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Abstract—Clustering is the technique of finding useful 

patterns in a dataset by effectively grouping similar data 

items. It is an intense research area with many algorithms 

currently available, but practically most algorithms do 

not deal very efficiently with noise. Most real-world data 

are prone to containing noise due to many factors, and 

most algorithms, even those which claim to deal with 

noise, are able to detect only large deviations as noise. In 

this paper, we present a data-clustering method named 

SIDNAC, which can efficiently detect clusters of 

arbitrary shapes, and is almost immune to noise – a much 

desired feature in clustering applications. Another 

important feature of this algorithm is that it does not 

require apriori knowledge of the number of clusters – 

something which is seldom available. 

 

Index Terms—Clustering, data mining, spatial datasets, 

noisy data. 
 

I.  INTRODUCTION 

Clustering is a method of grouping objects based on 

the notion of similarity with respect to some given 

attribute. The entire population of objects is usually not 

homogenous and this lends itself to grouping together of 

objects into clusters, which are internally homogenous. 

This process of deriving clusters however is not always 

objective and two different clustering results may be 

viewed as being valid with respect to different measures 

of similarity. The most common method for measuring 

this similarity is some form of distance metric, computed 

using the attribute values of each object or data point. 

However, to obtain the best possible clustering, it is 

imperative to obtain the pairwise distance between every 

two such points, which is time-consuming, and often 

downright impractical when the dataset contains millions 

of points. 

One of the most simple and widely used clustering 

algorithms is the K-Means [1] algorithm; however it 

suffers from the major drawback is that it requires the 

user to specify the number of clusters apriori – an  

information which is seldom available. A similar 

algorithm is the K-Medians [2] algorithm, and the K-

Modes [3]. Another algorithm called CLARANS [4] is an 

improvement over the basic K-Modes algorithm. Some 

algorithms like GRID [5], BANG [6], CURE [7], and the 

Single-Link method [8] hierarchically decompose the 

dataset into clusters of higher-order, in turn decomposing 

them into smaller clusters. A popular approach is the 

density-based approach, wherein densities of clusters are 

measured, and spaces with similar densities are merged 

to form a single cluster. DBSCAN [9], DenClue [10], and 

CLIQUE [11] are some popular examples of density-

based clustering. Some other popular clustering 

algorithms are BIRCH [12], FLAME [13], and OPTICS 

[14]. 

Complicating further the process of clustering is the 

presence of noise in the dataset that can adversely affect 

the clustering results. Most of the early clustering 

algorithms like K-Means are prone to this problem, while 

some of the modern algorithms like BIRCH can detect 

noise. Another problem in clustering is the density of the 

clusters. Many algorithms fail to obtain clusters with 

widely varying densities, while some like DBSCAN can 

handle this efficiently. Finally, not all algorithms are 

capable of detecting clusters of arbitrary shapes. 

In this paper we propose a clustering algorithm called 

SIDNAC (Spatial Iterative Distance-based Noise-aware 

Agglomerative Clustering) that effectively addresses all 

of the aforesaid problems. In Section 2, we present the 

proposed method, and we discuss the results in Section 3. 

 

II.  THE SIDNAC ALGORITHM 

The SIDNAC algorithm proceeds in four phases which 

are shown in Fig. 1. The input to the algorithm is a set of 

points. SIDNAC is specially suited for clustering spatial 

datasets, but can be equally applied to any data as long as 

the number of dimensions is low. In this paper, we shall 

focus on 2-dimensional spatial data only, and hence each 

point will be thought of as a 2D point in the Cartesian 

coordinate system with x and y coordinates. 
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The algorithm also requires four user parameters, 

summarized in Table 1 that can be tweaked to obtain 

better results. The OVERLAP parameter informs 

SIDNAC whether to allow one cluster to be surrounded, 

but not actually overlapping, by another cluster. The 

other three parameters determine the number of clusters 

formed. It should be noted that none of these three 

parameters actually asks the user for the number of 

clusters – they only serve to tweak the results and it is up 

to the user to determine the desired number of clusters 

and hence the appropriate parameter values. We now 

discuss each of the four phases of the algorithm.  

2.1  Initialization 

Initialization is the pre-clustering step in SIDNAC, 

which forms initial clusters. Later steps attempt to make 

changes to this initial clustering to arrive at a better result. 

