sxccal.edu

Received: 08 August 2018; Accepted: 17 October 2018; Published: 08 January 2019

Abstract—With the sudden growth of the internet and

digital documents available on the web, the task of

organizing text data has become a major problem. In

recent times, text classification has become one of the

main techniques for organizing text data. The idea behind

text classification is to classify a given piece of text to a

predefined class or category. In the present research work,

SVM has been used with linear kernel using the One-V-

Rest strategy. The SVM is trained using various data sets

collected from various sources. It may so happen that

some particular words were not so common around 5-6

years ago, but are currently prevalent due to recent trends.

Similarly, new discoveries may result in the coinage of

new words. This process can also be applied to text blogs

which can be crawled and then analyzed. This technique

should in theory be able to classify blogs, tweets or any

other document with a significant amount of accuracy. In

any text classification process, preprocessing phase takes

the most amount of time – cleaning, stemming,

lemmatization etc. Hence, the authors have used a

multithreading approach to speed up the process. The

authors further tried to improve the processing time of the

algorithm using GPU parallelism using CUDA.

Index Terms—Stemming, lemmatization, SVM,

mutithreading, CUDA.

I. INTRODUCTION

With the rapid growth and expansion of the internet,

classifying digital text documents has been an area of

constant research. Text classification can be used to

categorize news articles, blog posts, open bulletin boards,

online forums, etc. Text classification is essential as it

helps find relevant information based on a user’s search

string and helps associate one document with another. In

recent times, Natural Language Processing (NLP),

Machine learning and Data mining techniques work in

tandem to automate text classification. Properly

representing, annotating and summarizing presents

various challenges – which need to be taken care of for an

efficient and accurate classification.

Multithreading is a technique by which a piece of code

or a set of instructions is used by multiple processors

simultaneously, each at a different stage of execution, for

achieving parallelism and thus reduce overall execution

time of the program. Multithreading is very popular in the

modern era with various CPUs of Intel and AMD

providing this as a feature, with each consumer grade

processor offering anywhere from 2 to 64 threads. This

feature is specific for CPUs. Parallelism on Graphics

Processing Units (GPUs) is gaining attention with each

graphic processor die having thousands of cores. A core

on a GPU is weaker than that on a CPU in the sense that

they are not capable of executing complex instructions

like stemming and lemmatization – but are highly

optimized for crunching numbers – and when about three

thousand cores work in tandem, numeric calculations

become a breeze. The sheer number of cores on a GPU

offers an amount of parallelism which is orders greater

than what CPU cores can offer. nVidia – a manufacturer

of GPUs, had created a platform called CUDA, which

allows developers to harness the raw power of the cores

on their devices. The authors have utilized both

multithreading and the CUDA platform to massively

decrease the overall execution time of their algorithm.

Classification of documents into a fixed number of

predefined classes is the main objective of text

categorization. A particular document may get classified

into multiple categories, a single category or no category

at all. This process of classification can be automated by

using classifiers which need to be trained using labelled

examples – this is called supervised learning [1].

Text classification has a wide scope of application,

such as: relevance feedback, netnews filtering,

reorganizing a document collection, spam filtering,

12 Text Classification Using SVM Enhanced by Multithreading and CUDA

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 1, 11-23

language identification, readability assessment, sentiment

analysis etc. Text classification can be used in the field of

business decision making, medicine and so on.

II. RELATED WORK

For the purpose of text classification [2], a lot of

different methodologies are used as depicted in [3,4].

Naive Bayes classifier [5], k-nearest neighbor algorithms,

Decision trees such as ID3 or C4.5, Artificial neural

networks etc. being some of the approaches used. The

authors have chosen Support Vector Machine (SVM) for

this implementation. SVM by nature is binary classifier,

and for classifying text into N-number of classes, special

strategies needs to be used to make SVM work like an N-

class classifier. SVMs are often referred to as universal

classifiers in the literature. This is especially because, by

the use of an appropriate kernel function, SVMs can be

used to learn polynomial classifiers, radial basic function

networks and many more. SVMs have a striking property

that their ability to learn is unrelated to the dimensionality

of the feature space. This allows generalizing data even in

the presence of many features. Text documents have

numerous features and since SVMs use overfitting

protection, which does not particularly depend on the

number of features, they have the potential to perform

well in such situations. A document vector, representing a

particular document would essentially be a sparse vector.

Kivinen et. al. [6] have provided evidence that additive

algorithms, which share a similar inductive bias like

SVMs are suitable for solving problems related to sparse

instances [1].

While some classification algorithms naturally permit

the use of more than two classes, others are by nature

binary algorithms (allows classifying into two classes);

like SVM; these can, however, be turned into

multinomial classifiers by a variety of strategies [15]. If

there are N different classes, One-vs-Rest (OVR) type of

classifier will train one classifier per class in total N

different binary classifiers. For the ith classifier, let the

positive examples be all the points in class I (i.e. all the

labels which has class i as its label), and let the negative

examples be all the points not in class i. Let fi be the ith

classifier [15]. Making decisions means applying all

classifiers to an unseen sample x and predicting the label

i for which the corresponding classifier reports the

highest confidence score:

f(x) = arg max fi(x), where ‘i’ varies from 0 to N

Although this strategy is popular, it is a heuristic that

suffers from several problems. At first, the scale of the

confidence values may differ between the binary

classifiers. Moreover, even if the class distribution is

balanced in the training set, the binary classification

learners see unbalanced distributions because typically

the set of negatives they see is much larger than the set of

positives [16].

Another type of classification approach is One-vs-One

(OVO) which is also known as all-pairs or All-vs-All

classification. After building (N(N−1))/2 classifiers, one

classifier to distinguish each pair of classes i and j. Each

receives the samples of a pair of classes from the original

training set, and must learn to distinguish these two

classes [16]. Let fij be the classifier where class i were

positive examples and class j were negative [15]. At

prediction time, a voting scheme is applied: all

(N(N−1))/2 classifiers are applied to an unseen sample

and the class that got the highest number of "+1"

predictions gets predicted by the combined classifier.

f(x) = arg max (∑ fij(x)).

 I j

This is much less sensitive to the problems of

imbalanced datasets but is much more computationally

expensive and some regions of its input space may

receive the same number of votes.

Viewed naively, OVO seems faster and more memory

efficient. It requires O(N2) classifiers instead of O(N), but

each classifier is, on average much smaller. If the time to

build a classifier is super linear in the number of data

points, OVO is a better choice.

III. PROPOSED ALGORITHM

The proposed algorithm, as discussed in this paper has

two major segments, viz., training and classification.

