
I.J. Modern Education and Computer Science, 2018, 7, 13-28
Published Online July 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2018.07.02

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 13-28

Proposal for a Mutual Conversion Relational

Database-Ontology Approach

Leila Zemmouchi-Ghomari
Ecole Nationale Supérieure de Technologie, ENST, Algiers, Algeria

Email: leila.ghomari@enst.dz

Abdelaali Djouambi and Cherifa Chabane
Université des Sciences et des Technologies Houari Boumediene, USTHB, Algiers, Algeria

Email: {abdelalidjouambi, cherifa.chabane25}@gmail.com

Received: 11 May 2018; Accepted: 04 June 2018; Published: 08 July 2018

Abstract—Whereas ontologies are formal knowledge

representations, conveying a shared understanding of a

given domain, databases are a mature technology that

describes specifications for the storage, retrieval,

organization, and processing of data in information

systems to ensure data integrity. Ontologies offer the

functionality of conceptual modeling while complying

with the web constraints regarding publication, querying

and annotation, as well as the capacity of formality and

reasoning to enable data consistency and checking.

Ontologies converted to databases could exploit the

maturity of database technologies, and databases

converted to ontologies could utilize ontology

technologies to be more used in the context of the

semantic web. This work aims to propose a generic

approach that enables converting a relational database

into an ontology and vice versa. A tool based on this

approach has been implemented as a proof of a concept.

Index Terms—Relational database, ontology, conversion

approach, conversion tool.

I. INTRODUCTION

Relational databases (RDB) remain the central support

of data around the world, the most successful architecture

for storing and manipulating data in the workplace. On

the other side, ontology is a technology that offers the

possibility to represent, share and reuse knowledge

formally and hence enable reasoning capabilities and

enhance querying possibilities.

Despite the differences that separate ontologies from

databases, several studies have attempted to exploit the

benefits of each in favor of the other [1]. Ontologies can

be used in the context of databases in several cases, such

as integration of heterogeneous data storage systems, and

database design as ontology is a consensual and affluent

representation of knowledge related to a specific domain.

On the other side, databases can be useful in the semantic

web context, for example, in the case of the information

extraction from existing corporate knowledge and online

data embedded in web pages to be used in semantic web

applications, so new knowledge can be inferred and

querying richer representations will be possible.

Many research works have been dedicated to proposing

approaches and tools to transform databases into

ontologies and vice versa, however, to the best of our

knowledge no work has proposed a two-way conversion

approach. Besides, we address conversion of all main

OWL constructs to enable considering the most critical

elements of any ontology. The proposed approach is

supported by an implementation that facilitates its

experimentation and use.

This research work focuses on providing a consistent

set of mapping rules describing two-way conversion

(RDB-Ontology and Ontology-RDB). Then, to

implement a mutual conversion tool based on the

proposed approach as a proof of a concept.

This paper is organized as follows: section 2 is a

background section in which we present brief definitions

of the two artifacts then we highlight the main differences

between relational databases and ontologies, we end this

section by describing the conversion approaches

categories. Section 3 describes the related works or the

existing conversion approaches as well as a comparison

between related works and the current work. Section 4

presents the motivation of this work in which we explain

the reasons to convert one artifact into another. Section 5

explains in detail the two-way generic conversion

approach. Section 6 describes the implementation of the

conversion tool and tests by converting a sample database

and an online ontology to illustrate its efficiency. Section

7 concludes the work by highlighting its contributions

and discussing its limitations and perspectives.

II. BACKGROUND

A. Relational Database Description

The Database concept emerged in the 1960s to meet

the management and sharing needs of businesses facing

the growing volume of information. A database can be

defined as a structured set of data stored on computer-

accessible media, representing real-world information

mailto:cherifa.chabane25%7D@gmail.com

14 Proposal for a Mutual Conversion Relational Database-Ontology Approach

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 13-28

that can be queried and updated by a community of users.

Access to and management of a database is provided by a

set of programs called the database management system.

As part of our work, we are interested in relational

databases, given their popularity and extensive use [2, 3].

The concept of the relational database was invented by E.

F Codd at IBM in 1970. A relational database is a

collection of data organized in the form of tables formally

defined by the relational algebra on which they are based.

The relational model owes its success in the world of

computing to a set of characteristics, such as ease of use,

availability of languages for the definition, manipulation,

and control of data, such as SQL (Structured Query

Language) and the independence of the logical and

physical levels.

B. Ontology Description

To facilitate the sharing and reuse of knowledge

formally represented in artificial intelligence systems, it

is beneficial to define a standard vocabulary in which

shared knowledge is represented. The specification of this

vocabulary is commonly called an ontology. As a result,

ontologies define structured vocabularies, grouping

relevant concepts of a domain and their relationships,

which serve to organize and exchange information in an

unambiguous way. Thus, the knowledge used in the

semantic web is based on ontologies to be shared and

equipped with operational interpretations. Gruber's

definition of ontology is undoubtedly the most related in

the literature, which states that ontology is a "formal

specification of a shared conceptualization" [4].