The central idea is to reduce the number of Independent 

Points. Independent Points are groups of points which 

cannot be separated and put into different clusters. In the 

initial dataset, all points are independent, and so, the 

Initialization phase attempts to reduce their number in 

order to bring down the total number of points to a 

reasonable amount. 

 

Fig.1. The phases of the SIDNAC algorithm 

Table 1. User-parameters required by SIDNAC 

Parameter  
Default 

Value 
Value Range Description  

CLUSTER_COUNT  1 >=1 
Fine tunes the number of clusters formed. Larger the 

value, lesser is the no. of clusters  

OVERLAP  False True/False Whether the dataset contains overlapping clusters or not  

PROXIMITY_INDEX  2 >=1 
Fine tunes the cluster size (in terms of area). Larger the 

value, lesser is the no. of clusters  

MERGE_ORDER  1 >0 
Fine tunes the merging process. Larger the value, lesser is 

the number of clusters formed 

 

Each point is thought to have an Aura of Influence 

(AOI), initially zero. The Granularity (G) of the dataset is 

the distance between the closest 2 points in the data space, 

and is defined as follows, for all pairs of points a and b:  

 

    bababaG yyxx 




 

22
min    (1) 

 

Distance, here, refers to the Euclidean distance 

between 2 points. The AOI of each point is incremented 

in steps of G. After each such increment, if the sum of the 

AOIs of 2 points is found to be greater or equal to the 

distance between them, then the pair is merged to form a 

new cluster. Only those pairs are compared in which at 

least one of them has not been assigned to any cluster. 

The Initialization phase proceeds as follows: 

1. Determine the Granularity G of the dataset. 

 

2. For each point A that has not been assigned to 

any cluster, repeat steps 3 and 4 until all points 

have been assigned. 

3. Increment the AOI of A by G units. 

4. For each point B in the dataset, such that A≠B, 

do the following: 

a. Compute the distance D between A and 

B. 

b. Compute the sum S of the AOI of A 

and AOI of B. 

c. If S exceeds D, then: 

i. If B has already been assigned 

to a cluster, add A to that 

cluster. 

ii. If B remains unassigned, 

create a new cluster C, and 

assign both A and B to this 

cluster. 
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The working of this phase can be understood from Fig. 

2. At the end of the initialization phase, we are left with 

some initial clusters, which form the input to the next 

phase of the algorithm. 

 

 

Fig.2. The Initialization phase of SIDNAC 

2.2  Splitting 

Splitting improves on the initial clustering, to provide 

a clean sand-bed for the subsequent steps, ensuring that 

no incorrect cluster assignments have been made in the 

initialization step, and breaking up the dataset into the 

finest grains possible, so that the clusters produced after 

this step would be a true representative sample of the 

original dataset, but with far fewer points than there was 

initially. This phase is also necessary to remove the data-

order-sensitivity in the clusters that is inherent in the 

initialization phase due to the fact that the clustering 

proceeded in the same order in which the data was 

scanned. 

 

The splitting phase is itself subdivided into 2 sub-steps: 

1. Distance-based Splitting 

2. ACS-based Splitting 

 

The above steps are performed sequentially as shown 

in Fig. 3, with each step repeated for every cluster. 

 

Fig.3. Splitting phase of SIDNAC 

2.2.1  Distance-based Splitting 

In this step, we split the initial clusters based on the 

fact that each member’s closest neighbor should be 

within its own cluster. Supposing that there is a Cluster C 

with 2 members A and B, such that B is the closest point 

to A in that cluster. Now, if A is closer to a point P 

(belonging to a different cluster D) than to B, then A is 

split, i.e. taken out from Cluster C and assigned to a new 

cluster of its own, as shown in Fig. 4. 
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Fig.4. Distance-based Splitting 

The algorithm works as follows: 

 

1. For each cluster C do the following: 

a. For each point A in C, do the following: 

i. Find a point B which is closest to A in C 

ii. Find a point P which is closest to A in the entire 

dataset 

iii. If B ≠ P, then create a new cluster D, and assign A 

to D 

2.2.2  ACS-based Splitting 

In this step, the Average Cluster Size (ACS) is 

determined. The ACS is the average of the cluster-sizes 

of all clusters; where the size of a cluster C is the 

maximum separation of any 2 members of C. The ACS is 

then determined using the following formula: 
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Where, N is the number of clusters obtained till now, 

n(Ci) is the number of points belonging to the i-th cluster, 

and A and B are points belonging to the i-th cluster. 