A Algorithm: Training

1. Collect labeled dataset

2. Create the following empty arrays:

a. 2D array, named data, to store the resultant

cleaned, tokenized documents

b. 1D array, named label, to store labels

corresponding to each document.

c. 1D array, named uniqueLabels, to store the

unique labels present in the dataset

3. For each document present in the dataset, do the

following:

a. Convert the document to lower case

b. Tokenize the lower case document and generate

the wordset

c. Remove the following from the wordset:

i. Punctuations

ii. Stopwords

iii. Custom stopwords based on training dataset (if

required)

iv. Custom elements, such as numbers, roman

numerals etc. as per requirement based on

training dataset

d. For each word present in the wordset, do the

following:

i. Tag the word with its corresponding parts of

speech tag

ii. Perform stemming by finding out

morphological root of the word using the parts

of speech tag as one of the parameters

iii. Perform lemmatization on the stemmed word

to generate clean word.

 Text Classification Using SVM Enhanced by Multithreading and CUDA 13

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 1, 11-23

iv. Add the cleaned word to the cleaned wordset

e. Add the cleaned wordset to data array

f. If the label of the current document is not

present in the uniqueLabels array, then add it.

g. Find out the index of the label of the current

document in the uniqueLabels array and add

that index to the label array. In this way, it is

ensured that labels are represented in a

numerical format.

4. Save the uniqueLabels array to disk for the

classification phase.

5. Create a hashtable, named vocabulary, to store all the

unique words present in all the documents.

6. Create the following arrays, for CSR Matrix

generation:

a. 1D array, named indices, which stores the index

of the current word in the vocabulary. This will

store all the indices of the words present in all

the documents one after the other.

b. 1D array, named indPtr, to store the index

pointers, which indicates the beginning and end

of each document in the indices array. Initialize

it by adding 0 to indicate the beginning of the

first document.

7. For each cleaned wordset in the data array:

a. For each word present in the current wordset:

i. Check whether the current word is absent in

the vocabulary hashtable. If yes, then calculate

the current length of the vocabulary hashtable,

which will be used to represent this word

numerically. Then, using this word as key and

this numeric value as value, form the <key-

value> pair and add it to the vocabulary

hashtable.

ii. Use the word as key to obtain the

corresponding value from the vocabulary

hastable and add it to the indices array.

b. Calculate the current length of the indices array

and store it to the indPtr array to mark the

ending of the current and beginning of the next

document.

8. Save the vocabulary hashtable to disk to use it during

the classification phase.

9. Generate the CSR Matrix using the indices, indPtr as

parameters along with a special array which contains

all ones and of the same length as the indices array,

to denote that each of those words whose indices are

stored have been encountered once in the document.

10. Calculate the Term Frequency – Inverse Document

Frequency using the CSR Matrix as parameter and

generate TFIDF Transformed CSR Matrix.

11. Train the SVM with Linear kernel using the

Transformed CSR Matrix. As Linear SVM is a

binary classifier, and here a multiclass classification

is required, One-Vs-Rest (OVR or OVA) strategy is

used for reducing the problem of multiclass

classification to multiple binary classification

problems.

12. Save the trained classifier to disk for the

classification phase.

B. Algorithm: Classification

1. Collect test dataset. This dataset may or may not

contain labels. If labels are present, it then can be

used to test the accuracy of the classifier. In this

implementation, labeled dataset is used for testing

purposes.

2. Create the following empty arrays:

a. 2D array, named testData, to store the resultant

cleaned, tokenized test documents

b. 1D array, named testLabel, to store labels

corresponding to each test document.

3. Fetch the uniqueLabels array from disk, generated

during the training process.

4. For each document present in the test dataset, do the

following:

a. Convert the document to lower case

b. Tokenize the lower case document and generate

the wordset

c. Remove the following from the wordset:

i. Punctuations

ii. Stopwords

iii. Custom stopwords based on training dataset (if

required)

iv. Custom elements, such as numbers, roman

numerals etc. as per requirement based on

training dataset

d. For each word present in the wordset, do the

following:

i. Tag the word with its corresponding parts of

speech tag

ii. Perform stemming by finding out

morphological root of the word using the parts

of speech tag as one of the parameters

iii. Perform lemmatization on the stemmed word

to generate clean word.

iv. Add the cleaned word to the cleaned wordset

e. Add the cleaned wordset to testData array

f. Find out the index of the label of the current

document in the uniqueLabels array and add

that index to the testLabel array. In this way,

accuracy of the classifier can be checked at the

end of classification phase by comparing labels

present in the testLabel array with the predicted

labels.

5. Fetch vocabulary hashtable from disk, generated

during training phase.

6. Create the following arrays, for CSR Matrix

generation:

a. 1D array, named indicesTest, which stores the

index of the current word in the vocabulary.

This will store all the indices of the words

present in all the test documents one after the

other.

b. 1D array, named indptrTest, to store the index

pointers, which indicates the beginning and end

of each test document in the indicesTest array.

Initialize it by adding 0 to indicate the

beginning of the first test document.

7. For each cleaned wordset in the testData array:

a. For each word present in the current wordset:

14 Text Classification Using SVM Enhanced by Multithreading and CUDA

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 1, 11-23

i. Check whether the current word is present in

the vocabulary hashtable. If yes, use the word

as key to obtain the corresponding value from

the vocabulary hastable and add it to the

indicesTest array.

b. Calculate the current length of the indicesTest

array and store it to the indptrTest array to mark

the ending of the current and beginning of the

next test document.

8. Generate the CSR Matrix using the indicesTest,

indptrTest as parameters along with a special array

which contains all ones and of the same length as the

indicesTest array, to denote that each of those words

whose indices are stored have been encountered once

in the test document. During this, the dimensions of

the matrix should be equal to [length of testData

array, length of vocabulary hashtable], to make the

number of features used during training and

classification phases the same.

9. Calculate the Term Frequency – Inverse Document

Frequency using the CSR Matrix as parameter and

generate TFIDF Transformed CSR Matrix.

10. Fetch the classifier from disk, generated after the

training phase.

11. Use the classifier to predict labels for each test

document, using the Transformed CSR Matrix as

parameter.

12. Compare the predicted labels with the labels present

in the testLabels array to calculate the accuracy of

the classifier.

The algorithm which is discussed before has various

components as depicted below:

1) Pre-processing

Before the documents can be used in the algorithm,

some preprocessing is required. First, the documents need

to be converted into lower case. This is done so that

words like “Test” and “test” are treated as the same word.

Next, the document is tokenized to generate the wordset,

so that each word, punctuation, numbers can be identified

separately. For this, word_tokenize() method of

ntlk.tokenize module is used. As opposed to this, had

string.split() method, based on spaces, been used, the

string, “Welcome, Hello World!” would have resulted in

3 tokens, viz., “Welcome,” , “Hello” and “World!” which

does not serve the purpose. word_tokenize() would result

in 5 tokens, viz., “Welcome”, “,”, “Hello”, “World” and

“!” from which each word, punctuation can be identified

separately.

Now, punctuations need to be removed from the

wordset as they are useless during classification. Next,

stopwords need to be removed from the wordset. Some

extremely common words which would appear to be of

little value in helping select documents matching a user

need are excluded from the vocabulary entirely. These

words are called stop words [17]. Custom stopwords can

also be removed if the dataset demands for it. For

example, words like “volume”, “edition”, “part”, etc. can

also be treated as stop words in the context of book name

classification as they possess no actual benefit to the

classification process.