Conceptualization refers to an abstract model specific to

any phenomenon, which identifies the concepts related to

that phenomenon. Explanation means that the concepts

used and the constraints of their use are explicitly defined.

Its formal character refers to the interpretability of

ontologies by machines. Ontology must also be shared

and should reflect a community consensus on the

represented knowledge.

C. Database Versus Ontology

Like relational databases, ontologies conceptualize a

set of entities using classes associated with properties and

hierarchies using subsumption relationships. Although

used terminologies to name their respective elements are

different, the basic principles of modeling are quite

similar. Actually, there are several differences between

the two structures, which we will summarize in the

following table (Table 1).

Table 1. Summary of the differences between relational databases and

ontologies

Criterion Database Ontology

Purpose Storage and

manipulation of raw

data set without

semantics.

Representing and

sharing knowledge on a

domain by explaining

what is implicit in the

universe of discourse,

thus ontology provides

the semantics of the

domain.

Consensus-

building

Built by information

gathering techniques:

documents,

interviews,

observation.

Being by definition

consensual, the concepts

represented are usually

the result of a consensus

of a community of

experts and users.

Concepts’

definition

rules

Normalization rules

require unique

identification of

database concepts.

This constraint is

specific to the

information system

for which the

database was

developed. Thus, the

same concept can be

defined in different

ways according to the

contexts in which

they evolve, which

generates

heterogeneity despite

identical semantics.

The non-unique name

assumption property

specifies that two

classes can have

different names but their

definitions correspond to

the same concept. This

is considered as

flexibility in the

definition of concepts

due to the open and

dynamic environment in

which ontologies

evolve. The mapping

between the different

concepts is carried out

using artifacts offered

by knowledge

representation

languages, such as owl:

equivalentClass and

owl: sameAs.

Closed vs.

Open world

assumption

In databases context,

the assumption of the

Closed World

Assumption prevails

that: what is not

known to be true is

necessarily false.

Databases are

systems that contain

complete information

about their field of

application; Closed

World Assumption

can provide either

positive or negative

response to user

requests.

In the semantic web, it is

assumed that what is not

known as true is merely

unknown. This theory is

called Open World

Assumption and applies

when a system has

incomplete information.

For example, consider a

patient's clinical history

system. If the patient's

clinical history does not

include a particular

allergy, it would be

incorrect to say that the

patient does not have

this allergy. It is not

known if the patient

suffers from this allergy

unless other information

is provided to refute this

hypothesis.

Dependence

or

independence

Presented as a

solution to a specific

problem, databases

depend on the

context of the

problem.

Generally independent

of a specific application

or problem (except in

the case of application

ontologies)

 Proposal for a Mutual Conversion Relational Database-Ontology Approach 15

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 13-28

D. Conversion Approaches

Conversion approaches can be classified into three

categories:

1) Logic model approaches: Existing approaches

and methods in this category are based on

translating the physical implementation of the

database or ontology. Information is retrieved for

each entity belonging to the RDB or ontology to

be converted, to create the corresponding

RDB/ontology. Tools such as D2R MAP [5],

VisAVis [6], Relational.OWL [7] have been

designed to translate the database logic schema.

Some of these tools, such as D2R MAP require a

manual definition of mapping rules, others, such

as Relational. OWL automatically maps the RDB

in ontology according to predefined rules.

2) Conceptual model approaches: For this

conversion approach, some work has been

proposed to move from a conceptual model of a

relational database to an ontology. For approaches

such as the one presented in [8], the primary

motivation to exploit the conceptual model is that

the latter (expressed as an ER Relation Entity

Diagram) is richer in semantics compared to the

relational schema. For the opposite direction of

conversion, the primary motivation is to take

advantage of the consensual knowledge of domain

ontologies and use it for the modeling and design

of relational databases. The work done by [9],

describes a set of transformation rules that allows

translation of the OWL script into UML entities.

3) Intermediate conceptual model approaches:

The intermediate model is a graph inspired by

graph theory [10], it is generated from the entities

of an RDB or ontology, by a process that translates

each entity into a graph element. The motivation

to use this intermediate model is twofold: the first

being to make a conversion independent of the

evolution of the structure to be converted because

RDB and ontologies are often subject to updates.

The second point and perform an independent

conversion of the physical implementation of the

data structure, so the resulting RDB or ontology

will be independent of the management system of

the structure converts.

We can notice that approaches based on the conceptual

model or the intermediate model, do not favor the

conversion of the instances contrary to the approaches

based on the logical model. Logical model approaches are

based on the physical implementation of the structure

being converted, and can thus have access to the

instances of the relational database or the ontology to be

converted.

