
I.J. Modern Education and Computer Science, 2018, 8, 33-40
Published Online August 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2018.08.04

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 8, 33-40

Clustering based Architecture for Software

Component Selection

Jagdeep Kaur

Department of Computer Science and Engineering & Information Technology,

The NorthCap University Gurugram, Haryana

Email: jagdeep_kaur82@rediffmail.com

Pradeep Tomar
Department of Computer Science and Engineering, School of ICT Gautam Buddha University

Greater Noida, Uttar Pardesh

Email: parry.tomar@gmail.com

Received: 24 November 2017; Accepted: 10 July 2018; Published: 08 August 2018

Abstract—The component-based software engineering

(CBSE) consists of component selection, qualification,

adaptation, assembly and updating of components

according to the requirements. The focus of this paper is

software component selection only. Now-a-days many

selection processes, techniques and algorithms are

proposed for this task. This paper presents generalized

software component selection architecture using

clustering. The architecture is divided into four tiers

namely Component Requirements and Component

Selection Tier, Query and Decision Tier, Application

logic tier with Clustering and Component Cluster Tier.

The architecture offers manifold advantages like i)

presenting a generalized architecture where the existing

techniques can be applied, reducing the search space for

the component selection. ii) It also illustrates the usage of

clustering in the software component selection without

the need for pre-specification of number of clusters and

considering more than two features while clustering.

iii)The cluster validation is performed to check the

correctness of the clusters. This complete selection

process is validated on a representative instance of set of

components.

Index Terms—Component-based Software engineering,

Component Selection Process, Clustering based

Architecture for selection.

I. INTRODUCTION

Now-a-days software reuse has become a buzzword.

The reusability is achieved in the form of source code,

software architecture or software components. The

component based software engineering is a methodology

used for software development that advocates the use of

software reuse. The main properties of the components

are that they are independent, implementation is not

visible, communication among the components take place

through the interfaces. However, there are some

challenges like certification of components, emergent

property prediction and trade-off analysis of various

component features for selection. The trade-off analysis

or the software component selection is an active area of

research among the researchers. The software selection

process consists of finding the component that provides

the desired functionality, from the finite set of

components. Further, the selection process consists of

selecting the most suitable component from the candidate

components based on given requirement or constraints.

According to [1], CBSE emphasizes the “the ‘buy,

don’t build’ philosophy”. CBSE approach is used to reuse

the already developed and testable software codes to

develop economical software, which can be developed

within shortest time and reduce time-to-launch, to

increase the quality of the Component-Based Software

(CBS). So, Component Based Software Development

(CBSD) is the foremost approach of CBSE which

advocates acquisition, adaptation and integration of

reusable and testable software components to swiftly

develop and deploy complex CBS with least engineering

techniques, efforts and cost. According to CBSD,

development of software by writing code is replaced by

selecting, assembling and integrating software

components [2]. The development of CBS from reusable

components requires development process models and

methodologies not only in relation to the development

/maintenance aspects, but also to the entire component

and various aspects of CBS lifecycle [3]. The use of the

superior development model and methodology reduce the

time and cost by enhancing the productivity and quality

of CBS. In CBSE with better development models and

methodologies, researchers and practitioners feel to use a

better selection process of components which can be

selected from in-house developed component repository

or could be purchased from Commercial-Off-The-Shelf

(COTS) vendors. So, component selection is one of the

most crucial steps in CBSD and the success of the final

system depends on the component selection process. The

components are selected mainly based on its functionality

from the repository, but the non- functional

34 Clustering based Architecture for Software Component Selection

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 8, 33-40

properties or the information provided by the developers

about the components also plays a crucial role in

component selection. As the number of available

components in the repository grows, the selection of a set

of components based on a set of functional requirements

and on the other hand, minimizing or maximizing other

objectives like price, number of components etc. has

become extremely difficult.

This paper presents a software component selection

technique using clustering with a four tier architecture.

The remainder of the paper is structured as follows.