2) Stemming and Lemmatization

In linguistic morphology and information retrieval,

stemming is the process of reducing inflected (or

sometimes derived) words to their word stem, base or

root form—generally a written word form. The stem need

not be identical to the morphological root of the word; it

is usually sufficient that related words map to the same

stem, even if this stem is not in itself a valid root.

For grammatical reasons, documents are going to use

different forms of a word, such as organize, organizes,

and organizing. Additionally, there are families of

derivationally related words with similar meanings, such

as democracy, democratic, and democratization. In many

situations, it seems as if it would be useful for a search

for one of these words to return documents that contain

another word in the set.

The goal of both stemming and lemmatization is to

reduce inflectional forms and sometimes derivationally

related forms of a word to a common base form.

Stemming usually refers to a crude heuristic process

that chops off the ends of words in the hope of achieving

this goal correctly most of the time, and often includes

the removal of derivational affixes. Lemmatization

usually refers to doing things properly with the use of a

vocabulary and morphological analysis of words,

normally aiming to remove inflectional endings only and

to return the base or dictionary form of a word, which is

known as the lemma. If confronted with the token saw,

stemming might return just ‘s’, whereas lemmatization

would attempt to return either see or saw depending on

whether the use of the token was as a verb or a noun. The

two may also differ in that stemming most commonly

collapses derivationally related words, whereas

lemmatization commonly only collapses the different

inflectional forms of a lemma [19].

3) Bag-of-words Representation

The bag-of-words model is a simplifying

representation used in natural language processing and

information retrieval (IR). In this model, a text (such as a

sentence or a document) is represented as the bag

(multiset) of its words, disregarding grammar and even

word order but keeping multiplicity [21]. The bag-of-

words model is commonly used in methods of document

classification where the (frequency of) occurrence of each

word is used as a feature for training a classifier.

For example, two simple text documents are

considered here:

1. John likes to watch movies. Mary likes movies too.

2. John also likes to watch football games.

Based on these documents, vocabulary (i.e. list of

words) can be constructed as:

[

 "John", "likes", "to", "watch", "movies", "also",

 "football", "games", "Mary", "too"

]

 Text Classification Using SVM Enhanced by Multithreading and CUDA 15

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 1, 11-23

In practice, the Bag-of-words model is mainly used as

a tool of feature generation. After transforming the text

into a "bag of words", various measures to characterize

the text can be calculated. The most common type of

characteristics, or features calculated from the Bag-of-

words model is term frequency, namely, the number of

times a term appears in the text. For the example above,

the following two lists can be constructed to record the

term frequencies of all the distinct words:

(1) [1, 2, 1, 1, 2, 0, 0, 0, 1, 1]

(2) [1, 1, 1, 1, 0, 1, 1, 1, 0, 0]

Each entry of the lists refers to count of the

corresponding entry in the list (this is also the histogram

representation). For example, in the first list (which

represents document 1), the first two entries are "1,2".

The first entry corresponds to the word "John" which is

the first word in the list, and its value is "1" because

"John" appears in the first document 1 time. Similarly,

the second entry corresponds to the word "likes" which is

the second word in the list, and its value is "2" because

"likes" appears in the first document 2 times. This list (or

vector) representation does not preserve the order of the

words in the original sentences, which is just the main

feature of the Bag-of-words model. This kind of

representation has several successful applications, for

example email filtering [21].

This can be represented using a 2D array as:

Where row index denotes the document number and

column index denotes the word index in the vocabulary.

Whenever a word is encountered in a document, element

present in that particular index [row, column] is

incremented. All non-zero values in that matrix denote

the number of occurrences of the word in a document.

As most documents will typically use a very small

subset of the words used in the total dataset, the resulting

matrix will have many feature values that are zeros. For

instance, a collection of 10,000 short text documents

(such as emails) will use a vocabulary with a size in the

order of 100,000 unique words in total while each

document will use 100 to 1000 unique words individually.

In order to be able to store such a matrix in memory but

also to speed up algebraic operations a sparse matrix is

used [22]. For the same, Compressed Sparse Row matrix

or CSR Matrix is used in this implementation.

4) Vocabulary generation using Hashtable

In this implementation, the vocabulary is constructed

using a hashtable, where words are treated as keys and a

numeric representation of that word as value to form

every key-value pair. Unlike arrays, hashtables do not

have any indices. So, the length of the hashtable before

inserting the newly encountered word is treated as the

numerical representation of that word.

As an example, the following two documents are

considered:

1. John likes to watch movies. Mary likes movies too.

2. John also likes to watch football games.

This forms the vocabulary hashtable as : -

{

 "John" : “0”,

 "likes" : “1” ,

 "to" : “2”,

 "watch" : “3”,

 "movies" : “4”,

 "also" : “5”,

 "football" : “6”,

 "games" : “7”,

 "Mary" : “8”,

 "too" : “9”

}

Hashtable is used instead of an array is to improve the

search-time complexity to O(1).

5) CSR Matrix Generation

The compressed sparse row (CSR) or compressed row

storage (CRS) format represents a matrix M by three

(one-dimensional) arrays, that respectively contain

nonzero values, the extents of rows, and column indices.

It is similar to Coordinate list (COO) but compresses the

row indices, hence the name. This format allows fast row

access and matrix-vector multiplications (Mx). COO

stores a list of (row, column, value) tuples. Ideally, the

entries are sorted (by row index, then column index) to

improve random access times. This is another format

which is good for incremental matrix construction [23].

For example,

A matrix,

can be represented using CSR matrix as,

(1, 1) 2

(1, 3) 4

(2, 3) 1

During the classification phase, while creating the CSR

Matrix, the dimension should be set to [length of testData

array, length of vocabulary hashtable], to make the

number of features used during training and classification

phases the same.

6) Term Frequency – Inverse Document Frequency

Term frequency–inverse document frequency is a

numerical statistic that is intended to reflect how

important a word is to a document in a collection or

corpus [18]. It is often used as a weighting factor in

information retrieval, text mining, and user modeling.

The TF-IDF value increases proportionally to the number

of times a word appears in the document, but is often

offset by the frequency of the word in the corpus, which

helps to adjust for the fact that some words appear more

16 Text Classification Using SVM Enhanced by Multithreading and CUDA

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 1, 11-23

frequently in general. Nowadays, TF-IDF is one of the

most popular term-weighting schemes [24].

In this implementation, the normalized TF-IDF is

stored as a CSR Matrix.

7) Support Vector Machine

A support vector machine constructs a hyper-plane or

set of hyper-planes in a high or infinite dimensional space,

which can be used for classification, regression or other

tasks. Intuitively, a good separation is achieved by the

hyper-plane that has the largest distance to the nearest

training data points of any class (so-called functional

margin), since in general the larger the margin the lower

the generalization error of the classifier [7,27].

