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Abstract—Many applications of artificial vision need to 

compare or integrate images of the same object but 

obtained at different moments of time with different 

devices (cameras), from different positions, under 

different conditions, etc. These differences in capture 

give rise to images with important relative geometric 

differences that prevent these "Fit" with precision over 

each other. 

The registry eliminates these geometric differences so 

that located pixels in the same coordinates correspond to 

the same point of the object and, therefore, both images 

can easily be compared or integrated. The registration of 

images is essential in disciplines such as remote sensing, 

radiology, robotic vision, etc. ; Fields, all of them, that 

overlap images to study environmental phenomena, 

monitor tumours carcinogenic or to reconstruct the 

observed scene. This paper also study different measures 

of similarity used to measure their consistency and a 

novel procedure is proposed to improve the accuracy of 

the linear record by pieces. Specifically the elements that 

influence the estimation are analysed experimentally of 

probability distributions of the intensity levels of the 

images. These distributions are the basis for calculating 

measures of similarity based on entropy as mutual 

information (MI) or the Entropy correlation coefficient 

(ECC). Therefore, the effectiveness of these measures 

depends critically on their correct estimation. 

 

Index Terms—Entropy Correlation Coefficient, Mutual 

Information. 

 

I.  INTRODUCTION 

Medical imaging [1] is currently at the heart of the 

device allowing the practitioner to establish a diagnosis 

or to plan a therapy. The technological advances of the 

twentieth century have indeed given rise to numerous 

imaging modalities, which allow an ever more precise 

vision of the patient's anatomy. In parallel with these 

advances, the need to analyse the images resulting from 

these modalities has increased because the volumes of 

data to be processed are very important. In the absence of 

efficient automatic analysis tools, the exploitation of data 

is often done manually. 

Image registration [2] plays a very important role in 

the analysis and interpretation of these data. It allows, as 

part of the diagnosis, to match images from several 

imaging modalities, to follow the treatment of a patient 

over time or to perform inter-patient analyses. It also 

allows, as part of the conduct of interventional gestures 

guided by the image, to integrate in the same space 

information from images acquired in pre- and 

perioperative situations. The use of registration 

techniques has been made accessible by recent advances 

in computer technology, and these techniques now allow 

the combination of information from different imagers. 

Nevertheless, the need for effective registration methods 

is still important today. 

For three decades, medical imaging has experienced a 

very important development related to technological 

advances in the context of diagnostic assistance or 

therapy assistance. Today, there are a multitude of 

medical imaging modalities (conventional radiology, CT 

scans [3], Magnetic Resonance Imaging (MRI) [4], 

ultrasonography, scintigraphy, single photon emission 

tomography (SPECT) [5], emission tomography Positons 

(PET) [6], etc.), each providing specific and 

complementary information. These images, which can be 

two- or three-dimensional in nature and to which the 

temporal component can be added, represent a mass of 

very important data to be analyzed. However, these data 

are still often exploited manually, because of the lack of 

effective semi-automatic or automatic analysis tools. 

Image registration plays a central role in the 

exploitation and interpretation of these images. Indeed, it 

makes it possible to compare or even merge the data from 
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different imaging modalities or different patients for a 

given examination, but also patient monitoring or inter-

patient analysis. There has been growing interest in this 

area in recent years. We can see two explanations: first, 

medical imaging acquisition modalities having 

diversified, it is interesting to combine these images to 

extract more information. Then, advances in computing 

now make possible calculations unthinkable just a few 

years ago. 

The objective of this state of the art is not to 

exhaustively list all the registration methods available 

today. We will work instead to define the essential 

problem of image registration, a problem that is close to 

motion estimation. For the sake of brevity, we will 

gradually reduce the range of methods available to focus 

on those corresponding to our subject of study, namely 

iconic registration methods (i.e. without prior 

segmentation) based on mutual information. 

 

II.  CLINICAL MOTIVATIONS 

In a few words, image registration consists in 

deforming a so-called floating image by a geometric (or 

spatial) transformation in order to perfectly match it to 

another, referred to as a reference. Under this simple 

principle, there are many methods, with different clinical 

purposes. To better understand the issues of registration, 

we will begin by giving an overview of possible medical 

applications. 

A. Unimodal Registration 

It is the simplest case [7]. Here, the images come from 

the same patient, taken with the same imaging modality, 

but at different times. The uses that can be made of these 

images include: 

 

 The control of surgical operations: a comparison 

of the pre- and postoperative images makes it 

possible to verify that the surgery has achieved 

the desired result (complete removal of a tumor, 

for example). 

 Patient follow-up: images have been acquired 

over different periods, and are compared with 

each other to judge the evolution of the pathology 

or to report on the effectiveness of a treatment. 

 Cardiac motion estimation: cardiac imaging 

makes it possible to evaluate cardiac function 

from a morphological, dynamic and / or 

functional point of view. Typically, two- or three-

dimensional CT scans (CT, MRI and ultrasound) 

are acquired at different instants of the cardiac 

cycle. The purpose of the recalculation is, here, to 

estimate the movement of the heart from these 

image sequences. 

 Respiratory motion compensation: When 

acquiring medical images, the patient's breathing 

movement can induce artifacts in the images or 

significant differences between images taken at 

different times. The registration can thus be used 

to compensate for this respiratory movement [8]. 

B. Multimodal Registration 

This approach is more complex since it involves 

matching images that may be of different natures. 

Typical applications are [9]: 

 

 Data fusion: it results from the combination of 

several imaging modalities [10]. Each imaging 

modality has its own characteristics, and provides 

different information on the pathology or organ 

considered. The imaging modalities can be broken 

down into two major complementary and specific 

families: 

 Anatomical imaging (conventional radiology, CT 

or CT scan, MRI, ultrasound, etc.). 

 Functional imaging (scintigraphy, PET, SPECT, 

Doppler ultrasound, functional MRI, diffusion 

MRI, etc.). 

 

Also, it can sometimes be interesting to merge these 

different information to establish a diagnosis. The data 

fusion will therefore consist in the recalibration of images 

of different modalities. This is a booming field, thanks in 

particular to the technological advances that make it 

possible to process ever larger amounts of data. The 

purpose is obviously to provide a more precise diagnosis, 

since it is based on several types of complementary 

imaging. 

 

 Intervention planning: Thanks to a better 

knowledge of the internal anatomy of a patient, 

doctors can establish a better diagnosis and thus 

better plan their intervention. Indeed, the organs 

for example may be of different sizes and shapes 

according to the patients. By pre-operative image 

analysis, doctors have access to an accurate 

anatomical description of the target, organs at risk 

near the target or risks related to the insertion of 

surgical instruments. It is important that each of 

these descriptions is accurate, and the 

combination of information from different 

imaging modalities improves the final decision.  

