
I.J. Modern Education and Computer Science, 2018, 7, 29-36
Published Online July 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2018.07.03

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 29-36

An Efficient Clustering Algorithm for Spatial

Datasets with Noise

Akash Nag
Department of Computer Science, M.U.C. Women’s College, Burdwan, WB, India

Email: nag.akash.cs@gmail.com

Sunil Karforma
Department of Computer Science, The University of Burdwan, Burdwan, WB, India

Email: sunilkarforma@yahoo.com

Received: 16 June 2017; Accepted: 05 July 2017; Published: 08 July 2018

Abstract—Clustering is the technique of finding useful

patterns in a dataset by effectively grouping similar data

items. It is an intense research area with many algorithms

currently available, but practically most algorithms do

not deal very efficiently with noise. Most real-world data

are prone to containing noise due to many factors, and

most algorithms, even those which claim to deal with

noise, are able to detect only large deviations as noise. In

this paper, we present a data-clustering method named

SIDNAC, which can efficiently detect clusters of

arbitrary shapes, and is almost immune to noise – a much

desired feature in clustering applications. Another

important feature of this algorithm is that it does not

require apriori knowledge of the number of clusters –

something which is seldom available.

Index Terms—Clustering, data mining, spatial datasets,

noisy data.

I. INTRODUCTION

Clustering is a method of grouping objects based on

the notion of similarity with respect to some given

attribute. The entire population of objects is usually not

homogenous and this lends itself to grouping together of

objects into clusters, which are internally homogenous.

This process of deriving clusters however is not always

objective and two different clustering results may be

viewed as being valid with respect to different measures

of similarity. The most common method for measuring

this similarity is some form of distance metric, computed

using the attribute values of each object or data point.

However, to obtain the best possible clustering, it is

imperative to obtain the pairwise distance between every

two such points, which is time-consuming, and often

downright impractical when the dataset contains millions

of points.

One of the most simple and widely used clustering

algorithms is the K-Means [1] algorithm; however it

suffers from the major drawback is that it requires the

user to specify the number of clusters apriori – an

information which is seldom available. A similar

algorithm is the K-Medians [2] algorithm, and the K-

Modes [3]. Another algorithm called CLARANS [4] is an

improvement over the basic K-Modes algorithm. Some

algorithms like GRID [5], BANG [6], CURE [7], and the

Single-Link method [8] hierarchically decompose the

dataset into clusters of higher-order, in turn decomposing

them into smaller clusters. A popular approach is the

density-based approach, wherein densities of clusters are

measured, and spaces with similar densities are merged

to form a single cluster. DBSCAN [9], DenClue [10], and

CLIQUE [11] are some popular examples of density-

based clustering. Some other popular clustering

algorithms are BIRCH [12], FLAME [13], and OPTICS

[14].

Complicating further the process of clustering is the

presence of noise in the dataset that can adversely affect

the clustering results. Most of the early clustering

algorithms like K-Means are prone to this problem, while

some of the modern algorithms like BIRCH can detect

noise. Another problem in clustering is the density of the

clusters. Many algorithms fail to obtain clusters with

widely varying densities, while some like DBSCAN can

handle this efficiently. Finally, not all algorithms are

capable of detecting clusters of arbitrary shapes.

In this paper we propose a clustering algorithm called

SIDNAC (Spatial Iterative Distance-based Noise-aware

Agglomerative Clustering) that effectively addresses all

of the aforesaid problems. In Section 2, we present the

proposed method, and we discuss the results in Section 3.

II. THE SIDNAC ALGORITHM

The SIDNAC algorithm proceeds in four phases which

are shown in Fig. 1. The input to the algorithm is a set of

points. SIDNAC is specially suited for clustering spatial

datasets, but can be equally applied to any data as long as

the number of dimensions is low. In this paper, we shall

focus on 2-dimensional spatial data only, and hence each

point will be thought of as a 2D point in the Cartesian

coordinate system with x and y coordinates.