8) Multiclass Classification: One-Vs-Rest

This strategy consists in fitting one classifier per class.

For each classifier, the class is fitted against all the other

classes. In addition to its computational efficiency (only

n_classes classifiers are needed), one advantage of this

approach is its interpretability. Since each class is

represented by one classifier only, it is possible to gain

knowledge about the class by inspecting its

corresponding classifier [28]. After an extensive trial and

error testing, OVR Strategy was chosen for this algorithm.

It was found that OVR strategy gives more accuracy for

most of the datasets which were used for testing this

algorithm. Working methodology of the OVR strategy is

already explained earlier.

The algorithm which has been elaborated in the

previous paragraphs has been enhanced with the uses of

multi-threading and CUDA as described below:

a) Multi-threading

To implement multithreading, some changes need to be

done in the previously proposed algorithms. In the step 3

of training and in the step 4 of classification algorithm,

where each document is processed from the dataset,

multithreading can be used, so that multiple documents

can be processed simultaneously. Number of threads that

can be created will depend upon the CPU capabilities.

List of unique labels has to be a shared variable, because

during training phase, whenever any of the threads finds a

new unique label, it needs to add it to this list, and when

one thread updates the unique labels list, all the other

threads should get this updated list. So, updating unique

labels list needs to be treated as a critical section, and

lock needs to be acquired while entering this critical

section and needs to be released while leaving. During

testing phase, this critical section is not required as

nothing will be added to the unique labels list. Each

thread will be given a near equal subset of the dataset and

will create their own data and labels array. At the end,

individual arrays created by each thread needs to be

merged to obtain the complete data and label array for the

given dataset. To add this enhancement, the following

changes needs to be done:

1. Set number_of_threads according to the CPU

Capibilites

2. Set data_per_thread = dataset_size /

number_of_threads

3. Create dataQueue and labelQueue to store individual

data and label arrays obtained by each thread

4. Create a 1D array to store the list of threads

5. Repeat for i varriying 0 to number_of_threads-1

a. Calculate start_index = i * data_per_thread and

end_index = ((i+1) * data_per_thread) -1. This

start_index and end_index denote the start and end

index of the dataset which the current thread

(Thread ID i) will be working with.

b. Create a new thread and pass the folliwng: i as

thread ID, dataset (including labels), start_index,

end_index, dataQueue, labelQueue, type of thread

- "Train" or "Test"

c. Add the newly created thread to the list of threads

d. Start the newly created thread.

6. Increment i by 1

7. Create a new thread and pass the folliwng: i as thread

ID, dataset (including labels), start_index, end_index,

dataQueue, labelQueue, type of thread - "Train" or

"Test". start_index is calculated same as earlier, but

end_index = dataset_size - 1. This thread is created

outside of the loop, sperately, becasue, if dataset_size

is not divisible by number_of_threads, then using the

formula used above for end_index will miss out last

few data.For this same reason, the above loop itirates

one less time (0 to number_of_threads - 1 instead of

0 to number_of_threads).

8. Add the newly created thread to the list of threads

9. Start the newly created thread

10. Do the following in the body of each thread, which

all of the threads will execute:

a. For each document present in the provided subset

of the dataset, given to the current thread, do the

following:

i. Convert the document to lower case

ii. Tokenize the lower case document and

generate the wordset

iii. Remove the following from the wordset:

1. Punctuations

2. Stopwords

3. Custom stopwords based on training

dataset (if required)

4. Custom elements, such as numbers, roman

numerals etc. as per requirement based on

training dataset

iv. For each word present in the wordset, do

the following:

1. Tag the word with its corresponding parts

of speech tag

2. Perform stemming by finding out

morphological root of the word using the

parts of speech tag as one of the parameters

 Text Classification Using SVM Enhanced by Multithreading and CUDA 17

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 1, 11-23

3. Perform lemmatization on the stemmed

word to generate clean word

4. Add the cleaned word to the cleaned

wordset

v. Add the cleaned wordset to data array of

the current thread

vi. If type of thread is "Train":

1. Check if the label of the current document

is present in the uniqueLabels array or not.

If yes, then aquire lock and then add it.

After adding, release the lock.

2. Find out the index of the label of the

current document in the uniqueLabels

array and add that index to the label array

of the current thread.

vii. If type of thread is "Test":

1. Check if the label of the current document

is present in the uniqueLabels array or

not.If yes, then add its index, if not, then

add -1 to the label array of the current

thread.

b. Aquire a lock, as another ciritical section

is encountered. Put data and label array

of the current thread to the dataQueue

and labelQueue respectively. Release the

lock.

11. Wait for all threads to finish their work

12. Fetch all individual data and label arrays created by

al the threads from the dataQueue and labelQueue

respectively and merge them together to obtain

combined data array and label array

13. Continue the original training and classification

algorithm after this

b) GPU Parallelism using CUDA

CUDA or Compute Unified Device Architecture is a

parallel computing platform and application

programming interface (API) model created by nVidia. It

enables programmers to use a CUDA-enabled GPU for

general purpose processing – an approach termed

GPGPU (General-Purpose computing on Graphics

Processing Units). The CUDA platform is a software

layer that gives direct access to the GPU's virtual

instruction set and parallel computational elements, for

the execution of compute kernels. CUDA supports

programming frameworks such as OpenACC and

OpenCL to simplify parallel programming of

heterogeneous CPU/GPU systems.

GPU based parallel programming can increase the

speed of some algorithms significantly. In this project,

authors have tried to use GPU parallelism for the

document processing phase, but that attempt was

unsuccessful because CUDA only supports those data

types which have fixed shapes of its own. Another place

where GPU parallelism can be applied, is during creation

of the CSR Matrix, which is the step 7 of both training

and classification algorithm. Based on the GPU

capabilities, number of threads and blocks has to be

chosen. Each thread will be given a near equal subset of

the data and label array and will create their own label,

indPtr and indices array. At the end, individual arrays

created by each thread needs to be merged one after

another to obtain the complete label, indPtr and indices

array for the whole dataset. During this process, the

ordering of data is changed randomly based on thread

execution. For this reason, label array is also sent to each

thread and a new combined label array is created at the

end. Vocabulary hashtable has to be created during this

process. This has to be shared among all the threads. So,

inserting any data into the hashtable has to be treated as a

critical section. So, this operation has to be performed as

an atomic operation. If CUDA is not available, OpenCL

based GPU parallelism can also be used in this place a

similar manner. If neither is available, a same kind of

algorithm can be used using multithreading. To add this

enhancement, the following changes needs to be done:

1. Retrieve maximum capabilities of the GPU using

cudaGetDeviceProperties function. This will provide

maxThreadsPerBlock, maxThreadsDimesnion,

maxGridSize and calculate the number_of_threads

that will be created by multiplying values of

maxTheadsDimension

2. Set data_per_thread = dataset_size /

number_of_threads

3. Create indPtrQueue, indicesQueue and labelQueue to

store individual indPtr, indices and label arrays

obtained by each thread.