1) Multi patient Mono- or Multimodal Registration 

Many studies point to the possibility of comparing data 

from multiple patients. This makes it possible, for 

example, to detect pathologies by comparison with a 

group of healthy individuals. Generally, the chosen 

solution consists of deforming individual images to make 

them correspond to a standard atlas. For example, in 

functional brain imaging, the creation of a digital atlas 

involves averaging images of the same modality from 

several healthy patients (this implies a first inter-patient 

registration step). A map, or model, of the functional 

anatomy of the human brain is thus obtained. By 

recalibrating the image of a patient's brain on this atlas, it 

is possible to locate the area of the injured brain. The use 

of digital atlases concerns many applications, among 

which we can notably quote: 

 



 A Case Analysis on Different Registration Methods on Multi-modal Brain Images 43 

Copyright © 2018 MECS                                                    I.J. Modern Education and Computer Science, 2018, 8, 41-54 

 Diagnostic assistance, by comparing an individual 

to a population "on the ground" represented by an 

atlas. 

 The comparison of two groups of individuals 

between them. 

 The provision of high level information. In fact, 

atlases can be used as a source of information for 

operations such as segmentation, registration, 

reconstruction, follow-up of lesions over time, etc. 

2) LTSI Registration and Problem Positioning 

These few examples allow us to glimpse the very 

important place occupied by photography in the analysis 

of medical images. In the Signal and Image Processing 

Laboratory, there are many problems with the registration. 

Here we give some examples to situate our work. 

First, there is work on estimating cardiac motion from 

three-dimensional image sequences. This estimate is a 

key issue in the detection of heart disease, and has 

benefited from advances in dynamic imaging, including 

the development of three-dimensional ultrasound and 

multi-array scanner. In this context, rescaling methods 

dedicated to 3D scanner volumes have been proposed 

[11]. 

Still in the field of cardiac imaging, cardiac 

resynchronization therapy, a difficult intervention 

procedure, can be optimized by precise identification of 

left ventricular (LV) [12] stimulation sites, based on 

anatomical and electrical information, respectively multi-

band scanner imaging and Electro-Anatomical 

Cartography (EAC) [13]. In order to represent these data 

in the same environment, a two-step information fusion 

method is proposed: 

 

1. Rigid registration of surfaces. 

2. 3D surface fusion and electrical mapping. 

 

In the first step, two 3D VG surfaces obtained from 

EAC and segmented scanner images are automatically or 

semi-automatically recalibrated. In the second step, 

electrical activation times (AEDs) at each endocardial 

point are estimated from the EAC. Finally, a graphical 

interface makes it possible to visualize the AEDs on the 

VG. Recent work [14, 15] proposes methods of 

information registration / fusion in this application 

context. 

In the treatment of prostate cancer by image-guided 

radiotherapy, non-rigid registration also plays an 

important role in the laboratory. The motivations for the 

use of the registration are multiple. First, the prediction 

of toxicity is a fundamental issue, because it allows better 

control of the radiation received by the patient. In this 

context, the development of a statistical model of toxicity 

would make it possible to highlight relationships between 

the dose delivered and the occurrence of toxicity. The 

construction of this model involves the development of 

an atlas, built by inter-patient registration, allowing dose 

mapping on a model derived from this atlas [16]. On the 

other hand, when one tries to make a calculation of the 

cumulative dose received during treatment, it is 

interesting to be able to follow the movements and the 

deformation of the organs throughout this treatment, to 

know which dose of radiation is actually received by the 

patient. This is a great help in planning radiotherapy 

sessions. In this context, registration methods have 

already been successfully applied [17, 18]. 

Whatever the clinical purpose, the methods of 

registration of medical images reveal common issues. 

Often, the constraints imposed by the tissues or organs 

observed require the taking into account of complex and 

non-rigid deformations. This is particularly the case in 

the examples mentioned above. Moreover, the volumes 

of data to be analyzed, by the progress of imagers, are 

always more important. It is therefore necessary to have 

effective registration methods to process all these images 

in a minimum of time, the purpose being a rapid 

diagnosis. 

 

III.  RECALIBRATION: A PROBLEM OF PARAMETRIC 

ESTIMATION OF MOTION 

The registration may, first and foremost, be seen as a 

problem of motion estimation in a sequence of images, a 

fundamental research theme in image processing. The 

fields of application of motion estimation range from 

video compression to the interpretation of satellite 

images by the way, and this is our subject in this work, 

by the characterization of dynamic organs. In the 

literature, there are two main types of techniques: non-

parametric techniques and parametric techniques. There 

are three main types of non-parametric motion estimation 

methods: 

A. Differential Methods 

They aim at estimating the optical flux between two 

images from the estimation of spatio-temporal gradients 

of the intensity in each of the pixels of the image. They 

are widely used in image processing since the original 

article by Horn and Schunk [19]. These methods are 

generally used to measure small displacements, and make 

the assumption of a conservation of the intensity between 

the images. 

B. Block Matching Methods 

Their principle is to cut a reference image into blocks 

of pixels or voxels. The goal is then to try to find in the 

next image, for each of the initial blocks, the most 

resembling block. The accepted hypothesis is that the 

movement between two images is locally translational. 

These methods are widely used, especially for image or 

video compression (MPEG) [20, 21, 22, and 23]. 

C. Statistical Methods 

Among the statistical methods, the Markovian or 

Bayesian methods are the most used. They are based on a 

probabilistic formulation of the field of motion. The 

considered field is seen as a particular realization of a 

random field. The most common formulation is based on 

the Maximum-a-Posteriori (MAP) estimator [24]. 
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We will not present in detail the non-standard methods. 

Parametric, since this is not the subject of this thesis. 

Indeed, the registration assumes a certain parametric 

model of the movement or displacement, since it is based 

on the estimation of the parameters of a transformation 

modeling the field of motion. The rest of this document is 

therefore interested in parametric motion estimation. 

 

IV.  CLASSIFICATION OF REGISTRATION METHODS 

Basically, the registration of input images requires the 

selection of the feature space, a similarity measure or 

alignment quality, a transformation type and a search 

strategy. A great number of medical image registration 

methodologies have been presented, and several criteria 

have been proposed to classify them [25] classified the 

registration methodologies by the data dimensionality 

(1D, 2D, 3D, 4D), source of the image features used to 

make the registration (intrinsic or extrinsic properties of 

patients), transformation domain (local or global), 

transformation elasticity (rigid, affine, projective or 

curved), tightness of property coupling (interpolating or 

approximating), parameter determination (direct or 

search-oriented), and interaction (interactive, semi-

automatic or automatic). The frame is here always the 

registration in general. Other states of the art focus 

specifically on the registration of medical images. This is 

notably the case of [26], which lists more than 300 

references and defines a new classification of registration 

methods based on 9 criteria (size of the images, nature of 

the registration, nature of the transformation, processing 

sector, etc.). 