Section II presents the related work. Section III describes

the four-tier architecture for component selection using

clustering. Section IV discusses a representative instance

and section V follows the conclusion.

II. RELATED WORK

In the component based development, component

selection paradigm plays a vital role. It emphasizes on

composing the application from the already existing one.

The major activities of CBD are component qualification,

adaptation and composition which enhance the reusability.

The component qualification deals with ensuring that the

component performs its desired functionality and is

according to desired quality characteristics like reliability,

performance and usability. The component adaptation

deals with adapting the components with the architectural

design rules, and finally component composition deals

with putting together the qualified, adapted and

engineered components in the architecture developed for

the application. Initially, the selection technique based on

functional requirements was proposed. This was followed

by numerous techniques covering various issues like

conflicting goals, reducing the gap between stated

requirements and actual requirements as in CARE [4]. In

case of PECA [5], it helps the decision maker by

establishing suitable criteria. The CSSP (COTS Software

Selection Process) helps in evaluating as well as ranking

the software components with risk management. In case

of CSCC (Combined Selection of COTS Component) the

interoperability among the in-house developed

components and the 3rd party components are checked in

order to avoid schedule delays [6]. In order to select

whether the in house developed component is better or

the market available component, a fuzzy based approach

is used as given in [5]. Some selection techniques

incorporate testing with selection like in IDM [7] and

PRISM [8]. Another technique laid emphasis on the non-

functional requirement usability [9]. Here, an index is

proposed to rank the components based on its value. In

the work done by Jadhav and Sonar [10] it takes into

consideration the previous similar components searched

using rule based and case based reasoning. In [11], the

multi-criteria based decision is taken using cross

referencing. The computational intelligent techniques

also played a major role and selection techniques using

them are proposed. As in case [12] entropy based fuzzy k

modes algorithm is used to divide the components into

clusters and then isolate the cluster nearest to user’s

choice. Few years back, fuzzy clustering based approach

was developed. It uses metrics based on clustering

analysis [13]. Recently, a case survey was presented [14]

for making the choice among the different component

sourcing options like in-house components, COTS, Open

Source Software or outsourcing the components. Their

results showed that the most of the solutions are

deterministic and based on optimization. A very few non-

deterministic solutions were also found. Another study

[15] analyzes different COTS selection techniques and

presents automatic component selection techniques.

Apart from this researchers [16] have highlighted the

trade-offs between different factors for selecting the in-

house components, COTS, Open source Components

or outsourcing them. The detailed analysis of research

work carried out in last twenty eight years is presented by

the researchers in [17]. The authors in [18] proposed a

dynamic reconfiguration of robot software service by

reuse software service component using clustering

techniques. A multi objective optimization based

algorithm is recently proposed to select the software

products [19][20] . The authors [21] have demonstrated

the Buy vs Build strategy for selecting components for a

modular system using fuzzy bi-criteria optimization

model. The researchers [22] have done an assessment of

reusability of web service components that can help in

component selection too.

After studying these techniques, following points are

noted:

 The software component search space is quite

large and it is a challenging task to narrow down

the search space.

 There is a lack of generalized architecture for

software component selection.

 The role of non-functional requirements in final

decision making is very less.

 The subjective judgments can be replaced by

incorporating fuzzy logic.

The proposed architecture is similar to the existing

techniques in the following ways:

 Reduction in the search space.

 Consideration of extra-functional properties.

However, the proposed architecture differs in the

following aspects with the existing techniques:

 Multi-attributes of varied types can be handled.

 The final component retrieved is having maximum

inter-cluster distance and minimum intra-cluster

distance.