4. Launch kernel where dimensions are set based on

maximum GPU capibilites and send the data and

labels array along with the value of data_per_thread

and number_of_threads.

5. Inside the kernel function, do the follwing:

a. Calculate start_index = i * data_per_thread and

end_index = ((i+1) * data_per_thread) -1. If

current_thread_id = number_of_threads - 1 (i.e. if

the current thread is the last thread), then set

end_index = dataset_size - 1. This is done, becasue,

if dataset_size is not divisible by

number_of_threads, then using the formula used

before for end_index will miss out last few data.

b. Create a subset_data array from data array, from

index number start_index to end_index.

c. Create two 1D arrays - indices and indPtr, which

will be used to store relevant data for the current

subset_data.

d. For each cleaned wordset in the subset_data array:

i. For each word present in the current wordset:

1. Check whether the current word is absent

in the vocabulary hashtable. If yes, then

calculate the current length of the

vocabulary hashtable, which will be used

to represent this word numerically. Then,

using this word as key and this numeric

value as value, form the <key-value> pair

and add it to the vocabulary hashtable.

Adding data to the hashtable has to be

performed as an atomic operation.

18 Text Classification Using SVM Enhanced by Multithreading and CUDA

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 1, 11-23

2. Use the word as key to obtain the

corresponding value from the vocabulary

hastable and add it to the indices array.

ii. Calculate the current length of the indices array

and store it to the indPtr array to mark the ending

of the current and beginning of the next document.

e. Put indPtr, indices & label array to the

indPtrQueue, indicesQueue and

labelQueue array respectively. This

operation needs to be performed as an

atomic operation.

6. Wait for all the threads to finish their operations.

7. Add 0 to indPtr.

8. Clear all the values of labels array.

9. For each value in indPtrQueue, indicesQueue and

labelQueue, do the following: Size of all the queues

are same, so one element will be taken from each.

a. Append the current indices array fetched from

indicesQueue to the existing indices array.

b. Append the current labels array fetched from

labelsQueue to the existing labels array.

c. j = last_index_of (indPtr)

d. last_value = indPtr[j]

e. individual_indPtr = current indPtr array fetched

from indPtrQueue

f. Repeat for k varying from 0 to

size_of(individual_indPtr) – 1

i. indPtr[k+j] = individual_indPtr[k] +

last_value

10. Continue the original training and classification

algorithm after this.

IV. TEST CASES

The testing phase makes use of four data sets out of

which three are publicly available and the last dataset was

collected from live twitter feeds.

The datasets are: -

1. List of books from Library Genesis Project.

2. 20 news group dataset from scikit-learn.

3. 4 out of 20 categories in 20 news group.

4. Twitter data set collected using Twitter Streaming

API.

A. List of books from Library Genesis Project

Based in Russia, this is the largest and longest running

currently openly available collection of ebooks. Headed

by a team led by bookwarrior and Bill_G (of fiction

torrent fame), they have several initiatives:

i. Over 1.5 million files of mainly non-fiction

ebooks.

ii. An equivalent number of mainly fiction

ebooks.

iii. 20 million+ papers from journals of science,

history, art etc.

iv. Comics, magazines and paintings; totally

amounting to at least 100 TB. [29]

An SQL file is hosted by the Library Genesis Project

which contains the list of books that they host. This file is

open source and can be used by the community. It is

licensed under Apache License version 2.0 [30]. This

SQL file is used to fetch the names of the books which

belong to certain subjects. The subjects which are taken

into consideration are – Chemistry, Physics, Biology,

Mathematics, Psychology and Computer Science. The

training data set contains approximately 90,000 book

names. Certain stop words, like “volume”, “part”,

“edition”, etc. are stop words which specifically pertain

to book names. Hence, such stop words have to be

considered in the cleaning phase. Each label has to be

denoted by a numeric value as SVMs can only work with

numeric values. The names of subjects are converted into

numeric values by the program reading it.

Another sheet containing hundred book names of each

subject is created manually using publicly known books

and saved as an Excel file. This data set is used to test the

accuracy of the classifier. The book classifier correctly

classified the books from the testing data set with an

accuracy of nearly 76.77%.

B. 20 News group dataset from scikit-learn

The 20 newsgroups dataset comprises around 18000

newsgroups posts on 20 topics split in two subsets: one

for training (or development) and the other one for testing

(or for performance evaluation). The split between the

train and test set is based upon messages posted before

and after a specific date. [31] The training data set

contains of 11,314 posts and the testing data set contains

7,532 posts. [32]. Against each post, there is an associated

label which will be one of the 20 possible labels. Each of

these twenty labels are internally represented as numbers,

instead of strings as SVMs can only work with numeric

data. There are unnecessary metadata like “summary”,

“from”, “subject”, etc. which are not related to any topic

whatsoever and only degrades the accuracy of the

classifier. To improve the accuracy, these headers and

footers are removed and then proceed as normal with

creating the classifier. The accuracy of the classifier

before removing the headers was 57.67% using an SVM

with Linear kernel with One-Vs-Rest (OVR or OVA).

The accuracy of the same dataset, using the same SVM

and Linear kernel, but after removing the headers and

footers, reached a significant 61.34%. To further improve

the accuracy, standard stop words were removed. Since

these are normal day to day posts, written by humans,

there are no context specific stop words. To do this, the

NLTK package contains a list of such standard stop

words which occur very frequently in the English corpus.

Each post is checked for words which are present in this

list of stop words. After removing such stop words, an

accuracy of 68.77% was achieved with the same SVM

with Linear kernel with One-Vs-Rest (OVR or OVA).

C. 4 out of 20 categories in 20 news group dataset from

scikit-learn

Four of the 20 categories are considered for further

testing. The four categories are – alt.atheism,

 Text Classification Using SVM Enhanced by Multithreading and CUDA 19

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 1, 11-23

soc.religion.christian, comp.graphics and sci.med. Here,

two categories, viz., alt.atheism and soc.religion.christian

are closely related to each other, which would help

analyze how good the classifier is at correctly identifying

posts from these two classes. This would help identify

exceptionally well trained classifiers as only the best

classifiers would be able to correctly classify posts from

these groups – thus increasing the overall percentage

which would be indicative of the fact that it is an efficient

classifier. The other two classes, viz., comp.graphics and

sci.med are totally unrelated and have been selected as a

control setup for cases when the classifier might not have

been properly trained. If a classifier routinely incorrectly

identifies test data from these two categories then it can

be safely concluded that the classifier has been trained

improperly.

The training data set contains 2,257 posts and the test

data set contains 1,502 posts when the afore mentioned 4

out of 20 categories are selected. The accuracy of an

SVM with Linear kernel with One-Vs-Rest (OVR or

OVA) using this training and test data set reached

82.16%.

D. Twitter data set collected using Twitter Streaming

API

The Twitter Streaming APIs give developers low

latency access to Twitter’s global stream of Tweet data.