 

 

Fig.1. Principle of the registration [25] 

 

�̃� = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑇

 𝑆(𝑓 (𝑥(1)(𝑣)) , 𝑓((𝑥(2)(𝑇(𝑣)))      (1) 

 

Where the selected criteria appear: 

 

- 𝑥(1)(𝑣)  and 𝑥(2)(𝑣)  are respectively the reference 

image and the floating image. 

-  𝑓 is the function extracting the characteristics of the 

image. Two big classes’ different methods. On the one 

hand, we find those that use all the image information 

(iconic methods), on the other those that use the result of 

a previous segmentation step (geometric methods). We 

will situate our work on the side of iconic approaches. 

- 𝑆  represents the similarity measure. This depends on 

the attributes of the image used, and we will explain why 

we have turned to mutual information. We will rely in 

particular on [27] which proposes a state of the art of the 

registration of medical images based on this one. 

- 𝑇 symbolizes an element of the space of possible 

transformations, or model of deformation. The first 

approaches consider rigid or affine transformations. 

However, in the context of this thesis, we are interested 

in the registration of elastic members for which a non-

rigid model is essential. Such a model offers more 

degrees of freedom (DF) vis-à-vis the desired 

transformation, allowing the estimation of a more 

complex transformation but closer to reality. The article 

[28] will support our demonstration. 

-  𝑎𝑟𝑔 𝑚𝑖𝑛
𝑇

 induces the optimization strategy. The 

volume of data to be processed being generally very 

important, it seems necessary to choose the algorithm 

judiciously optimization. As part of our work, a study 

conducted in [29] reinforced our choices that we will 

explain later. 

 

This presentation, although general, will gradually 

move towards the decisions we made during this thesis 

work. First of all, to successfully complete the 

registration of two images, one must first choose the 

information that will be extracted from these images. 

Three main approaches are then possible: 

 

1. The first relies on geometric primitives extracted 

from the image, such as points, lines or 

characteristic surfaces. These methods are 

therefore commonly called geometric methods 

[30, 31]. 

2. The second exploits all the raw information 

contained in the image (without prior 

segmentation), namely the gray levels. We are 

talking about iconic methods [32]. 

3. The third finally combines the characteristics of 

the two previous approaches. These methods are 

grouped under the name of mixed methods [33]. 

 

These 3 approaches each have their own interests and 

limitations. The geometric methods will be intentionally 

presented in a succinct way, the objective being above all 

to give a point of view to the reader and to be able to 

compare the advantages and the limits of each one. On 

the other hand, we will explain more precisely the iconic 

methods that fall within the scope of our study. 

A. Geometric Approaches 

In this type of approach, geometric characteristics are 

extracted from the two images to be recalibrated, then the 

actual registration will consist in finding the 

transformation between these characteristics resulting 

from the two images. This geometric transformation is 

the one that minimizes the distance between paired 

features. This is historically the first method to have been 

used, and this may be explained by the fact that the 

process of geometric registration resembles what is done 
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naturally by human visual perception: we look in the 

images studied for remarkable points and common lines 

or surfaces that we are trying to match. The primitives 

used can be classified according to their nature: 

geometric primitives (segments or planes), topological 

primitives (connected components, cavities, surfaces or 

intersections of surfaces), morphological primitives 

(skeleton or related envelope), or differential primitives 

(ridge lines, discontinuities). The geometric attributes can 

then be external markers (like the points of a stereotaxic 

frame visible by the different imagers for example), 

points, contours or surfaces. 

The major advantage is a limited processing time. 

Indeed, considering only a compact representation of the 

image, the computing load is reduced accordingly. In 

addition, extracted primitives are very informative since 

they are based on high-level features of the image related 

to the object of interest. 

However, the majority of the approaches are based on 

a manual selection, or on a semi-automatic detection of 

the bitters (or geometric primitives) common to the two 

images, which imposes a pre-treatment of the data to 

extract these points, lines or surfaces interest. On rigid 

structures such as bones, the task is relatively simple 

since the identifiable bitters will be stable on the different 

images. On the other hand, the problem is much more 

complex on soft structures such as the heart, since the 

selection of bitters (endocardial surface, for example) 

will require prior segmentation. The quality of this initial 

segmentation will then depend on the robustness of the 

registration. Moreover, to obtain an interesting result in 

non-rigid registration, the number of geometric 

characteristics will have to be important, the quality of 

the interpolation of the images between these 

characteristics depending directly on their number. 

We will not dwell on the distances used to match the 

geometric primitives. Nevertheless we can give some 

axes according to the primitives used: 

For points (such as Moravec points or Laplacian zero 

crossings), the conventionally used distance is a simple 

Euclidean norm. It leads, in the context of rigid and 

affine registration, to an analytical solution by the 

method [34]. 

For curves (more precisely the orientation and 

direction of these curves) or surfaces generally obtained 

by deformable or level-set models, several approaches 

are possible: the ICP (Iterative Closest Point) algorithm 

[35], distance maps and interpolation [36]/ radial function 

approximation (RBF for Radial Basis Function) [37]. For 

the latter approach, [38] use Thin Plate Splines (TPS) as 

a radial function, while [39] serves as elastic splines or 

[40] as volume splines. 

B. Iconic Approaches 

The iconic methods are based on the estimation of a 

deformation that maximizes an energy function reflecting 

the similarity between the images. The similarity measure 

operates here generally on the totality of the raw data of  

 

Table 1. Advantages and disadvantages of different approaches to 

registration of medical images 

 Geometric Method Iconic Method 

Advantages  Reduced 

processing time. 

 Very 

informative 

primitives. 

 Suitable for 

multimodal 

registration. 

 No 

preprocessing 

required. 

 Automatic 

method. 

Disadvantages  Manual 

selection or 

semi-manual 

primitives. 

 Usually 

reserved for 

unimodal 

registration. 

 Preprocessing 

necessary 

(segmentation). 

 Uninformative 

primitives (from 

low level). 

 Important 

treatment time. 

 

the images (grayscale), or more rarely on a representation 

of these gray levels: thus, [41] apply a Fourier transform 

on the images for working in the frequency domain using 

phase information, while a decomposition of the wavelet 

image is used by [43]. Direct grayscale methods appeared 

by [43] in the rigid and unimodal framework. With the 

progress of medical imaging has subsequently emerged 

the problem of multimodal registration which is defined 

as the comparison of images from different modalities. In 

this context, geometric approaches have shown their 

limitations, in particular by the difficulty of extracting 

equivalent primitives in images of different natures. 