III. FOUR-TIER ARCHITECTURE FOR SOFTWARE

COMPONENT SELECTION

A component is selected based on the function it

provides in Component Based Software Engineering

(CBSE). Many techniques have been proposed for

 Clustering based Architecture for Software Component Selection 35

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 8, 33-40

component selection under varied situations to select the

optimal component from component set of same

functionality. Here, the selection process is viewed as

architecture. It is divided into four tiers namely

Component Requirements and Component Selection Tier,

Query and Decision Tier, Application logic tier with

Clustering and Component Cluster Tier. The current

selection techniques using clustering suffers from major

demerits of specifying the number of clusters beforehand

and the selection process depending on subjective

judgement of application administrators. The proposed

architecture will be better as the need for prior declaration

of clusters will be eliminated and the cluster validation is

performed to check the correctness of the clusters. This

architecture is validated on a case study of set of sorting

and searching components.For a component selection

problem the system designer considers several candidate

components for which the data available includes

estimates of the cost of acquisition, customer desirability,

development time and expected revenue. The designer

may also have information about the dependencies

between components and may wish to include other

factors in the decision making process, such as the

priority given to each of the customers. From the set of

all components, the designer must search for a subset that

balances these competing concerns in the best way

possible. The developer may also want to rank (or

prioritize) the components in some way based upon these

trade-offs. For systems with more than a few simple

components the search space is unmanageably large and

complex, with the consequence that no designer can be

expected to find optimal choices that balance the

constraints without some form of automated support.

Hence, informally the component selection problem is to

select a set of components from available component

repository which can satisfy the requirements while

minimizing the sum of costs of selected components.

The component selection technique is comparable to

the stock selection process for investment. This paper

proposes a new architecture for the entire component

selection which is similar to stock selection for

investments, as the objective of stock selection is to

maximize the total return on investment and minimizing

the risk while maintaining an appropriate degree of

portfolio diversification. Similarly, the component

selection process deals with minimizing the cost and

selection is done on the basis of required functionalities.

The architecture is motivated by the one proposed by the

work for stock selection of investment [23].The

architecture of component selection process has the

following tiers: Component Requirements and

Component Selection Tier, Query and Decision Tier,

Application logic tier with Clustering and Component

Cluster Tier as shown in Fig. 1. This paper proposes four-

tier architecture, which helps the developers to make

decision while selecting the components. The proposed

architecture will be used for developing a CBS to support

client requirements for component selection. This

architecture will facilitate desired client input and will

suggest optimal choice of component for CBSD.

Fig.1. Four -Tier Architecture for Component selection using Clustering

Finally, it helps in forwarding the result as solution to

the requested web browser for analysis. The database tier

will contain all the data from all third party organisation

related to user requirements. The database tier uses data

source from different web sites related to component

repositories

A. First Tier: Component Requirements and Component

Selection Tier

The first tier is known as Component requirements and

Component Selection Tier as shown in Fig.2 to give the

component requirements through the web browser using a

natural language. The request for components is stated in

a form of a query and as an outcome number of

components will be returned from the optimal component

set. This retrieval process can be further enhanced by

using iteration for generating more alternative

components for the clients and system analyst until a

particular level of confidence is reached according to the

original stated query.

This first tier will provide interface for client

requirement and system analyst. It also presents the

analysis of selected optimal set of component according

to component requirement. In return, this interface

provides possible number of solutions according to the

problem that are feasible for construction of an optimal

selection of components. The requirements can be stated

in terms of features of the components described in the

repository. For example, for the proposed case study the

36 Clustering based Architecture for Software Component Selection

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 8, 33-40

features of the sorting and searching components can be

Halstead program volume, time complexity, cyclomatic

complexity and size of input list. In, return the optimal

component sets are returned, as solution, to system

analyst.

First Tier

Client Requirements and System Analysis Tier

Component Selection for Clients and System Analyst

through Web Browser

Component

Requirements

Component Selection from

Optimal Component Sets

Fig.2. First Tier: Component Requirements and Component Selection

Tier

B. Second Tier: Query And Decision Tier

The Second tier as shown in Fig. 3 is known as query

and decision tier. It shows how the query manager and

decision manager interacts which help in generating

query and solution.