Public streams, which have been used in this

implementation, are streams of the public data flowing

through Twitter. These are suitable for following specific

users or topics, and data mining. A streaming client will

be pushed messages indicating Tweets and other events

have occurred, without any of the overhead associated

with polling a REST endpoint. The streaming process

gets the input Tweets and performs any parsing, filtering,

and/or aggregation needed before storing the result to a

data store. The HTTP handling process queries the data

store for results in response to user requests. The benefits

from having a real-time stream of Tweet data make the

integration worthwhile for many types of apps [33].

For the present research work, some popular categories

were thought of, viz., Movie, Food, Politics and Sports.

Then, probable related keywords were chosen for each

category to make up a list of search strings for each

category. These additional related terms or keywords help

to find more sample tweets from the live feed. These four

categories are clearly disjoint and will help increase the

accuracy of the classifier. For example, Food and Politics

are in no way related to each other, neither are Sports and

Movie. Sure enough, there can be cases where a person

has tweeted about a movie which is based on some sport;

but those would be fairly rare. The list of keywords

chosen for each category is as follows:-

1. Movie- “hollywood”, “movie”, “actor”, “grammy”,

“ironman”, “superman”, “spiderman”, “pokemon”,

“captain america”, “tintin”, “the blacklist”

2. Food- “food”, “cuisine”, “tasty”, “yummy”, “yum”

3. Politics- “politics”, “political”, “vote”, “trump”,

“obama”

4. Sports- “sports”, “cricket”, “baseball”, “basketball”,

“football”, “olympics”

This data collection process based on keywords was

run on a Microsoft Azure Virtual Machine with a Python

application running in four individual command prompts,

one for each category. At the end of 48 hours, the data

collected was assimilated and was put together and

labelled as the training data set in a JSON file. This same

process was run for another 24 hours, and at the end, the

data was put together and labelled as test data also in

JSON format. The total number of cleaned tweets in the

training dataset resulted to 12 lakhs and the total number

of cleaned tweet in the testing data set amounted to 8

lakhs. The data collection process lasted for 72 hours in

total. This data set was biased more towards the

“Politics” category. There were almost double or triple

times the number of tweets of “movie” category in

“politics” category. The other categories had more or less

the same number of tweets.

The Twitter Streaming API returns a JSON object

which contains a number of fields out of which there is a

“text” field which contains the main tweet. The other

fields are just meta-data like date of post, time, username,

etc. The “text” field is in raw byte format, indicated by a

“\b” right at the beginning of the text string. The string

corresponding to the “text” field needs to be cleaned

since it contains indicators like “RT” if it is a retweet,

hashtags, links to external websites, special characters,

emojis, etc.

The cleaning phase involves removing unnecessary

links, special characters and other such substrings as

mentioned afore. The following substrings are removed

from the string corresponding to the “text” field:-

1. New line characters are replaced with a single space.

2. HTML sequences like & &alt; are removed

using regular expressions.

3. Twitter handles are removed using regular

expressions. The string is searched for ‘@’. Anything

following that is removed, unless a space is encountered,

and the search process continues to the next substring.

4. External links like http, https, www, ftp are also

removed using regular expressions.

5. Websites are removed by checking whether a dot

(‘.’) exists in the third or the fourth position from the end

of the string.

6. The “\b” indicator at the beginning of the string is

removed.

7. The “RT” – retweet indicator is also removed.

8. For hashtags, anything after the “#” symbol is

considered as a word for further processing.

9. Emojis are expressed in the string as hexadecimal

characters which begin with “\x”. Such substrings are

identified in the string and are removed. This also

removes any unprintable characters that a Twitter user

might have put in his tweet.

All these words are striped off of white spaces and are

added to a list. This list now contains the cleaned words

20 Text Classification Using SVM Enhanced by Multithreading and CUDA

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 1, 11-23

which are then added with a corresponding label. The

label is the category currently under consideration. This

results in a two-attribute format, where the first attribute

denotes the list of cleaned words from the initial string

and the second attribute denotes the category. A list of

these tuples is created to get the final list for that

category. This process is repeated for all the four

categories. At the end of the cleaning process, four 2-

dimensional lists are created, each list for each category.

All these lists are saved in a JSON file. This is what is fed

into the rest of the program for the training as well as

classification phases.

One key-value pair of this dataset is like:-

"President Trump and his majorities in the House and

Senate regroup after failure to pass the health care bill":

"Politics", where the tweet is the key and the category is

the value.

V. RESULTS AND DISCUSSION

A. Accuracy Comparisons

For comparing accuracy, various classifiers are

compared during testing. SVM with linear kernel with

both OVO strategy and OVR strategy are compared in

this manner. SVM with RBF and Polynomial kernel both

were tested with OVR strategy, as OVO is not supported

by API. Linear, RBF and Polynomial kernels are

compared in this manner. SVM is also compared with

many other classifiers which are inherently Multiclass

classifiers, like K-Neighbors, Decision Tree, Random

Forest, Ada Boost, Bernoulli Naive Bayes and

Multinomial Naive Bayes Classifiers. From pre-

processing to Transformed CSR Matrix generation using

TF-IDF all the steps of this algorithm is followed for all

the classifiers. Only the last step where the output of TF-

Table 1. F1 Score and Accuracy in a scale of 0 to 1 for all the classifiers

used for 20 Newsgroup Corpus and 4 of 20 Newsgroup

 20 Newsgroup Corpus 4 of 20 Newsgroup

F1 Accuracy F1 Accuracy

Linear

SVM-OVO
0.660234 0.671402 0.804991 0.813582

Linear

SVM-OVR
0.675375 0.687732 0.812527 0.821571

RBF SVM-

OVR
0.627826 0.658125 0.739714 0.766977

Polynomial

SVM-OVR
0.184571 0.138078 0.731497 0.748336

K-

Neighbors

Classifier

0.054097 0.065454 0.658187 0.663782

Decision

Tree
0.397888 0.406930 0.565576 0.579228

Random

Forest

Classifier

0.439937 0.452735 0.655613 0.667776

Ada Boost

Classifier
0.403365 0.403365 0.664652 0.673103

Bernoulli

NB
0.420290 0.448221 0.658187 0.663782

Multinomial

NB
0.600471 0.634758 0.648719 0.708389

IDF is fed into the Linear SVM with OVR strategy is

replaced with respective classifiers. Table 1 and table 2

demonstrate the corresponding outputs obtained. The

results have been shown correct up to 6 decimal places.