After ACS is determined, we iterate through each point 

A belonging to a cluster C, and determine the point B 

such that B is the closest point to A in cluster C. Let the 

distance between A and B be D. if D is more than ACS 

by a certain factor, then A is assigned to a new cluster. 

This factor is called the Proximity Index, and is a user-

specified parameter to the algorithm. This process is 

repeated for every cluster. 

The algorithm works as follows: 

 

1. Determine ACS 

2. For each cluster C, do the following: 

a. For each point A in C, do the following: 

i. Determine a point B which is closest to A in C 

ii. Calculate D to be the distance between A and B 

iii. If D > (ACS * PROXIMITY_INDEX) then create 

a new cluster and assign A to this new cluster 

2.3  Merging 

The merging process starts the clustering proper, by 

examining the inter-cluster distances. Two clusters are 

merged if their inter-cluster distance is less than the 

Average Cluster Size, tuned appropriately by a certain 

factor. This factor is called the Merge Order and is user-

specified. 

The Inter-Cluster-Distance (ICD) between any two 

clusters A and B, is the minimum distance between any 2 

points belonging to different clusters, and is computed as 

follows: 
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The Merging algorithm works as follows: 

1. Determine ACS 

2. For each cluster P, do the following: 

a. For each cluster Q, such that P≠Q, do the 

following: 

i. D = ICD(P,Q) 

ii. If D < (ACS * MERGE_ORDER) then Merge 

Clusters P and Q 

2.4  Agglomeration 

The clusters formed in the previous phase are good, 

but not accurate. The Agglomeration phase merges 

related clusters into still larger groups. For each cluster, 

its neighbours are determined, and the distances between 

them are computed. Usually, if this distance is more than 

the Average Inter-Cluster Distance, intuitively they 

should not be merged. However, in this case we are 

ignoring the fact regarding the density (or rather, rarity) 

of each cluster. Most other density-based clustering 

algorithms assume that all clusters will have more or less 

the same density, and hence, these algorithms fail to 

detect clusters with largely varying densities. To 

overcome this problem, this agglomeration step is 

essential.  

The process of agglomeration merges 2 clusters A and 

B, if all the following conditions hold: 

 

1. A and B are neighbors, i.e. 

NEIGHBOR(A,B)=TRUE 

2. NEIGHBORHOOD(A,B) > AICD 

3. NEIGHBORHOOD(A,B) < ( RARITY(A) * 

CLUSTER_COUNT ) 

4. NEIGHBORHOOD(A,B) < ( RARITY(B) * 

CLUSTER_COUNT ) 

 

The Agglomeration proceeds by first determining all 

Neighbors and their Neighborhoods within the dataset. 

Then, it iterates over each pair of clusters A and B, and 

determines their Rarity, followed by applying all the 4 

rules on them. If all the conditions are satisfied, A & B 

are merged together. We now explain how neighbor and 

rarity are computed. 

2.4.1  Neighbours and Neighbourhood of Clusters 

Two Clusters A and B are neighbours if both the 

following conditions hold, for each point P in cluster A: 

 

1. P is closest to Q (in cluster B) than to any other 

point in cluster B 

2. There is no line RS (where R and S belong to a 

cluster C, such that A≠C and B≠C) intersecting the 

line PQ 
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Fig.5. Determination of cluster neighbours 

In Fig. 5, we see how neighbours are detected. To 

determine if A and B are neighbors, we create their Inter-

Cluster Mesh by joining each point of A with each point 

of B. Next, we iterate through every other cluster, and for 

each such cluster, we create its Intra-Cluster Mesh by 

joining each point in that cluster with every other point in 

the same cluster. If none of these Intra-Cluster Meshes 

intersect with the Inter-Cluster Mesh of A & B, then A 

and B are said to be neighbors. In the figure, A and B are 

neighbors because the Intra-Cluster Meshes of C and D 

do not intersect with the Inter-Cluster Mesh of A & B. If 

A and B are found to be Neighbors, then their Inter-

Cluster Distance is said to be the Neighborhood of A 

with respect to B, or vice-versa. 