1) Query Manager

The Query manager will interpret queries from the first

tier and extract its semantics. The Query manager deals

with strategic decisions including goals and priorities of

the client. For example, the goals are related to price,

relevance, download rating, best seller rating etc. The

goals are converted into the form of queries by the query

manager. The query may consist of required functionality,

goals and constraints.

Fig.3. Queries and Decisions Formulation

The Fig. 3 shows the working of query manager and

decision manager. The query manager performs query

selection where the queries are formulated based on

functional and non-functional requirements. Afterwards,

the priorities are set for the requirements, identifying the

most important ones from the least important. The

requirements can be stated in terms of objectives need to

be maximized or minimized. On the basis of priorities set

by the users, data is collected with the help of application

logic from the database tier and then decision manager

will generate the solution.

The requirements can be stated in the following ways:

i) Functional Requirements: The user can state the

requirements in terms of functionality required.

ii) Non-Functional Requirements: The non- functional

requirements for the black box components can be best

seller rating, download rating, review rating etc. Whereas

for the white box components, the non-functional

requirements can be Halstead program volume, time

complexity, cyclomatic complexity, input size etc.

2) Decision Manager

It helps in final decision making either by finding

components that directly matches the formulated query or

finding a near optimal component set by analyzing co-

occurrence, correlation and hidden criteria across

different components. The final optimized subset of

component is presented to the clients and system analyst

for their consideration. In the future, this optimized set of

component can be compared with the degree of

confidence stated by the clients and system analyst to

discard the components that fall below a threshold level.

Second Tier

Query and Decision Tier

 Query Manager Decision Manager

Fig.4. Second Tier: Query and Decision Tier

C. Third Tier: Application Logic Tier with Clustering

using Hybrid XOR Similarity Function

The third tier as shown in Fig. 4 consists of application

of hybrid XOR similarity function and Components

catalogue. The clustering used in this architecture is

based on the hybrid XOR similarity function. The

catalogue is formed on the basis of ratio of inter

component similarity to the intra component similarity

after application of Divisive algorithm in the fourth tier.

The application logic can be modified according to the

given component set. Here in this tier a hybrid XOR

similarity function based clustering technique is used. It

forms the clusters of similar components from where the

user can select the desired components. Some non-

functional factors like coupling, cohesion, reliability,

fault tolerance, component size, time, cost, compatibility,

value of intra-modular coupling density etc. can be used.

Third Tier:

Application logic Tier with Clustering

Components

Fig.5. Third Tier: Application Logic Tier with clustering

 Clustering based Architecture for Software Component Selection 37

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 8, 33-40

The clusters thus formed will be having high cohesion

and low coupling. Using the algorithm in [18] the process

of clustering is applied on a case study. Another

application logic can be application of other fuzzy

clustering techniques like fuzzy c-means, subtractive

clustering, as shown in Fig. 5.

D. Fourth Tier: Component Cluster Tier

It deals with the application logic to select the database

from the different data sources. The third tier will

generate three clusters and on these clusters Divisive

Algorithm is applied, which is a type of hierarchical

clustering. In this tier, firstly the cluster set that needs to

be split further is chosen. For simplicity purpose the

authors opt the biggest cluster. For n number of

components, the number of possible bipartitions are 2n-1 -

1. For large number of components this will become

computationally expensive, so to reduce the

complications, the cluster is divided based on a specific

feature in which the user is more interested. According to

proposed methodology, it keep on dividing the cluster

further until it reach a point when no more division is

possible or it reaches a condition where the clusters have

become singletons.

Fourth Tier: Component Cluster Tier.

Component Clusters
Divisive Algorithm Application on Clusters

Fig.6. Fourth Tier: Component Cluster Tier

IV. REPRESENTATIVE INSTANCE

This complete architecture for software component

selection can be validated using a set of software

components. The java programs for sorting Bubble sort,

Merge Sort, Insertion sort, Quick Sort, Selection Sort,

Heap sort, Radix Sort, Bucket Sort and Shell sort are

considered.