Indeed, in the case of geometric approaches, the quality 

of the estimation of the desired transformation is totally 

conditioned by the segmentation of the images (detection 

of geometric primitives). The iconic methods have 

gradually supplanted them in multimodal registration. 

The work of [44] has led to a significant advance in this 

direction with the introduction of the concept of a joint 

histogram, which has become a very effective tool for re-

registration in the iconic framework. Mutual information 

was then used [45] and its success never faltered 

thereafter. We will come back in detail later on these 

similarity measures used in iconic registration. 

The iconic approaches have the particularity of not 

requiring pre-treatment to reduce the mass of data, as is 

the case with geometric approaches. They are considered 

the most flexible registration methods, since they use all 

the image information during the registration process. 

Another advantage of the iconic methods is their 

automatic character: they do not require manual selection 

or segmentation, often delicate, of geometric primitives 

common to both images. However, they still have some 

disadvantages. Firstly, the characteristics extracted from 

the image (in general the gray levels) are not very 

informative compared to the geometric primitives. 

Secondly, the processing time is generally higher than 

that of the iconic methods, since no pre-treatment reduces 

the initial mass of available data. Table 1 summarizes the  
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main advantages and disadvantages of geometric and 

iconic methods. The mixed approach, which follows, has 

not been included in this table since its purpose is 

precisely to overcome problems related to x two previous 

approaches, to keep only the advantages. 

C. Mixed Approach 

Mixed approaches combine several types of features 

extracted from images to be recalibrated. The goal is to 

improve the robustness of the registration by combining 

the advantages related to the characteristics used. Three 

cases are envisaged: 

 

 The combination of geometric primitives of 

different nature. It can refer for example to [46] 

for the combination of curves and surfaces. 

 The combination of different information from the 

gray levels, as is the case in [47] where the 

gradient of the image and the information of the 

gray levels are used together [48], for their part, 

construct an attribute vector for each voxel in the 

image. This vector contains both the intensity of 

the voxel in question, the invariant geometric 

moment characteristic of the vicinity of the voxel, 

and information resulting from the segmentation 

into 3 classes of the image. 

 The combination of geometric and iconic 

approaches. In this case, geometric primitives are 

usually used to constrain iconic primitives.  

 

In the literature, studies are specifically concerned with 

the comparison between iconic and geometric methods 

for the registration of medical images [49] or more 

specifically the registration of brain images [50], 

showing the superiority of iconic approaches to geometry. 

There is also a study published by many researchers [51] 

that compares a dozen methods of registration and 

advocates the use of iconic methods in the context of 

multimodal registration of medical images. This is partly 

what motivated our initial choice to work on iconic 

methods. Mixed approaches combining different 

information from gray levels can nevertheless be 

considered in future work, the information provided by 

the gradient of the images being for example interesting 

in the context of our method. 

 

V.  SIMILARITY MEASUREMENTS IN ICONIC 

REGISTRATION 

Iconic registration is based on the local comparison of 

intensities. As a result, iconic similarity measures operate 

directly on the gray levels of images, making use of all 

available information. These measurements make an 

assumption on the relationship linking the gray levels of 

the two images to be recalibrated. In general, the nature 

of this relationship allows a classification of the different 

similarity measures, as we will see in the following. Also, 

the choice of the criterion of similarity is guided by the 

nature of the images to be recalibrated. However, it is 

also necessary to consider the numerical complexity of 

this or that measure. A measure allowing to apprehend  

very general relations between images will often be more 

expensive and more difficult to optimize. Many 

similarity measures have been proposed in the literature, 

and some articles even propose a comparative study of 

these criteria [52]. Overall similarity measures are 

usually calculated from a set of intensity pairs taken from 

the reference image and the floating image. Before 

explaining in more detail these measures, a probabilistic 

framework is explained below. 

A. Probabilistic Model of Images 

To evoke the similarity measures in iconic registration, 

it is interesting, if not necessary to formalize the problem 

by adopting a probabilistic model of images. Firstly, in 

the following, the intensity of each pixel / voxel of the 

reference image (respectively floating) will be considered 

as an achievement of a Random Variable (RV) denoted 

𝑥(1) (resp (𝑥(2))) with value in the set  𝐷(1) of the gray 

levels (respectively in 𝐷(2) . The random draw of 𝑥(1) 

(resp (𝑥(2))) representing this intensity of the pixel ν of 

the reference image (respectively floating) will then be 

denoted 𝑥(1)(𝑣) (resp (𝑥(2))(v)). Let 𝑥 = (𝑥(1), 𝑥(2))
𝑇
 (T 

for transposed) be the random vector composed of the 

two 𝑉𝐴𝑠 𝑥(1)  𝑎𝑛𝑑 𝑥(2). We will assume in the following 

that the densities of probability. 

The marginal eigenvalues of 𝑥(1)  and 𝑥(2) , denoted 

𝑝𝑥(1) and 𝑝𝑥(2) the joint probability density of 𝑥, denoted 

𝑝𝑥, are defined. Note that such a probabilistic model of 

images, commonly used in the literature [53], assumes a 

certain stationarity in terms of the probability law from 

one pixel to another of the image. We give in the 

following some widely used similarity criteria measuring 

the dependencies that exist between the intensities of the 

images to be recalibrated. We use from present and in all 

that follows the formalism that we have adopted to 

establish the links between these measures. 

B. Intensity Conservation 

The first iconic measurements that appeared in the 

registration of medical images considered ideal the 

situation where the images are identical to a near spatial 

transformation. Indeed, these first measurements were 

based on the assumption of conservation of the 

photometric information (identical gray levels in the two 

images to be repositioned). Of course, this assumption 

proves to be inaccurate in almost all the practical 

situations encountered, but as long as the images remain 

relatively similar (as may be the case for unimodal 

images for example), this approximation may be 

sufficient. Thus, [54] have theoretically justified the use 

of the sum of squared differences (SDC), or L2 standard 

of the difference, when the images are identical to a 

spatial transformation and to an Additive White Gaussian 

Noise. This measure is still widely used as a likelihood 

criterion in the context of intra-subject unimodal 

registration, although the noise of medical images is 

rarely Gaussian. This measurement normalized by the 
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number N of pixels can be interpreted as an estimate of 

the mean squared error (MSE) between the two images: 

 
1

𝑁
𝑆𝐷𝐶 ≈ 𝐸 [(𝑥(1) − 𝑥(2))

2
] 

= ∮ (𝑢(1) − 𝑢(2))
2

𝑝𝑥(𝑢)𝑑𝑢
𝑅2                   (2) 