30 An Efficient Clustering Algorithm for Spatial Datasets with Noise

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 29-36

The algorithm also requires four user parameters,

summarized in Table 1 that can be tweaked to obtain

better results. The OVERLAP parameter informs

SIDNAC whether to allow one cluster to be surrounded,

but not actually overlapping, by another cluster. The

other three parameters determine the number of clusters

formed. It should be noted that none of these three

parameters actually asks the user for the number of

clusters – they only serve to tweak the results and it is up

to the user to determine the desired number of clusters

and hence the appropriate parameter values. We now

discuss each of the four phases of the algorithm.

2.1 Initialization

Initialization is the pre-clustering step in SIDNAC,

which forms initial clusters. Later steps attempt to make

changes to this initial clustering to arrive at a better result.

The central idea is to reduce the number of Independent

Points. Independent Points are groups of points which

cannot be separated and put into different clusters. In the

initial dataset, all points are independent, and so, the

Initialization phase attempts to reduce their number in

order to bring down the total number of points to a

reasonable amount.

Fig.1. The phases of the SIDNAC algorithm

Table 1. User-parameters required by SIDNAC

Parameter
Default

Value
Value Range Description

CLUSTER_COUNT 1 >=1
Fine tunes the number of clusters formed. Larger the

value, lesser is the no. of clusters

OVERLAP False True/False Whether the dataset contains overlapping clusters or not

PROXIMITY_INDEX 2 >=1
Fine tunes the cluster size (in terms of area). Larger the

value, lesser is the no. of clusters

MERGE_ORDER 1 >0
Fine tunes the merging process. Larger the value, lesser is

the number of clusters formed

Each point is thought to have an Aura of Influence

(AOI), initially zero. The Granularity (G) of the dataset is

the distance between the closest 2 points in the data space,

and is defined as follows, for all pairs of points a and b:

 bababaG yyxx

22
min (1)

Distance, here, refers to the Euclidean distance

between 2 points. The AOI of each point is incremented

in steps of G. After each such increment, if the sum of the

AOIs of 2 points is found to be greater or equal to the

distance between them, then the pair is merged to form a

new cluster. Only those pairs are compared in which at

least one of them has not been assigned to any cluster.

The Initialization phase proceeds as follows:

1. Determine the Granularity G of the dataset.

2. For each point A that has not been assigned to

any cluster, repeat steps 3 and 4 until all points

have been assigned.

3. Increment the AOI of A by G units.

4. For each point B in the dataset, such that A≠B,

do the following:

a. Compute the distance D between A and

B.

b. Compute the sum S of the AOI of A

and AOI of B.

c. If S exceeds D, then:

i. If B has already been assigned

to a cluster, add A to that

cluster.

ii. If B remains unassigned,

create a new cluster C, and

assign both A and B to this

cluster.

 An Efficient Clustering Algorithm for Spatial Datasets with Noise 31

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 29-36

The working of this phase can be understood from Fig.

2. At the end of the initialization phase, we are left with

some initial clusters, which form the input to the next

phase of the algorithm.

Fig.2. The Initialization phase of SIDNAC

2.2 Splitting

Splitting improves on the initial clustering, to provide

a clean sand-bed for the subsequent steps, ensuring that

no incorrect cluster assignments have been made in the

initialization step, and breaking up the dataset into the

finest grains possible, so that the clusters produced after

this step would be a true representative sample of the

original dataset, but with far fewer points than there was

initially. This phase is also necessary to remove the data-

order-sensitivity in the clusters that is inherent in the

initialization phase due to the fact that the clustering

proceeded in the same order in which the data was

scanned.

The splitting phase is itself subdivided into 2 sub-steps:

1. Distance-based Splitting

2. ACS-based Splitting

The above steps are performed sequentially as shown

in Fig. 3, with each step repeated for every cluster.

Fig.3. Splitting phase of SIDNAC

2.2.1 Distance-based Splitting

In this step, we split the initial clusters based on the

fact that each member’s closest neighbor should be

within its own cluster. Supposing that there is a Cluster C

with 2 members A and B, such that B is the closest point

to A in that cluster. Now, if A is closer to a point P

(belonging to a different cluster D) than to B, then A is

split, i.e. taken out from Cluster C and assigned to a new

cluster of its own, as shown in Fig. 4.