Table 1. Sorting Components and its features

Software

Component

Halstead

Metric

Cyclomatic

complexity

Time

Complexity

Size of

Input

Bubble

sort(SO1)

172 4 O(n2) SMALL

Merge

Sort(SO2)

633 7 O(n log(n)) LARGE

Insertion

sort(SO3)

164 3 O(n2) SMALL

Quick

Sort(SO4)

367 7 O(n2) LARGE

Selection

Sort(SO5)

175 4 O(n2) SMALL

Heap sort(SO6) 511 7 O(n log(n)) LARGE

Radix

Sort(SO7)

642 10 O(nk) SMALL

Bucket

Sort(SO8)

332 8 O(nk) LARGE

Shell sort(SO9) 299 5 O(n log(n)) LARGE

The main features of these components considered for

selection purpose are Halstead program volume,

cyclomatic complexity, time complexity and type of input

list, as shown in Table 1 and Table 2. The clustering

approach is the one taken from [18] in where a XOR

based similarity function is used for finding extent of

likeness between component cluster. A similarity matrix

of the order n-1 by n is constructed for given n

components. The input in the third tier is similarity

matrix based on the given components and resultant is the

set of clusters formed in the fourth tier.

A Application of Xor Clustering for Cluster Computation

The new clusters would be formed with the help of

XOR similarity. Some pre-processing is required for the

features of the components before applying the similarity

matrix. The sorting components can be represented using

the possible set of values for different features as follows:

 Halstead Metric: {1-199:A, 200-400:B, 401-650:C,

651 and above : D}

 Cyclomatic Complexity: {2-4: A, 5-7: B, 8-11: C,

50 and above : D

 Time Complexity: {O(n2) : A, O(n log(n)): B,

O(nK): C, O(n): D, O(log n): E

 Size of input list: {Small : A, Large: B }

Table 2. Updated Table for sorted components

Software

Component

Halstead

Metric

Cyclomatic

complexity

Time

Compl

exity

Size of

Input

Bubble

Sort(SO1)

A A A A

Merge

Sort(SO2)

C B B B

Insertion

Sort(SO3)

A A A A

Quick

Sort(SO4)

B B B B

Selection

Sort(SO5)

A A A A

Heap

Sort(SO6)

C B B B

Radix

Sort(SO7)

C C C A

Bucket

Sort(SO8)

B C C B

Shell

Sort(SO9)

B B B B

Now, this information can be represented in the form

of a Boolean matrix with rows indicating each component

and column corresponding to each unique attribute of the

software components. A matrix of D[9,9] for 9

components is formed and only the upper triangular

region is considered. The cells are filled according to the

similarity function S for which each component pairs

form the input. The feature vector representation of the

component set is shown and the feature vector of each

component is replaced by count of number of zeros in the

tri state feature vector. This is shown in the Table 4.

38 Clustering based Architecture for Software Component Selection

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 8, 33-40

Table 3. XOR Similarity Measure

The feature vector representation of the component set

is shown in the Table 3 and then the feature vector of

each component is replaced by count of number of zeros

in the tri state feature vector. The similarity between the

components is computed using the hybrid XOR similarity

function for example for SO1 and SO2 gets

(1,Z,1,z,,1,1,z,Z,1,1,Z,Z,z,1,1)=* that is no similarity and

for SO1 and SO3 after applying similarity function the

result is (0,Z,Z,z,0,Z,Z,Z,0,Z,Z,Z,Z,0,z)=4.