 

Where E [.] designates the operator of the 

mathematical expectation. We can include the sum of the 

differences in absolute value (SDA), or L1 standard, 

which can also be interpreted as an estimated of a 

statistical quantity: 

 
1

𝑁
𝑆𝐷𝐶 ≈ 𝐸[|𝑥(1) − 𝑥(2)|] = ∮ |𝑢(1) − 𝑢(2)|𝑝𝑥(𝑢)𝑑𝑢

𝑅2   (3) 

 

More particularly, the SDC and SDA measurements 

are defined by: 

 

𝑆𝐷𝐶 = ∑ (𝑥(1)(𝑣) − 𝑥(2)(𝑣))𝑝𝑖𝑥𝑒𝑙𝑠 𝑉

2

        (4) 

 

𝑆𝐷𝐴 = ∑ |𝑥(1)(𝑣) − 𝑥(2)(𝑣)|𝑝𝑖𝑥𝑒𝑙𝑠 𝑉             (5) 

 

Other criteria have also had some success. For 

example, we can cite the number of sign changes in the 

difference image or the intensity pattern, which could be 

translated as "intensity patterns", which operates on the 

difference of images, revealing structures or motifs of 

interest. 

But the limitations of these measurements quickly 

appeared, since the initial hypothesis (conservation of the 

intensity in the images to be recalibrated) is too strong in 

practice. Indeed, their use is limited to the comparison of 

unimodal images intrapatient in the study of the 

evolution of pathologies. But the needs of medicine are 

diversifying with the emergence of many imaging 

modalities and the possible combination of information 

provided by these methods, researchers were then 

interested in measures making less strong assumptions 

about the intensity of images to reset. 

C. Linear or Affine Transform 

The intensity conservation hypothesis showing its 

limits (in a unimodal case such as the alignment of MRI 

images of the same sequence, this hypothesis is for 

example already no longer satisfied), researchers have 

tried to model more complex relationships between 

images. Thus, the next step was to assume a linear or 

affine dependence between the intensities of the images, 

which can be expressed by: 

 

𝑥(1) = 𝛼𝑥(2) + 𝛽, (𝛼, 𝛽)𝜖𝑅2         (6) 

 

Where α and β are unknown constants. When the 

parameter β is zero, one speaks of linear dependence 

between the intensities, if not of affine dependence. The 

reference criterion, in the linear case, is the standardized 

cross-correlation coefficient (ICC) which is given by: 

 

𝐼𝐶𝐶 =
𝐸[𝑥(1)𝑥(2)

∑[𝑥(1)]𝐸[𝑥2  

=
∫ 𝑢(1)𝑢(2)𝑝𝑥(𝑢)𝑑𝑢

𝑅2

√∫ 𝑢(1)𝑝𝑥(1)(𝑢(1))𝑑𝑢(1) ∫ 𝑢(2)
𝑅 𝑃𝑥(2)(𝑢(2))𝑑𝑢(2)2

𝑅

  (7) 

D. Functional Dependence 

The functional dependence is even less restrictive than 

an affine dependence, since one does not presuppose a 

causal relation linking the two images to be recalibrated. 

The only hypothesis here is that knowledge of the 

distribution of gray levels of an image makes it possible 

to predict perfectly the second. The converse is not 

necessarily true. Thus, it is envisaged here the possibility 

of a registration between different modalities, 

information common to both images, such as anatomical 

structures, may be sufficient to verify this hypothesis. 

However, we must first ensure that the two modalities in 

question provide access to anatomical information fairly 

close, otherwise the assumption is quickly debatable and 

too strong once again. 

E. Statistical Dependence 

By considering only a statistical relationship between 

the images, a further step was taken towards multimodal 

registration. The notion of statistical dependence being 

more general than the notion of functional or affine 

dependence, the measures of this class are those based on 

the weakest hypotheses. This was made possible by the 

concept of a joint histogram developed by [55] to 

estimate the joint probability density 𝑝𝑥  of the two 

images to be readjusted. Author has realized that when 

two images are incorrectly registered, their joint 

histogram tends to disperse. Thus, a measurement taking 

into account the dispersion of the joint histogram makes 

it possible to recalibrate two images. Rather than using 

only the 𝑝𝑥  joint probability density, researchers turned 

to information theory, and Shannon's probabilistic 

framework to propose new measures.  

 

VI.  TRANSFORMATION MODELS 

A crucial choice to make before tackling a medical 

image registration problem is the model of deformation 

or geometric transformation to take into account. This 

will define how the floating image 𝑥(2)  (ν) will be 

distorted to match it better to the reference image𝑥(1) (ν). 

This choice is generally oriented by three constraints: 

 

 The Structures to be Re-calibrated: The 

deformation model will not be the same 

depending on the anatomical structures to be 

recalibrated. To recalibrate bone structures, for 

example, the deformation model will be different 

from that used to recalibrate soft structures such 

as the heart. The deformation of the bones being 

generally rigid between 2 images, a simple model 

(rigid or affine) deformation is often sufficient. If  
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one wants to be interested in the registration of 

cardiac images on the contrary, the generally non-

rigid character of the deformations of the organ 

must necessarily be taken into account. 

 Clinical Purpose: An affine deformation model 

may be sufficient for a measurement of unimodal 

registration, whereas in the context of a 

multimodal registration, it will often be necessary 

to resort to more complex models. 

 The Degree of Realism of the Model: A model of 

deformation one is realistic, that is to say that it 

allows highly non-rigid transformations, more its 

number of degrees of freedom (DF) is in general 

important. DFs represent the size of the search 

space, that is, the number of parameters to find. 

During the optimization process, each 

transformation parameter must be identified. It 

therefore seems obvious that the more complex a 

model, the more difficult it will be to optimize it 

in terms of calculation time.  

 

Whatever the deformation model chosen, the 

transformations can be global, i.e. applied in the same 

way (i.e. with the same set of parameters) at all points of 

the image. , or local, the image then being cut into 

regions having their own transformation. In general, 

transformations with a small number of DFs (rigid, affine, 

and projective transformations) are applied globally, 

whereas non-rigid transformations are applied locally. An 

illustration of all these transformations is given in Figure 

2. In addition, a registration procedure is often initialized 

by means of a rigid or global affine registration to correct 

the large deformations or differences inherent in the 

imaging modalities, and it continues with a local non-

rigid registration to capture the deformations more finely. 

Thus, the final transformation is written: 

 

𝑇(𝜈)  = 𝑇𝑔𝑙𝑜𝑏𝑎𝑙(𝜈)  + 𝑇𝑙𝑜𝑐𝑎𝑙(𝜈)           (8) 

 

This state of the art will again be succinct and oriented 

towards our problem. Finally, comparative studies of 

several reference algorithms have been conducted by 

many researchers [56]. In this latest study, which focuses 

on the non-rigid registration of MRI brain images, the B-

Splines algorithm is one of the most successful at present. 