Table 2. F1 Score and Accuracy in a scale of 0 to 1 for all the classifiers

used for LibGen Books Dataset and Twitter Dataset

LibGen Books

Dataset
Twitter Dataset

F1 Accuracy F1 Accuracy

Linear

SVM-OVO
0.488098 0.797979 0.936331 0.935820

Linear

SVM-OVR
0.400390 0.767677 0.937314 0.936752

RBF SVM-

OVR
0.392233 0.760943 ----- -----

K-

Neighbors

Classifier

0.348024 0.643098 ----- -----

Decision

Tree
0.376014 0.690236 0.914752 0.913779

Ada Boost

Classifier
0.427957 0.414141 0.887528 0.879945

Bernoulli

NB
0.473471 0.741044 0.927057 0.926928

Multinomial

NB
0.433427 0.686869 0.892711 0.893348

As seen from the previous tables, some of the

classifiers failed for certain datasets, like polynomial

SVM with OVR and random forest for both LibGen and

Twitter dataset, RBF SVM with OVR and K-Neighbors

for Twitter dataset. These classifiers failed after they

consumed a lot of CPU and eventually ran out of memory

in the testing environment used – AMD FX-6100 Hexa-

core processor with 10 GB RAM. They failed because of

the size of the dataset could not be handled by the

classifier in the given testing environment.

Figure 1 depicts a comparative study of the results as

shown in table 1.

Fig.1. Accuracy comparison bar chart of various classifiers for 20

Newsgroup and 4 of 20 Newsgroup datasets.

20 Newsgroup consists of 20 different classes, so

naturally the accuracy is less than 4 of 20 Newsgroup

which contains 4 classes. Here, it is seen from figure 1

that for both the cases performance of Linear SVM with

OVR is better than all the other classifiers.

 Text Classification Using SVM Enhanced by Multithreading and CUDA 21

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 1, 11-23

LibGen books dataset was classified using various

classifiers using same training and testing data given to

all the classifiers. Only in this dataset, as depicted in

figure 2, it can be noticed that the accuracy of Linear

SVM with OVO is slightly better than OVR.

Fig.2．Accuracy comparison bar chart of various classifiers for

LibGen dataset.

As seen from figure 3, Twitter streaming dataset gave

very high accuracy in all the classifiers, because of the

extensive cleaning processes the dataset has went through

and also for the proposed algorithm.

Linear SVM with OVO and OVR gives almost the

same accuracy as per the graph but the exact figures are

OVO gives an accuracy of 0.935820206987 or about 93.4%

where OVR gives 0.936752091088. So, it is noted that

Linear SVM with OVR gives the most accurate result.

Fig.3. Accuracy comparison bar chart of various classifiers for

Twitter streaming dataset.

B. Accuracy Comparisons

Fig.4. Execution speed comparison bar chart of base and enhanced

algorithm for all the datasets

The originally proposed base algorithm was later

enhanced using two enhancements – multithreading and

GPU parallelism using CUDA.

For testing, at first, the base algorithm was executed.

For the second test, the first enhancement, multithreading,

was introduced. For the last test, both enhancements were

used, i.e., multithreading and GPU parallelism. All the

three tests were carried out on a Windows 10 Home

Edition laptop with a dual-core Intel® Core ™ i3-2350M

processor, clocked at 2.30 GHz with Hyper-Threading

(enables it to have 4 threads), with 4 GB of RAM and

nVidia® GeForce® 610M GPU with CUDA® compute

capability of 2.1.

After all the three tests, it was observed that multi-

threading has increased the speed of execution at a

significant level if the dataset is large (LibGen Books and

Tweets). For smaller datasets (20 Newsgroup and 4 of 20

Newsgroup), the effect has not been that significant. After

introducing GPU parallelism along with multi-threading,

it was observed that for large datasets (LibGen Books and

Tweets) execution speed has increased. But for small

datasets like 20 Newsgroup, the execution speed decreases.

For very small datasets like 4 of 20 Newsgroup, execution

speed decreases significantly even worse than the base

algorithm without any enhancements. For GPU

parallelism using CUDA, data needed to be transferred

from CPU to GPU and vice-versa. This extra overhead has

caused the overall speed to decrease in case of small

datasets. But for large datasets, the level of speed

enhancement achieved has been more than the extra

overhead, as there was a lot of data available to be worked

on in parallel, so the overall execution speed has increased.

VI. CONCLUSION

While developing this system, a conscious effort has

been made to create and develop a robust and efficient,

making use of available tools, techniques and resources –

that would generate an elegant system for automatic text

classification.

The present research work has successfully

implemented an SVM with One-Vs-Rest strategy with an

appreciable amount of accuracy for all the data sets that

have been used to test the accuracy of the system. It has

also provided a comparative study of most of the popular

classifiers. The performance, accuracy and time for

training each of the classifiers have been compared. To

perform this study, the authors have made use of the

scikit-learn package – almost all the popular classifiers,

like Decision Tree, K-Neighbors Classifier, RBF – SVM

with OVO and OVR, etc. are present. The authors have

proposed enhancements to their base algorithm by using

multi-threading and GPU parallelism. By doing so, the

training time of the Linear-SVM classifier with OVR on

the LibGen dataset was reduced to just 22.22% (multi-

threaded time * 100/single threaded time) of the time

taken by the same classifier without multi-threading. This

was achieved on a Windows 10 desktop PC with a hexa-

core AMD FX6100 processor, clocked at 3.6 GHz, with

22 Text Classification Using SVM Enhanced by Multithreading and CUDA

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 1, 11-23

10 GB of RAM, at an average of 8% CPU usage. All

relevant statistics have been provided in the present paper.

Further improvements in execution time can be

achieved by using GPU parallelism while creating the

classifier object. As forethought, this approach can be

used to classify YouTube videos, blogs, Facebook posts,

or any other form of digital document. The classifier can

be trained in a perpetual manner so that the classifier is

aware of recent trending words. Similarly, data sets

formed using previous decade's newspapers or blogs

would provide an insight to archaic words to the classifier,

like "bedlam", "demit", "dight" or "grimalkin" – which are

no longer used frequently in the English corpus – and can

therefore be used to classify old digital documents as well.

Also, data sets provided by organizations like

commoncrawl, which offer petabytes of data collected

over more than 7 years of web crawling.

On a concluding note, the area of text classification is

an ongoing research area and one could expect more

efficient algorithms in the near future. With the size of the

web ever increasing and the number of users sky-

rocketing, automatic text classification would be a

pressing need felt by every single user.

REFERENCES

[1] Thorsten Joachims. Text Categorization with Support

Vector Machines: Learning with Many Relevant Features,

In Proceedings of European Conference on Machine

Learning, 1998, pp. 137 – 142.

[2] M. Ikonomakis, S. Kotsiantis and V. Tampakas. Text

Classification Using Machine Learning Techniques,

WSEAS Transactions On Computers, Issue 8, Volume 4,

2005, pp. 966 – 974.

[3] Y. Yang. An Evaluation of Statistical Approaches to Text

Categorization, Journal of Information Retrieval, 1(1/2),

1999, pp. 67 – 88.

[4] Yang Y., Zhang J. and Kisiel B. A Scalability Analysis of

Classifiers in Text Categorization, In Proceedings of the

26th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval.

[5] P Jason D. M. Rennie. Improving Multi-class Text

Classification with Naive Bayes, Massachusetts Institute

of Technology, 2001.

[6] J. Kivinen, M. Warmuth, and P. Auer. The Perceptron

Algorithm vs. Winnow: Linear vs. Logarithmic Mistake

Bounds When Few Input Variables Are Relevant,

Artificial Intelligence, 1997, pp. 325 – 343.