Table 4. The similarity matrix with the feature vector replaced by count

of 0s

The entries of the similarity matrix as shown in Table 4

are made according to following:

Find the highest value from the Table 4, which is 4

here and target those cells as they form the best candidate

solutions and replace those cells by *. The component

pairs (SO1,SO3), (SO3,SO5), (SO1,SO5) and (SO2,SO6)

are having the value 4. So, (SO1,SO3,SO5) is formed as

the first set. Find the next highest value from the Table 4

which is 3 and target those cells as they form the best

candidate solutions and replace those cells by *. Now

consider only un-clustered components sets (SO2, SO4,

SO6, SO7, SO8, SO9) and look for value 3 in

corresponding cells. Now,(SO2,SO9), (SO4,SO9)

(SO6,SO9) (SO8) have value 3, So cluster1 is formed as

(SO1,SO2,SO3,SO4,SO5,SO6,SO9)

Find the next highest value from the Table which is 2

and target those cells as they form the best candidate

solutions and replace those cells by *. Consider only un-

clustered components sets (SO7,SO8), (SO7,SO8)

(SO8,SO9). Now, no more components are left, the

procedure stops now.

The clusters finally formed are:

1. R1 is (SO1, SO2, SO3, SO4, SO5, SO6, SO9)

2. R2 is (SO7, SO8)

Now, these clusters are taken from the component

repository as explained in the fourth tier.

In the fourth tier, the first cluster set is taken for

Divisive Algorithm application as it is the biggest among

the others. There would have been 63 pairs of possible

partitions (26 -1), the number of calculations would be

very large. So, to ease the computations the cluster is

divided according to a user specified criteria of time

complexity. Referring to Table 4 the bipartition formed is

(R1
1, R1

2) which is represented as R1
1 is (SO1, SO3, SO4,

SO5) and R1
2’ is (SO2, SO6,SO9).

Now, R1
1 can be further divided based on another

feature that is type of input list. It generates R2
1 and R2

2

which is represented as (SO1, SO3, SO5) and (SO4)

respectively. Finally the new clusters generated are

{(SO1, SO3, SO5), (SO4) and (SO2, SO6, SO9) }

The clustering will stop here as no progress can be

made further.

Table 5. The final Candidate Component Clusters

Cluster

No.

Clusters Components

Description

1 (SO1,SO3,SO5) Bubble sort, Insertion

sort, Selection Sort

2 (SO4) Quick sort

3 (SO2,SO6,SO9) Merge Sort, Heap

Sort and Shell sort

4 (SO7, SO8) Radix Sort, Bucket

Sort

The final set of component clusters are shown in Table

5.

V. CONCLUSIONS

This paper proposed four-tier architecture to develop

the component selection system which is capable of

providing effective optimal set of components for

component selection problem and CBSD. Here, the user

specifies the requirements and as an output it gets the

number of component clusters grouped with a greater

degree of similarity with peer member of the cluster. The

components are clustered together using hybrid XOR

similarity function used for document clustering. The

clusters so formed are further split using divisive

algorithm based on a pre-specified criterion. This

architecture fulfills the advantages as proposed in the

abstract of the paper:

1. In the proposed architecture the existing XOR based

similarity can be applied.

2. There is no need to specify the the number of

clusters as in the traditional fuzzy c-means and

subtractive clustering techniques.

3. The validation of the clusters is performed using

Divisive Algorithm which is in This study can be further

validated by using a large component set. The future

work will consider the application of fuzzy clustering

technique to deal with the cases when the same

component tends to lie in two different clusters.

A B S(A,B)

0 0 Z

0 1 1

1 0 1

1 1 0

 SO1 SO2 SO3 SO4 SO5 SO6 SO7 SO8 SO9

SO1 * * 4 1 4 * 1 * *

SO2 * * * 2 * 4 1 1 3

SO3 * * * 1 4 * 1 * *

SO4 * * * * * 2 * 2 3

SO5 * * * * * * 1 * *

SO6 * * * * * * 1 1 3

SO7 * * * * * * * 2 *

SO8 * * * * * * * * 2

SO9 * * * * * * * * *

 Clustering based Architecture for Software Component Selection 39

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 8, 33-40

REFERENCES

[1] P. C Clements, “From Subroutines to Subsystems:

Component-Based Software Development”, American

Programmer, vol. 8, pp. 31-33, 1996.