This reinforced our choice for this deformation model: 

A. Rigid Transformations 

Rigid transformations take into account only rotations 

and translations of the image, and thus preserve angles 

and lengths (isometry). They usually belong to the 

smallest search space used for registration, since they 

only contain 3 DF (1 rotation and 2 translations) for 2D 

or 6 DF images (3 rotations and 3 translations) for 

volumes of images. These transformations are generally 

suitable only for unimodal approaches, when for example 

it is sought to compensate for the difference in 

positioning of a patient with respect to the sensors 

without taking into account possible distortions of the 

imaged tissues. They can also be chosen as a preliminary 

step before a non-rigid registration. In what follows, we 

will present the different types of transformations in 

mathematical form and for three-dimensional images. 

Thus, the rigid transformation recalling a floating image 

𝑥(2) (𝑣)  on a reference image 𝑥(1) (𝑣),  i.e. allowing to 

obtain the following equality: 

 

∀𝑉 , 𝑥(1)(𝑉) = 𝑥(2)(𝑀𝑅(𝑣, 1)𝑇)        (9) 

 

Where, 𝑀𝑅 is a rigid transformation matrix obtained as 

the matrix product of rotation and translation matrices. 

 

 

Fig.2. Representations of the different deformation models [57] 

B. Affine Transformations 

These classes of transformations are used for relatively 

rigid structure registration, or to initialize a non-rigid 

registration. This is the second case that interests us. 

Indeed, we have seen that the affine or rigid 

transformations are generally applied globally to the 

image, while the non-rigid transformations that we will 

present in detail in the following apply locally. This 

classification is not always exact, and it is necessary to 

note the interest of the use of piecewise affine 

transformations in some for inter-subject registration [58]. 

But in the following, we only consider affine global 

transformations. It is often interesting to start a procedure 

of non-rigid registration by a registration considering this 

type of transformation. This makes it possible to 

compensate for large deformations due, for example, to 

the positioning of the patient on the examination table, or 

simply to the difference between the image modes 

(correction of the scale factor). To obtain an affine 

transformation, the scale and shear factors must be added 

to the rigid model. In 3D, there are 3 scale factors (1 in 

each direction) and 6 shear coefficients. This brings the 

number of 3D DFs to 15 (and to 7 in 2D). The 

transformations are applied matricially according to the 

equation (9), except that the rigid transformation matrix 

𝑀𝑅  is replaced by an affine matrix 𝑀𝐴 . 

Thanks to these two relatively simple deformation 

models, it is already possible to represent a large number 

of deformations. However, our initial subject being the 

iconic registration of organs, and given the non-rigid 

nature of these deformations, we had to equip ourselves 

with a more realistic transformation model. It must be 
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able to accurately model the complex deformations of a 

set of tissues or distortions. 

Geometric characteristics inherent to certain 

acquisition methods. In the following, we present the 

main models of non-rigid deformation used in iconic 

registration of medical images, and we will focus on the 

approach we have selected. 

C. Non-Rigid Transformations 

In contrast to rigid and affine models, non-rigid 

deformations are applied locally, i.e. the transformation 

applied at one point may actually be different from that 

applied to its neighbours. They therefore correspond to 

the term 𝑇𝑙𝑜𝑐𝑎𝑙(𝜈) of the equation (8) and intervene in our 

method after a first affine registration. The amplitude of 

the deformations sought is generally weaker and 

localized. A large number of non-rigid deformation 

models have been proposed in the registration literature. 

Among these, we will distinguish between: 

 

 Non-Parametric Approaches: In which the 

transformation is defined in each pixel of the 

image. These models require the use of a 

regularization term to constrain the solution, 

because the deformation model is completely free. 

 Parametric Approaches: Which are based on 

polynomial interpolation (usually piecewise) of a 

deformation field, using a set of Control Points 

(CPs) placed in the image domain. 

 

These approaches, from which our deformation model 

is derived, are implicitly constrained by the polynomials 

used to model the deformation field. Although more 

expensive than non-parametric approaches, they are 

generally preferred for multimodal applications. It should 

be noted that the rigid and affine deformations that we 

have just present can also be considered as parametric, 

since they are constrained by the coefficients of 

transformation matrices 𝑀𝑅  and 𝑀𝐴  which impose a 

finite number of DFs. 

1) Non-Parametric Approaches 

This first type of method considers free 

transformations, not constrained by a space of small 

dimension. This approach is defined by the largest 

possible transformation class, since each voxel in the 

image has an independent motion vector. However, by 

this approach, the measure of similarity does not depend 

on the transformation only via a finite number of points 

corresponding to the voxels of the reference image 

𝑥(1)(𝜈) . Indeed, two transformations can be different 

while coinciding on the grid of the image, and we see 

then that the single measure of similarity is not enough to 

decide between them. It is then necessary to regularize 

the problem of optimization by following the theory of 

the approximation of Tikhonov. This amounts to adding 

to the measure of similarity a term of regularization 

independent of the images and which constrains the space 

of the possible transformations, to restrict it for example 

to diffeomorphisms. The problem of registration can then 

be formalized by: 

 

𝑇𝑜 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑇

 [𝑆(𝑓 (𝑥(1)(𝑣)) , 𝑓 ((𝑥(2)(𝑇(𝑣)))) +

𝜆𝑅(𝑇)]                              (10) 

 

Where, 𝑆(𝑓 (𝑥(1)(𝑣)) , 𝑓 ((𝑥(2)(𝑇(𝑣))))  represents 

the measure of similarity, 𝑅(𝑇)   is the term of 

regularization and λ is a scalar which controls the relative 

influence of the two terms.  

It is on the term of regularization that we will bring our 

attention, because many works were interested in its 

construction. The regularization of the registration 

problem is necessary to constrain the space of solutions 

to consider only fields of deformations "physically 

acceptable" (a bone structure must remain rigid for 

example). It is expressed by constraining the deformation 

by internal forces depending on the behavioural 

properties of the considered transformations. Here we 

present the main regularization energies used in the 

registration of medical images. It should be noted that 

few of them are used with mutual information as a 

measure of similarity, which is why we will present them 

briefly. 

Optical Flow: The optical flow method is an optical 

flow-based registration technique, which is equivalent to 

the flow equation of incompressible flows in fluid 

mechanics. This method makes the assumption of 

intensity invariance between images, it is generally 

reserved for unimodal registration. Their regularization 

term comes from the theory of motion estimation, and 

more specifically from the optical flux, corresponding to 

the membrane model. 