The Neighbor Determination algorithm works as follows: 

1. For each cluster A, do the following: 

a. For each cluster B, such that A≠B, do the following: 

i. Set D = ICD(A,B) and N=TRUE 

ii. Initialize ICM(A,B) to ɸ 

iii. For each point P in A, do the following: 

1. For each point Q in A, such that P≠Q, add PQ to ICM(A,B) 

iv. For each cluster C, such that A≠C and B≠C, do the following: 

1. Initialize CM(C) to ɸ 

2. For each point P in C, do the following: 

a. For each point Q in C, such that P≠Q, add PQ to CM(C) 

3. For each line PQ in ICM(A,B), do the following: 

a. For each line MN in CM(C), do the following: 

i. If PQ and MN intersect, set N=FALSE and continue outer loop 

v. If N=TRUE, do the following: 

1. Set NEIGHBOR(A,B)=TRUE 

2. Set NEIGHBORHOOD(A,B)=D 

 

2.4.2  Closest Neighbour Distance 

The Closest Neighbor Distance of a point A in cluster 

C is the distance between A and B where B is the closest 

point to A, in cluster C. B is then said to be the neighbor 

of A. In other words, A and B are neighbors if the 

following conditions hold: 

 

1. A and B both belong to the same cluster 

2. There is no other point P, such that A is closer to P 

than to A 

 

CND is calculated as follows: 
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2.4.3  Rarity 

The Rarity of a Cluster C is defined to be the 

maximum distance between any 2 member points of that 

cluster, who are neighbors themselves. Rarity of a cluster 

is computed as follows: 

 

 

CaCaCNDCRARITY  )),(max()(       (5) 

2.4.4  Average Inter-Cluster Distance 

The Average Inter-Cluster Distance (AICD) is the 

Average of the Inter-Cluster Distances of every pair of 

clusters. AICD is computed as follows: 
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III.  RESULTS AND DISCUSSION 

The SIDNAC algorithm was implemented using Java 

and tested against some artificial data, the results of 

which are presented in Fig. 6 and Table 2. Similar 

datasets were fed into DBSCAN [9] and the results thus 

obtained are presented in Fig. 7. 

From Fig. 6 and Fig. 7, we can see the clustering 

results of various datasets after having SIDNAC and 

DBSCAN applied to them respectively (for similar data). 

Each of the results shown, signify an important aspect of 

the proposed algorithm, and we now compare the results 

with those obtained using DBSCAN: 
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Fig.6. (a-e) Clustering results of SIDNAC 

1. In Fig. 6(a), we can see how efficiently SIDNAC 

detects clusters that partially overlap. Similar 

capability is also demonstrated by DBSCAN as 

shown in Fig. 7(a). 

2. In Fig. 6(b), we can see SIDNAC’s ability to 

detect clusters even when one cluster is totally 

contained within another, and DBSCAN is also at 

par in this respect as shown in Fig. 7(b). 

3. In Fig. 6(c), we show SIDNAC’s ability to detect 

clusters of arbitrary shapes. However, as we can 

see in Fig. 7(c), DBSCAN fails to properly 

cluster them. The left group is clustered into 4 

clusters (orange, green, red, and mauve) by 

DBSCAN apart from classifying some members 

as outliers (shown in blue). The right most group 

is also clustered into two separate groups. 

4. In Fig. 6(d), we show how SIDNAC can detect 

clusters having no cores, and DBSCAN’s ability 

is also at par with it as shown in Fig. 7(d). 

5. In Fig. 6(e), we show the outlier detection 

capability as well as SIDNAC’s ability to detect 

clusters with varying densities. The cluster on the 

right is far denser than the one on the left. In Fig. 

7(e), as expected, we can see that DBSCAN fails 

to detect clusters having wide variation in density 

in the same dataset. Most of the points in the left 

most group has been misclassified as outliers. 