[7] Cortes, C. and Vapnik, V. Support-vector Networks.

Machine Learning, 1995, pp. 273–297.

[8] Thorsten Joachims. Transductive Inference for Text

Classification using Support Vector Machines, In

Proceedings of the Sixteenth International Conference on

Machine Learning, 1999, pp. 200 – 209.

[9] Aurangzeb Khan, Baharum Baharudin, Lam Hong Lee,

Khairullah khan. A Review of Machine Learning

Algorithms for Text-Documents Classification, Journal of

Advances In Information Technology, Vol. 1, No. 1, 2010,

pp. 4 – 20.

[10] István Pilászy Text Categorization and Support Vector

Machines, Department of Measurement and Information

Systems. Budapest University of Technology and

Economics.

[11] Liwei Wei, Bo Wei, Bin Wang Text Classification Using

Support Vector Machine with Mixture of Kernel, Journal

of Software Engineering and Applications, 2012, pp. 55 –

58.

[12] Anurag Sarkar, Saptarshi Chatterjee, Writayan Das,

Debabrata Datta Text Classification using Support Vector

Machine, International Journal of Engineering Science

Invention. Volume 4 Issue 11, 2015, pp. 33 – 37.

[13] Durgesh K. Srivastava, Lekha Bhambhu. Data

Classification Using Support Vector Machine, Journal of

Theoretical and Applied Information Technology,

Volume 12, No. 1, 2010, pp. 1 – 7.

[14] https://www.quantstart.com/articles/Support-Vector-

Machines-A-Guide-for-Beginners, last accessed: 11:10

am, 26-Jul-18.

[15] Ryan Rifkin, MIT 9.520 Class 06, 25 Feb 2008,

Multiclass Classification. Available at:

http://www.mit.edu/~9.520/spring09/Classes/multiclass.p

df, last accessed: 11:25 am, 26-Jul-18.

[16] Bishop, M. Christopher. Pattern Recognition and Machine

Learning. Springer, ISBN: 978-0-387-31073-2.

[17] https://nlp.stanford.edu/IR-

book/html/htmledition/dropping-common-terms-stop-

words-1.html, last accessed: 11:30 am, 26-Jul-18.

[18] A. Rajaraman, J.D. Ullman. Data Minin. Mining of

Massive Datasets, pp. 1–17, 2011,

doi:10.1017/CBO9781139058452.002.

[19] https://nlp.stanford.edu/IR-

book/html/htmledition/stemming-and-lemmatization-

1.html, last accessed: 11:35 am, 26-Jul-18.

[20] http://www.nltk.org/howto/wordnet.html, last accessed:

11:45 am, 26-Jul-18.

[21] Sivic, Josef. Efficient visual search of videos cast as text

retrieval, IEEE Transactions On Pattern Analysis And

Machine Intelligence, Volume 31, Number 4, 2009, pp.

591 – 605.

[22] http://scikit-

learn.org/stable/modules/feature_extraction.html, last

accessed: 12:15 pm, 26-Jul-18.

[23] https://docs.scipy.org/doc/scipy/reference/generated/scipy.

sparse.coo_matrix.html, last accseed: 12:30 pm, 26-Jul-18.

[24] Breitinger, Corinna; Gipp, Bela; Langer, Stefan.

Research-paper recommender systems: a literature survey.

International Journal on Digital Libraries. 17 (4), pp. 305

– 338, 2015, doi:10.1007/s00799-015-0156-0.

[25] Luhn, Hans Peter. "A Statistical Approach to Mechanized

Encoding and Searching of Literary Information, IBM

Journal of research and development. IBM. 1957, 1 (4):

315. doi:10.1147/rd.14.0309.

[26] Spärck Jones, K. A Statistical Interpretation of Term

Specificity and Its Application in Retrieval, Journal of

Documentation. 28: pp. 11–21, 1972,

doi:10.1108/eb026526.

[27] http://scikit-learn.org/stable/modules/svm.html, last

accessed: 12:45 pm, 26-Jul-18.

[28] http://scikitlearn.org/stable/modules/generated/sklearn.mu

lticlass.OneVsRestClassifier.html, last accessed: 1:10 pm,

26-Jul-18.

[29] sites.google.com/site/themetalibrary/library-genesis, last

accessed: 1:30 pm, 26-Jul-2018.

[30] apache.org/dev/apply-license.html, last accessed: 1:35 pm,

26-Jul-2018.

[31] scikit-learn.org/stable/datasets/twenty_newsgroups.html,

last accessed: 1:45 pm, 26-Jul-2018.

[32] qwone.com/~jason/20Newsgroups, last accessed: 1:40 pm,

26-Jul-2018.

[33] dev.twitter.com/streaming/overview, last accessed: 1:45

pm, 26-Jul-2018.

 Text Classification Using SVM Enhanced by Multithreading and CUDA 23

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 1, 11-23

[34] dev.twitter.com/overview/terms/policy.html, last accessed:

1:55 pm, 26-Jul-2018.

Authors’ Profiles

Soumick Chatterjee did his Bachelor in

Computer Application from Punjab

Technical University, India. During his study,

he launched his software startup Supernova

Techlink, where he worked as a part-time

professional and then as a full-time Chief

Software Architect. He finished his post

graduation in Computer Science from St. Xavier's College

(Autonomous), Kolkata, India. He has few publications in the

field of Steganography, Cryptography and Machine Learning.

Currently, he is working as a Ph.D. Research Fellow in Otto-

von-Guericke-Universität, Magdeburg, Germany, working on

"Use of prior knowledge for interventional MRI", applying

various Machine Learning and Deep Learning techniques. His

research interest includes - Machine Learning, Deep Learning,

Image Processing, Magnetic resonance imaging (MRI), MR

Image Reconstruction, Interventional MRI, Text Analysis and

Classification, Cryptography and Steganography.

Pramod George Jose is currently pursuing

his M.Tech. from the department of Cyber

Security and Networks, Amrita University,

Coimbatore, India. His research interests

include steganography, systems security and

reverse engineering. He completed his M.Sc.

in Computer Science from St. Xavier’s

College (Autonomous), Kolkata, India.

Debabrata Datta pursued his Master of

Technology from University of Calcutta,

India and he is currently pursuing his Ph.D.

in Technology from the same university. He

is an Assistant Professor in the department

of Computer Science, St. Xavier’s College

(Autonomous), Kolkata, India. He is a life

member of IETE. He has published more than 20 research

papers in various reputed international journals and conferences

His main research work focuses on Data Analysis.

How to cite this paper: Soumick Chatterjee, Pramod George Jose, Debabrata Datta, "Text Classification Using SVM

Enhanced by Multithreading and CUDA", International Journal of Modern Education and Computer Science(IJMECS),

Vol.11, No.1, pp. 11-23, 2019.DOI: 10.5815/ijmecs.2019.01.02