32 An Efficient Clustering Algorithm for Spatial Datasets with Noise

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 29-36

Fig.4. Distance-based Splitting

The algorithm works as follows:

1. For each cluster C do the following:

a. For each point A in C, do the following:

i. Find a point B which is closest to A in C

ii. Find a point P which is closest to A in the entire

dataset

iii. If B ≠ P, then create a new cluster D, and assign A

to D

2.2.2 ACS-based Splitting

In this step, the Average Cluster Size (ACS) is

determined. The ACS is the average of the cluster-sizes

of all clusters; where the size of a cluster C is the

maximum separation of any 2 members of C. The ACS is

then determined using the following formula:

N

i

ji

y

ji

y

ji

x

ji

x

Cn

j BABA
N

ACS
i

1

2,,2,,)(

1max
1 (2)

Where, N is the number of clusters obtained till now,

n(Ci) is the number of points belonging to the i-th cluster,

and A and B are points belonging to the i-th cluster.

After ACS is determined, we iterate through each point

A belonging to a cluster C, and determine the point B

such that B is the closest point to A in cluster C. Let the

distance between A and B be D. if D is more than ACS

by a certain factor, then A is assigned to a new cluster.

This factor is called the Proximity Index, and is a user-

specified parameter to the algorithm. This process is

repeated for every cluster.

The algorithm works as follows:

1. Determine ACS

2. For each cluster C, do the following:

a. For each point A in C, do the following:

i. Determine a point B which is closest to A in C

ii. Calculate D to be the distance between A and B

iii. If D > (ACS * PROXIMITY_INDEX) then create

a new cluster and assign A to this new cluster

2.3 Merging

The merging process starts the clustering proper, by

examining the inter-cluster distances. Two clusters are

merged if their inter-cluster distance is less than the

Average Cluster Size, tuned appropriately by a certain

factor. This factor is called the Merge Order and is user-

specified.

The Inter-Cluster-Distance (ICD) between any two

clusters A and B, is the minimum distance between any 2

points belonging to different clusters, and is computed as

follows:

 BbAababaBAICD yyxx

 ,min),(

22 (3)

The Merging algorithm works as follows:

1. Determine ACS

2. For each cluster P, do the following:

a. For each cluster Q, such that P≠Q, do the

following:

i. D = ICD(P,Q)

ii. If D < (ACS * MERGE_ORDER) then Merge

Clusters P and Q

2.4 Agglomeration

The clusters formed in the previous phase are good,

but not accurate. The Agglomeration phase merges

related clusters into still larger groups. For each cluster,

its neighbours are determined, and the distances between

them are computed. Usually, if this distance is more than

the Average Inter-Cluster Distance, intuitively they

should not be merged. However, in this case we are

ignoring the fact regarding the density (or rather, rarity)

of each cluster. Most other density-based clustering

algorithms assume that all clusters will have more or less

the same density, and hence, these algorithms fail to

detect clusters with largely varying densities. To

overcome this problem, this agglomeration step is

essential.

The process of agglomeration merges 2 clusters A and

B, if all the following conditions hold:

1. A and B are neighbors, i.e.

NEIGHBOR(A,B)=TRUE

2. NEIGHBORHOOD(A,B) > AICD

3. NEIGHBORHOOD(A,B) < (RARITY(A) *

CLUSTER_COUNT)

4. NEIGHBORHOOD(A,B) < (RARITY(B) *

CLUSTER_COUNT)

The Agglomeration proceeds by first determining all

Neighbors and their Neighborhoods within the dataset.

Then, it iterates over each pair of clusters A and B, and

determines their Rarity, followed by applying all the 4

rules on them. If all the conditions are satisfied, A & B

are merged together. We now explain how neighbor and

rarity are computed.

2.4.1 Neighbours and Neighbourhood of Clusters

Two Clusters A and B are neighbours if both the

following conditions hold, for each point P in cluster A:

1. P is closest to Q (in cluster B) than to any other

point in cluster B

2. There is no line RS (where R and S belong to a

cluster C, such that A≠C and B≠C) intersecting the

line PQ

 An Efficient Clustering Algorithm for Spatial Datasets with Noise 33

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 29-36

Fig.5. Determination of cluster neighbours

In Fig. 5, we see how neighbours are detected. To

determine if A and B are neighbors, we create their Inter-

Cluster Mesh by joining each point of A with each point

of B. Next, we iterate through every other cluster, and for

each such cluster, we create its Intra-Cluster Mesh by

joining each point in that cluster with every other point in

the same cluster. If none of these Intra-Cluster Meshes

intersect with the Inter-Cluster Mesh of A & B, then A

and B are said to be neighbors. In the figure, A and B are

neighbors because the Intra-Cluster Meshes of C and D

do not intersect with the Inter-Cluster Mesh of A & B. If

A and B are found to be Neighbors, then their Inter-

Cluster Distance is said to be the Neighborhood of A

with respect to B, or vice-versa.