[2] N. S. Gill, “Reusability Issues in Component-Based

Development”, ACM SIGSOFT Software Engineering

Notes, vol. 28, no. 6, pp. 30,2003.

[3] Crnkovic “Component-Based Software Engineering-New

Challenges in Software Development”, Software Focus,

vol. 2, no. 4, pp. 127-133, 2002.

[4] L. Chung and K. Cooper, “Defining Goals in A COTS-

Aware Requirements Engineering Approach”, Systems

Engineering, vol. 7,no.1, Wiley, pp. 61-83, 2004.

[5] Comella-Dorda S., Dean J., Morris E., Oberndorf P.(2002):

‘A Process for COTS Software Product Evaluation’, in

proceedings of International Conference on COTS-Based

Software Systems, Lecture Notes in Computer Science, vol.

2255, pp. 86-96.

[6] X. Burgués, C. Estay, X Franch, J. A. Pastor, C. Quer,

“Combined Selection of COTS Components”, in

proceedings of International Conference on COTS-Based

Software Systems, Lecture Notes in Computer Science vol.

2255, pp. 54-64,2002.

[7] W. Zhiqiao, C.K. Kwong C. K., J. Tang and J. W. K Chan

“Integrated Model for Software Component Selection

with Simultaneous Consideration of Implementation and

Verification”, Computers and Operation Research, vol. 39,

no. pp. 3376-3393, 2012.

[8] R. W. Lichota, R. L Vesprini, and Swanson B. “ PRISM:

Product Examination Process for Component Based

Development ”, in proceedings of Symposium on

Assessment of Software Tools and Technologies , pp. 61-

69, 1997

[9] N. Upadhyay, B. M. Deshpande and V. P Agrawal,

“Concurrent Usability Evaluation and Design of Software

Component: a Digraph and Matrix Approach”, IET

Software, vol. 5, no. 2, pp.188-200, 2011.

[10] S. Jadhav and R. M Sonar “Framework for Evaluation and

Selection of the Software Packages: A Hybrid Knowledge

Based System Approach”, Journal of Systems and

Software, vol. 84, no.8, pp.1394-1407,2011.

[11] Becker,M. Kraxner, M. Plangg and A. Rauber, ”Improving

Decision Support for Software Component Selection

through Systematic Cross-Referencing and Analysis of

Multiple Decision Criteria”, in Proceedings of 46th

Hawaii International Conference on System Sciences, pp.

1193-1202,2013.

[12] Stylianou and A. S. Andreou, “A Hybrid software

Component clustering and retrieval Scheme Using an

Entropy-based Fuzzy k-modes Algorithm”, in

Proceedings of 19th IEEE International Conference on

Tools with Artificial Intelligence, 2007, pp. 202-209.

[13] C Serban, A Vescan and H. F. Pop,” A New Component

Selection Algorithm Based on Metrics and Fuzzy

Clustering”, Creative Mathematics and Informatics, vol. 1,

no. 3,pp.505-510,2009.

[14] Petersen, Kai, Deepika Badampudi, Syed Shah, Krzysztof

Wnuk, Tony Gorschek, Efi Papatheocharous, Jakob

Axelsson, Severine Sentilles, Ivica Crnkovic, and Antonio

Cicchetti. "Choosing Component Origins for Software

Intensive Systems: In-house, COTS, OSS or

Outsourcing?--A Case Survey." IEEE Transactions on

Software Engineering (2017).

[15] C.Srinivas, V. Radhakrishna and C. V. Rao, “Clustering

Software Components for Program Restructuring and

Component Reuse Using Hybrid XOR Similarity

Function”, in Proceedings of AASRI Conference on

Intelligent Systems and Control, Vancouver, Canada , pp.

319-328, 2013.

[16] Badampudi, D., Wohlin, C. and Petersen, K., Software

component decision-making: In-house, OSS, COTS or

outsourcing-A systematic literature review. Journal of

Systems and Software, 121, pp.105-124, 2016.