Table 2. Classification accuracy comparison 

Dataset 
Accuracy 

SIDNAC DBSCAN 

(a) 93.17% 100% 

(b) 95.64% 100% 

(c) 84.71% 73.29% 

(d) 100% 100% 

(e) 100% 43.12% 

We can therefore conclude that SIDNAC is superior to 

DBSCAN in many respects. The primary disadvantages 

of SIDNAC however, lies in its speed, as it has a worst-

case time complexity of O(n2) when the Agglomeration 

step is not performed, and O(n4) when all steps are 

performed. It also has high I/O costs as it requires 

multiple passes of the dataset. Finally, it is expensive to 

extend this algorithm to work with data having more than 

3 dimensions. However, it has several advantages that are 

seldom absent in any given single clustering algorithm 

such as: 

 

1. Efficient Noise Detection: K-Means and other 

algorithms don’t have any noise/outlier detection 

capability. But, SIDNAC efficiently detects 

outliers, resulting in accurate clustering results. 

This is a very important feature as most real-

world data contain noise. 

2. Highly Customizable: SIDNAC has 4 user-

specified parameters, that help tune the cluster-

results as per requirements and pre-existing 

knowledge about the dataset. K-Means and some 

other algorithms take the number of clusters as 

the only parameter, which is not a very good 

tune-up factor. 

3. Intuitive Parameters with Default values: All 

of SIDNAC’s parameters are intuitive and do not 

adversely affect clustering results. E.g. Supplying 

K=3 in K-Means where there clearly are 4 

clusters, results in 3 clusters being formed. 

However, this disadvantage is not present in 

SIDNAC, and every cluster result that it produces 

is accurate to some extent at a minimum. Further, 

all its parameters have default values, which 

means that unlike K-Means where failure to 

supply the value of K will not produce any result, 

in SIDNAC, failure to specify the value of any 
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parameter makes SIDNAC take that parameter’s 

default value and proceed to clustering. 

4. Arbitrarily Shaped Cluster Detection: Most 

algorithms like BIRCH, can detect clusters only 

when they are spherical in shape to some extent. 

This is because of their inherent use of the 

concept of Radius-neighborhoods. However, 

SIDNAC can detect clusters of any imaginable 

shape, which is a very important factor. 

5. Immune to high-variance in densities: Most 

density-based algorithms like DBSCAN, fail to 

detect clusters having widely different densities, 

in the same dataset. However, SIDNAC is 

immune to this effect. 

6. Data-Order Insensitivity: Most algorithms like 

CLARANS, produce clustering results which are 

highly dependent on the scan order of the data-

points. If the relative order of the points are 

changed, the results vary. However, SIDNAC is 

insensitive to data-order, and produce 

deterministic results each time. 

7. Pre-knowledge of number of clusters not 

required: Algorithms like K-Means and K-

Medians require the user to supply the number of 

clusters. However, this number is seldom known. 

SIDNAC does not require such a parameter. 

8. Neighborhood and Cluster-Sizes not required: 

Algorithms like DBSCAN and OPTICS require 

the neighborhood and minimum cluster size (in 

terms of number of points). However, SIDNAC 

does not require such difficult-to-determine 

parameters to be specified by the user. 

 

 

Fig.7. (a-e) Clustering results of DBSCAN 

IV.  CONCLUSION 

The SIDNAC algorithm has been presented here in its 

most basic form. The time complexity of this algorithm 

can be improved using proper data-structures and 

indexing to store and organize the data. It must be 

assumed that the memory may not be able to store the 

entire dataset at once, and I/O costs are quite high if 

multiple scans are required for the entire dataset and it is 

not stored in memory. During the implementation of 

SIDNAC, our goals would be to eliminate these 

drawbacks. Extension of SIDNAC to work with high 

dimensional data, though important, is not so important 

in spatial clustering – the class to which SIDNAC 

belongs, and is not what we are trying to achieve with 

SIDNAC. However, if we need to deal with high-

dimensional data, we can always use feature extraction, 

or any other dimensionality reduction techniques before 

passing the dataset to SIDNAC. The distance function of 

SIDNAC also lends itself to change, if so desired, 

replacing the Euclidean distance metric with some other 

measure. 

We can state that SIDNAC can be used efficiently in 

situations where the following are of paramount 

importance: accuracy and, noise & outlier detection. 

SIDNAC is most applicable to spatial datasets but can be 

used successfully in other types of data sets as well. In 

comparison to the existing density/distance based 

algorithms SIDNAC’s accuracy in detecting noise as well 

as detecting clusters exhibiting high density variances is 

unmatched. 
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