The Neighbor Determination algorithm works as follows:

1. For each cluster A, do the following:

a. For each cluster B, such that A≠B, do the following:

i. Set D = ICD(A,B) and N=TRUE

ii. Initialize ICM(A,B) to ɸ

iii. For each point P in A, do the following:

1. For each point Q in A, such that P≠Q, add PQ to ICM(A,B)

iv. For each cluster C, such that A≠C and B≠C, do the following:

1. Initialize CM(C) to ɸ

2. For each point P in C, do the following:

a. For each point Q in C, such that P≠Q, add PQ to CM(C)

3. For each line PQ in ICM(A,B), do the following:

a. For each line MN in CM(C), do the following:

i. If PQ and MN intersect, set N=FALSE and continue outer loop

v. If N=TRUE, do the following:

1. Set NEIGHBOR(A,B)=TRUE

2. Set NEIGHBORHOOD(A,B)=D

2.4.2 Closest Neighbour Distance

The Closest Neighbor Distance of a point A in cluster

C is the distance between A and B where B is the closest

point to A, in cluster C. B is then said to be the neighbor

of A. In other words, A and B are neighbors if the

following conditions hold:

1. A and B both belong to the same cluster

2. There is no other point P, such that A is closer to P

than to A

CND is calculated as follows:

 baCbbabaCaCND yyxx

 ,min),(

22

(4)

2.4.3 Rarity

The Rarity of a Cluster C is defined to be the

maximum distance between any 2 member points of that

cluster, who are neighbors themselves. Rarity of a cluster

is computed as follows:

CaCaCNDCRARITY)),(max()((5)

2.4.4 Average Inter-Cluster Distance

The Average Inter-Cluster Distance (AICD) is the

Average of the Inter-Cluster Distances of every pair of

clusters. AICD is computed as follows:

BABABAICD
N

AICD ;,),(
2

1

(6)

III. RESULTS AND DISCUSSION

The SIDNAC algorithm was implemented using Java

and tested against some artificial data, the results of

which are presented in Fig. 6 and Table 2. Similar

datasets were fed into DBSCAN [9] and the results thus

obtained are presented in Fig. 7.

From Fig. 6 and Fig. 7, we can see the clustering

results of various datasets after having SIDNAC and

DBSCAN applied to them respectively (for similar data).

Each of the results shown, signify an important aspect of

the proposed algorithm, and we now compare the results

with those obtained using DBSCAN:

34 An Efficient Clustering Algorithm for Spatial Datasets with Noise

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 29-36

Fig.6. (a-e) Clustering results of SIDNAC

1. In Fig. 6(a), we can see how efficiently SIDNAC

detects clusters that partially overlap. Similar

capability is also demonstrated by DBSCAN as

shown in Fig. 7(a).

2. In Fig. 6(b), we can see SIDNAC’s ability to

detect clusters even when one cluster is totally

contained within another, and DBSCAN is also at

par in this respect as shown in Fig. 7(b).

3. In Fig. 6(c), we show SIDNAC’s ability to detect

clusters of arbitrary shapes. However, as we can

see in Fig. 7(c), DBSCAN fails to properly

cluster them. The left group is clustered into 4

clusters (orange, green, red, and mauve) by

DBSCAN apart from classifying some members

as outliers (shown in blue). The right most group

is also clustered into two separate groups.

4. In Fig. 6(d), we show how SIDNAC can detect

clusters having no cores, and DBSCAN’s ability

is also at par with it as shown in Fig. 7(d).

5. In Fig. 6(e), we show the outlier detection

capability as well as SIDNAC’s ability to detect

clusters with varying densities. The cluster on the

right is far denser than the one on the left. In Fig.