Elastic Model: The elastic physical model considers 

the floating image as a linear elastic solid and deforms it 

using forces from the chosen similarity measure. Two 

forces then oppose: the internal elastic force that opposes 

the external force of the similarity measure. The floating 

image is then distorted until both forces reach 

equilibrium. The linear elasticity hypothesis is valid only 

for small deformations, so it is difficult to find large 

transformations thanks to this regularization. This term of 

regularization, related to the physics of the objects of the 

registration, is given by the elastic potential of the field 

of displacement. This potential is governed by the Navier 

linear elastic partial differential equation: 

 

𝜇1∇2𝑢(𝑣) + (𝜆𝑙 + 𝜇𝑙)∇(∇𝑇𝑢(𝑣)) + 𝑏(𝑣) = 0    (11) 

 

Where  𝜆𝑙  and 𝜇𝑖  denote the Lamé constants that 

quantify the elastic properties of the model, 𝑢(𝑣) 

represents the displacement field and b (ν) represents the 

external forces experienced by the material. In our 

framework, 𝑏(𝑣) represents the force aiming at matching 

the characteristics common to both images. 

Fluid model: The fluid model makes it possible to 

account for large and localized deformations because it is 

very flexible. The counterpart to this flexibility is the risk 
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of misalignment, usually because of the growth of one 

region that has replaced the distortion or displacement. 

The partial differential equations governing this model 

are the same as those of the elastic model (equation (11)), 

except that they affect velocity rather than displacement 

(Navier-Stokes equations). These methods are expensive 

in computing time. 

2) Parametric Approaches 

The parametric approach is called self-constraint 

because the regularization is done directly thanks to the 

deformation model. These approaches are parameterized 

by CPs distributed regularly or irregularly on the 

reference image. Each of these CPs is associated with a 

position vector representing the parameters of the CP. 

The overall transformation is then obtained by 

extrapolating the transformation outside the CPs by 

different methods. These approaches have a form of 

regularization intrinsic to the transformation, due to 

model used to express the deformation field. This field is 

modeled by a sum of basic functions 𝛽(𝜈) . These 

functions can have global support, i.e. their influence will 

extend over the entire image. This is particularly the case 

for radial-based functions (RBF), thin-plate functions 

(TPS for Thin Plate Splines) which are a special case of 

RBFs, but also polynomial functions. 

A regularization term can be added to the cost function 

to penalize undesirable deformations, thus reducing the 

number of local minima. For non-parametric registration 

methods, this adapted regularization term is essential to 

ensure the continuity (and thus the differentiability) of 

the dense deformation field. 

In the following, we will note 𝑝𝑘  of the index CP, 

where 𝑘 represents the total number of CPs employed for 

the transformation model. The displacement 

𝜉(𝑘)=(𝜉𝑥
(𝑘)

, 𝜉𝑦
(𝑘)

, 𝜉𝑧
(𝑘)

)
𝑇

of 𝑝𝑘  entails, following the 

selected function base, a move on the whole or only part 

of the domain definition. 

The continuous deformation of the image is calculated 

by interpolating the displacements discrete CPs. As part 

of the registration process, all the movements of the CPs 

constitute all 𝜉 = 𝜉(𝑘)  Parameters to be estimated. So 

there are in these methods 𝑑 × 𝑘 parameters to estimate 

for dimensional images. Moving a point 𝑣  of the image 

expresses itself as a linear combination of a displacement 

term and a function of interpolation whose support 

remains to be defined: 

 

𝜙(𝑣, 𝜉(𝑘)) = ∑ 𝜉(𝑘)𝛽(𝑣)𝑘𝜖𝐾(𝑣)     (12) 

 

Where 𝑘𝜖𝐾(𝑣) a subset of CP that influences the 

displacement of the point is 𝑣 𝑎𝑛𝑑 𝛽(𝑣)  is the chosen 

base of functions. Generally, the separability hypothesis 

is introduced into each dimension of the chosen base, and 

we therefore have: 

 

𝛽(𝑣) = 𝛽𝑥(𝑣)𝛽𝑦(𝑣)𝛽𝑧(𝑣)    (13) 

 

We see here that the choice of CPs will have an 

important influence on the type of transformations used. 

The distribution and the number of CP determines the 

elasticity of the deformation and the number of DFs. As 

part of the iconic approach based on B-Splines, CPs are 

regularly spaced.  

Thin Plate Splines (TPS): TPS are so called because 

the thin plate spline models the shape of a thin, deformed 

metal plate. GSTs are part of a larger family of splines 

based on RBFs. They form the radial function most used 

in image registration, although other functions such as 

multi-quadratic or Gaussian functions are also quite 

common. In this approach, the CPs are considered 

additional parameters of the similarity measure and are 

repositioned iteratively after being initialized by hand. In 

addition, each CP belonging to a thin plate has a global 

influence on the transformation that is to say that if its 

position is disturbed, all the points of the floating image 

move with it. This limits the ability of this method to 

model complex and especially localized deformations. In 

addition, as the number of CPs increases, the 

computational cost of moving a single CP also increases. 

But this approach did not seem to us totally adapted to 

our problematic, because the transformations that one 

seeks to characterize are localized and of low amplitude. 

Also, we are interested in the second large family of 

polynomial bases used in parametric registration that are 

the B-Splines. 

B-Splines: In contrast to TPS and their overall support, 

B-Splines have the advantage of having a compact 

support. Indeed, B-Splines are defined in the vicinity of 

their CP. Thus, disturbing the position of a CP affects the 

deformation only in the vicinity of this CP. It then 

becomes possible to model localized deformations. It is 

in part the compactness of their support that made the B-

Splines successful for re-imaging medical images, etc. 

Besides the fact that this compactness makes it possible 

to describe localized transformations, it is also an 

advantage in terms of computational cost, because the 

displacement of a CP influences only the neighbourhood 

of this CP. 

 

VII.  OPTIMIZATION STRATEGY 

In the previous section, we saw that a deformation 

model corresponds to a set of parameters to be estimated. 