[17] Vale, T., Crnkovic, I., De Almeida, E.S., Neto, P.A.D.M.S.,

Cavalcanti, Y.C. and de Lemos Meira, S.R., Twenty-eight

years of component-based software engineering. Journal

of Systems and Software, 111, pp.128-148, 2016.

[18] Srivastava, A.K. and Kumar, S., Dynamic Reconfiguration

of robot software component in real time distributed

system using clustering techniques. Procedia Computer

Science, 125, pp.754-761, 2018.

[19] Lian, X., Zhang, L., Jiang, J. and Goss, W., An approach

for optimized feature selection in large-scale software

product lines. Journal of System s and Software., pp. 636-

651, 2017

[20] J. Kaur and P. Tomar,"Multi Objective Optimization

Model using Preemptive Goal Programming for Software

Component Selection", International Journal of

Information Technology and Computer Science(IJITCS),

vol.7, no.9, pp.31-37, 2015

[21] Jha, P.C., Bali, V., Narula, S. and Kalra, M., Optimal

component selection based on cohesion & coupling for

component based software system under build-or-buy

scheme. Journal of Computational Science, 5(2), pp.233-

242, 2014

[22] P Singh, P Tomar,"Web Service Component Reusability

Evaluation: A Fuzzy Multi-Criteria Approach",

International Journal of Information Technology and

Computer Science(IJITCS), Vol.8, No.1, pp.40-47, 2016

[23] P. Tomar, D. K. Sharma and H.Sharma, “A Web Based

Four-Tier Architecture Design for Stock Selection

Decision Support System for Investments”, Review of

Business and Technology Research, vol.5, no.1, pp. 116-

121, 2011.

Authors’ Profiles

Jagdeep Kaur working as Assistant

Professor in Computer Science and

Engineering Department, The NorthCap

University, Gurgram, Haryana, India; and is

Ph.D. in Computer Science Engineering from

School of Information and Communication

Technology, Gautam Budhha University,Greater Noida,UP,

India. She holds a Bachelor of Technology (B.Tech.) degree in

Computer Science and Engineering from BCET, Gurdaspur,

Punjab, India (2003). She obtained her Master of Technology

degree in Computer Science from Department of Computer

Science and Engineering, Punjabi University, Patiala India

(2005). Her research interests include Component Based

Software Engineering, Software Reuse, Software Testing and

Software Process Metrics.

Dr. Pradeep Tomar is working as Faculty

Member in the School of Information and

Communication Technology, Gautam

Buddha University, Greater Noida, INDIA

since 2009. Dr. Tomar earned Ph.D. from

Department of Computer Science &

40 Clustering based Architecture for Software Component Selection

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 8, 33-40

Applications, M. D. University, Rohtak, Haryana, INDIA. He is

also a member of IEEE, IEEE Computer Society, Computer

Society of India (CSI), Indian Society for Technical Education

(ISTE), Indian Science Congress Association (ISCA),

International Association of Computer Science and Information

Technology (IACSIT) and International Association of

Engineering (IAENG). He served as a reviewer of journals and

conferences and worked as advisory board members in national

and international conferences. Two books “Teaching of

Mathematics” and “Communication and Information

Technology” at national levels have been authored by Dr.

Tomar. Dr. Tomar has been awarded with Bharat Jyoti Award

by India International Friendship Society in the field of

Technology in 2012. He has been awarded for the Best

Computer Faculty award by Govt. of Pondicherry and ASDF

society. His biography is published in Who’s Who Reference

Asia, Volume II. Several technical sessions in national and

international conferences had been chaired by Dr. Tomar and he

delivered expert talks in FDP, workshops, national and

international conferences. Three conferences have been

organized by Dr. Tomar.

How to cite this paper: Jagdeep Kaur, Pradeep Tomar, " Clustering based Architecture for Software Component

Selection ", International Journal of Modern Education and Computer Science(IJMECS), Vol.10, No.8, pp. 33-40,

2018.DOI: 10.5815/ijmecs.2018.08.04