7(e), as expected, we can see that DBSCAN fails

to detect clusters having wide variation in density

in the same dataset. Most of the points in the left

most group has been misclassified as outliers.

Table 2. Classification accuracy comparison

Dataset
Accuracy

SIDNAC DBSCAN

(a) 93.17% 100%

(b) 95.64% 100%

(c) 84.71% 73.29%

(d) 100% 100%

(e) 100% 43.12%

We can therefore conclude that SIDNAC is superior to

DBSCAN in many respects. The primary disadvantages

of SIDNAC however, lies in its speed, as it has a worst-

case time complexity of O(n2) when the Agglomeration

step is not performed, and O(n4) when all steps are

performed. It also has high I/O costs as it requires

multiple passes of the dataset. Finally, it is expensive to

extend this algorithm to work with data having more than

3 dimensions. However, it has several advantages that are

seldom absent in any given single clustering algorithm

such as:

1. Efficient Noise Detection: K-Means and other

algorithms don’t have any noise/outlier detection

capability. But, SIDNAC efficiently detects

outliers, resulting in accurate clustering results.

This is a very important feature as most real-

world data contain noise.

2. Highly Customizable: SIDNAC has 4 user-

specified parameters, that help tune the cluster-

results as per requirements and pre-existing

knowledge about the dataset. K-Means and some

other algorithms take the number of clusters as

the only parameter, which is not a very good

tune-up factor.

3. Intuitive Parameters with Default values: All

of SIDNAC’s parameters are intuitive and do not

adversely affect clustering results. E.g. Supplying

K=3 in K-Means where there clearly are 4

clusters, results in 3 clusters being formed.

However, this disadvantage is not present in

SIDNAC, and every cluster result that it produces

is accurate to some extent at a minimum. Further,

all its parameters have default values, which

means that unlike K-Means where failure to

supply the value of K will not produce any result,

in SIDNAC, failure to specify the value of any

 An Efficient Clustering Algorithm for Spatial Datasets with Noise 35

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 29-36

parameter makes SIDNAC take that parameter’s

default value and proceed to clustering.

4. Arbitrarily Shaped Cluster Detection: Most

algorithms like BIRCH, can detect clusters only

when they are spherical in shape to some extent.

This is because of their inherent use of the

concept of Radius-neighborhoods. However,

SIDNAC can detect clusters of any imaginable

shape, which is a very important factor.

5. Immune to high-variance in densities: Most

density-based algorithms like DBSCAN, fail to

detect clusters having widely different densities,

in the same dataset. However, SIDNAC is

immune to this effect.

6. Data-Order Insensitivity: Most algorithms like

CLARANS, produce clustering results which are

highly dependent on the scan order of the data-

points. If the relative order of the points are

changed, the results vary. However, SIDNAC is

insensitive to data-order, and produce

deterministic results each time.

7. Pre-knowledge of number of clusters not

required: Algorithms like K-Means and K-

Medians require the user to supply the number of

clusters. However, this number is seldom known.

SIDNAC does not require such a parameter.

8. Neighborhood and Cluster-Sizes not required:

Algorithms like DBSCAN and OPTICS require

the neighborhood and minimum cluster size (in

terms of number of points). However, SIDNAC

does not require such difficult-to-determine

parameters to be specified by the user.

Fig.7. (a-e) Clustering results of DBSCAN

IV. CONCLUSION

The SIDNAC algorithm has been presented here in its

most basic form. The time complexity of this algorithm

can be improved using proper data-structures and

indexing to store and organize the data. It must be

assumed that the memory may not be able to store the

entire dataset at once, and I/O costs are quite high if

multiple scans are required for the entire dataset and it is

not stored in memory. During the implementation of

SIDNAC, our goals would be to eliminate these

drawbacks. Extension of SIDNAC to work with high

dimensional data, though important, is not so important

in spatial clustering – the class to which SIDNAC

belongs, and is not what we are trying to achieve with

SIDNAC. However, if we need to deal with high-

dimensional data, we can always use feature extraction,

or any other dimensionality reduction techniques before

passing the dataset to SIDNAC. The distance function of

SIDNAC also lends itself to change, if so desired,

replacing the Euclidean distance metric with some other

measure.