For the affine transformation, these parameters, contained 

in the transformation matrix 𝑀𝐴, there are 15 in 3D. The 

number of parameters of the vector ξ of the non-rigid 

transformation FFD B-Spline is itself variable according 

to the number of CPs of the deformation grid, but it is 

often several thousand parameters to estimate. An 

exhaustive search in the parameter space is then totally 

unthinkable, because the processing time would be 

prohibitive. It is therefore necessary to use an 

optimization method, which will make it possible to find 

the optimal parameters to answer our registration 

problem, while avoiding this exhaustive search.  
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Stochastic optimization methods, which progress towards 

a global optimum, are not very adapted to our problem 

because the large number of parameters to optimize 

makes their use very expensive in computation time. We 

have therefore turned to deterministic methods, which 

seek a local optimum. The advantage is a reduced 

processing cost. But the counterpart is that they do not 

necessarily converge towards a global optimum, and can 

remain "locked" in a local optimum. To guard against 

this, it is necessary to initialize the algorithm sufficiently 

close to the solution. To achieve this, optimization is 

carried out in two stages: firstly, the parameters of the 

affine transformation are estimated in order to recalibrate 

our images globally. Then, optimization to identify the 

parameters of the non-rigid transformation is conducted 

to correct local deformations. The principle remains the 

same in both cases, so we chose to present a unified 

approach to both situations. In the following, we will 

note 𝜇 the parameter vector to be estimated. Optimization 

consists of determining the optimal set of parameters 𝜇𝑜. 

One of the most popular iterative optimization rules is 

given by: 

 

𝜇𝑘+1 = 𝜇𝑘 + 𝑎𝑘 ⊡ 𝑑𝑘, 𝑘 = 0,1,2 … … ..  (14) 

 

Where ⊡  is the Hadamard product operator, 

𝑑𝑘 represents the search direction at iteration k, and 𝑎𝑘  is 

the gain factor or not. Very often, 𝑎𝑘 = 𝑎𝑘. [1 … … 1]𝑇 

with 𝑎𝑘  a scalar gain factor which controls the size / 

length of the pitch in the selected search direction. These 

two parameters are chosen so that 𝜇𝑘 converges to a 

minimum of the cost function considered. The 

configuration of an optimization algorithm based on the 

rule (14) is thus reduced to the way of calculating these 2 

parameters 𝑑𝑘 and 𝑎𝑘. 

 

VIII.  EVALUATION OF ACCURACY OF REGISTRY 

Evaluating the accuracy of the record is not a trivial 

problem, since it is difficult to distinguish between an 

imprecise record and the physical differences of the 

images, especially when it is a multimodal record, so 

different approaches have been proposed in literature 

[28]: 

A. Mutual Information (MI) 

Construction of the attached histogram consists of 

counting the occurrences of the value pairs of pixels (I 

(x), J (T (x))) in the overlap area. In the case of Greyscale 

images 8 bits, the attached histogram is a matrix P of size 

256×256. A cell of this matrix is denoted pi, j with 

0 ≤ 𝑖 ≤  255 and 0 ≤ 𝑗 ≤ 255. 

The principle of similarity measures using the attached 

histogram consists in determining the deviation of the 

histogram from the diagonal. Mutual information is one 

of the classic measures using the attached histogram. The 

definition of this measure is given below: 

 

𝑀𝐼(𝐼, 𝐽, 𝑇) = ∑ 𝑝𝑖,𝑗 . 𝑙𝑜𝑔 (
𝑝𝑖,𝑗

𝑝𝑖−𝑝𝑗
)𝑖,𝑗          (15) 

B. Axes Position Error 

Centroid of an object lies on the cross point of its 

horizontal and vertical axes as shown in figure below: 

 

 

Fig.3. Axes position error [59] 

Let’s assume we have two objects having centroid 
(𝑥1, 𝑦1) 𝑎𝑛𝑑 (𝑥2, 𝑦2)  and oriented on different angles 

𝜃1 𝑎𝑛𝑑 𝜃2  respectively then positional and orientation 

error of their alignment can be given as below: 

Positional Error: 

 

𝑑𝑒𝑟𝑟𝑜𝑟 =  √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2        (16) 

 

Orientation Error: 

 

𝜃𝑒𝑟𝑟𝑜𝑟 = 𝜃2 − 𝜃1           (17) 

 

To represent these errors in unit quantity, above 

equations can be written in terms of axes error as shown 

below: 

Horizontal axes position error 

 

ℎ𝑒𝑟𝑟𝑜𝑟 =  (𝑦2 − 𝑦1) cos(𝜃2 − 𝜃1)         (18) 

 

Vertical axes position error 

 

𝑣𝑒𝑟𝑟𝑜𝑟 =  (𝑥2 − 𝑥1) sin(𝜃2 − 𝜃1)         (19) 

 

When ℎ𝑒𝑟𝑟𝑜𝑟  𝑎𝑛𝑑 𝑣𝑒𝑟𝑟𝑜𝑟  zero than object are will be 

perfectly aligned. 

C. Cross-Correlation (CC) 

It is a measure of similarity that is calculated from a 

pair of windows, one of the standard image and another 

of the candidate. The normalized cross-correlation 

between two images 𝑓 and 𝑔 is given by the equation: 

 

𝐶𝐶(𝑢) ≜=
∑ [𝑓(𝑟)−𝐸{𝑓(𝑢)}{𝑔(𝑟−𝑢)−𝐸(𝑔)}]𝑟

√∑ [𝑓(𝑟)−𝐸{𝑓(𝑢)}]2
𝑟 √∑ [(𝑟−𝑢)−𝐸(𝑔)]2

𝑟
      (20) 

 

Where 𝑟 is the coordinate of a window centered on the 

coordinate 𝑢 (𝑟, 𝑢 ∈  𝑅2) , 𝐸(𝑔)  and 𝐸(𝑓)  are the 

expected value of 𝑔  and 𝑓  in the window where it is 

being correlated. 
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Normalized cross-correlation can only very accurately 

align transposed images, and it turns out to be one of the 

methods most used in the literature. The normalized 

cross-correlation between an image and a region of this. 

 

IX.  CONCLUSION 

This state of the art has allowed us to present the issues 

raised and the techniques used to re-image medical 

images by highlighting at each step the choices made in 

this work. As the notion covers a fairly large field of 

methods, we deliberately focused during the chapter on 

our subject of interest, i.e. the non-rigid registration of 

multimodal images. To do this, we presented each of the 

components of a registration method (features from 

images, similarity measure, deformation model, 

optimization, etc.) while trying to guide the reader 

towards the choices we made in according to our initial 

objectives. The aim here was not to be exhaustive, given 

the number of methods proposed in the literature. 

Focusing on the components that have interested us in 

this work, we have seen that iconic methods, especially 

those using MI as a measure of similarity, are at the 

moment the most effective ones to answer our problem. 

The heart of this thesis work on the proposal of a new 

method of estimating MI, it seemed appropriate to devote 

the chapter that comes to highlight this statistical 

measure and the different ways to estimate it. Indeed, MI 

can be associated with different definitions, methods and 

approximations. The purpose of this next chapter is to 

specify the approach that led us to define the MI 

approximated by a particular function of cumulates of 

order greater than or equal to two. 
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