We can state that SIDNAC can be used efficiently in

situations where the following are of paramount

importance: accuracy and, noise & outlier detection.

SIDNAC is most applicable to spatial datasets but can be

used successfully in other types of data sets as well. In

comparison to the existing density/distance based

algorithms SIDNAC’s accuracy in detecting noise as well

as detecting clusters exhibiting high density variances is

unmatched.

REFERENCES

[1] MacQueen, James. "Some methods for classification and

analysis of multivariate observations." Proceedings of the

fifth Berkeley symposium on mathematical statistics and

probability. Vol. 1. No. 14. 1967.

[2] Kaufman, Leonard, and Peter J. Rousseeuw. Finding

groups in data: an introduction to cluster analysis. Vol.

344. John Wiley & Sons, 2009.

36 An Efficient Clustering Algorithm for Spatial Datasets with Noise

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 29-36

[3] Huang, Zhexue. "A Fast Clustering Algorithm to Cluster

Very Large Categorical Data Sets in Data Mining."

DMKD. 1997.

[4] Ng, Raymond T., and Jiawei Han. "Efficient and

Effective Clustering Methods for Spatial Data Mining."

Proc. of. 1994.

[5] Schikuta, Erich. "Grid-clustering: An efficient

hierarchical clustering method for very large data sets."

Pattern Recognition, 1996., Proceedings of the 13th

International Conference On. Vol. 2. IEEE, 1996.

[6] Schikuta, Erich, and Martin Erhart. "The BANG-

clustering system: Grid-based data analysis." International

Symposium on Intelligent Data Analysis. Springer Berlin

Heidelberg, 1997.

[7] Guha, Sudipto, Rajeev Rastogi, and Kyuseok Shim.

"CURE: an efficient clustering algorithm for large

databases." ACM Sigmod Record. Vol. 27. No. 2. ACM,

1998.

[8] Sibson, Robin. "SLINK: an optimally efficient algorithm

for the single-link cluster method." The computer journal

16.1 (1973): 30-34.

[9] Ester, Martin, et al. "A density-based algorithm for

discovering clusters in large spatial databases with noise."

Kdd. Vol. 96. No. 34. 1996.

[10] Hinneburg, Alexander, and Daniel A. Keim. "An efficient

approach to clustering in large multimedia databases with

noise." KDD. Vol. 98. 1998.

[11] Agrawal, Rakesh, et al. Automatic subspace clustering of

high dimensional data for data mining applications. Vol.

27. No. 2. ACM, 1998.

[12] Zhang, Tian, Raghu Ramakrishnan, and Miron Livny.

"BIRCH: an efficient data clustering method for very

large databases." ACM Sigmod Record. Vol. 25. No. 2.

ACM, 1996.

[13] Fu, Limin, and Enzo Medico. "FLAME, a novel fuzzy

clustering method for the analysis of DNA microarray

data." BMC bioinformatics 8.1 (2007): 3.

[14] Ankerst, Mihael, et al. "OPTICS: ordering points to

identify the clustering structure." ACM Sigmod record.

Vol. 28. No. 2. ACM, 1999.

Authors’ Profiles

Akash Nag completed his Bachelors in

Computer Applications from the University

of Burdwan, and his Masters in Computer

Science from the University of Calcutta. He

received his Ph.D. in Computer Science

from the University of Burdwan. He is

currently a faculty member in the Dept. of

Computer Science at M.U.C. Women’s College, Burdwan. His

research interests include algorithms and bioinformatics.

Prof. Sunil Karforma completed his

Bachelors in Computer Science &

Engineering, and his Masters in Computer

Science & Engineering, from Jadavpur

University. He received his Ph. D. in

Computer Science, and is presently

Professor & Head of the Dept. of Computer

Science at the University of Burdwan. His research interests

include Network Security, E-Commerce, and Bioinformatics.

He has published numerous papers in both national as well as

international journals and conferences.

How to cite this paper: Akash Nag, Sunil Karforma, " An Efficient Clustering Algorithm for Spatial Datasets with

Noise", International Journal of Modern Education and Computer Science(IJMECS), Vol.10, No.7, pp. 29-36,

2018.DOI: 10.5815/ijmecs.2018.07.03