III. RELATED WORKS

Several works dealing with the conversion between

relational database and ontology have been proposed, but

not all approaches have been implemented as conversion

tools [11]. Most of the proposed work describes only the

conversion approach and mapping rules. In this section,

we focus on approaches wholly or partially implemented.

Existing tools (Table 2) include the following:

D2R MAP [5]: mapping rules are described using a

declarative language based on XML. This language

supported by a tool has been proposed to enrich an

already existing ontology from the source database by

mapping its contents to this ontology. The mapping

process has four phases: For each class, a recordset is

selected from the database. Second, the record set is

grouped according to the groupBy columns of the

specific ClassMap. Next, the class instances are created

and assigned a URI or a blank node identifier. Finally, the

instance properties are created using datatype and object

property bridges. The main feature of this language is that

it allows flexible mapping of complex relational

structures by using SQL statements directly in mapping

rules. In this language, the information contained in the

rows of the database is not massively extracted from the

database because it is assumed that we are not interested

in the contents of the rows of the different tables in

ontology but only in the critical information that makes

the subject of a query. A D2R processor prototype is

publicly available under GNU LGPL license. The

processor is implemented in Java and is based on the Jena

API.

Ontology Modeler/Document & Resource Manager

[12]: it is a mapping system containing three parts:

Ontology Modeler, Document Manager, and Ontology

Resource Manager. The ontology Modeler creates an

ontology model from the OWL document. All constraints

will be identified and recorded. An appropriate OWL

reasoner is selected depending on the OWL version of the

input. Document Manager based on Jena is dedicated to

manipulating OWL documents. It builds the union of the

imported documents and creates upon them a new

ontology model. Ontology Reasoner provides methods

for listing, getting and setting the RDF types of a

resource.

Relational.OWL [7]: is a fully automatic tool that

allows having an ontological representation of a

relational database schema. It is characterized by the use

of OWL-Full meta-modeling capabilities, which limits

the decidability of the resulting ontology. Relational.

OWL performs a massive and automatic data migration,

which means that the information contained in the rows

of the various tables in the database is all mapped to

instances in the ontology. It is also characterized by the

fact that it maps key attributes (primary and foreign) in

data properties specific to the classes corresponding to

their tables.

16 Proposal for a Mutual Conversion Relational Database-Ontology Approach

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 13-28

KAON2 [13]: is a platform equipped with a

correspondence between databases and ontologies such as

R2O. From this perspective, it is not a matter of

automating the construction of the classes and properties.

The objective is to provide declarative means to describe

instantiation processes based on relational bases of

predefined ontologies manually. KAON2 makes it

possible to provide a "view" under ontology form (what

its designers call it a "virtual ontology"), fueled on-the-fly

by "virtual ontology" and instances extracted from a

database.

Vis-à-vis [6]: is a Protégé plug-in that allows mapping

relational databases to existing Protégé ontologies.

Mapping is done manually by selecting the dataset for an

ontology class from the database. An SQL query will be

executed and returns the desired dataset, adding it as new

properties to the class. This tool also performs a set of

consistency checks to validate the mappings.

DBOM [14]: is a Protégé plug-in enabling end-users to

design and instantiate an integration of multiple existing

relational databases into an OWL knowledge. The

DBOM system includes a migration system composed of

a set of formulas linking a set of source schemas of DBs

and the target ontology schema formalized in OWL DL.

OWL2DB based approach [15]: the algorithm is based

on OWL2DB approach, implemented as a protégé plugin.

Mapping rules can be summarized as follows: classes are

mapped to tables, properties to relations and attributes

and constraints are stored in the metadata table.

DataMaster [16]: is a Protégé plug-in that imports both

schema and data from relational databases into Protégé.

The particularity of this tool is that supports both OWL

and frames-based ontologies. The user can select the

tables to be imported into Protégé and can get a preview

of the selected tables. The superclass selector enables

users to select superclass(es) for the imported table

classes, and all the imported classes will be created as

subclasses of that class.

DB2OWL [17]: is a prototype that allows creating an

ontology from an RDB, programmed in Java and based

on the Jena API for the construction of the ontology

corresponding to the source database, the mapping

performed by DB2OWL is fully automatic just like the

export of database instances. A mapping process

identifies templates for conceptual elements (based on

R2O document) in the database and therefore converts

database elements to the corresponding ontology

components.

OntER [18]: is a Java plug-in for constructing a

conceptual model of an RDB from an ontology through

an intermediate model. OntER relies on Protege 3.3,

which is an authoring system for ontology creation, for

manual ontology construction, and Sybase Power

Designer 12.0, which is a design tool, for constructing the

conceptual data model of the RDB corresponding to the

source ontology.

RDB2ONTO [19]: is an approach based on mapping

SQL query to RDF/OWL XML template. Hence, OWL

data are stored in an ontology model. The SQL query is

executed, and for each row of the query results, it fills in

the XML-based OWL 2 template.

OBDA [20]: is a protégé plugin for ontology editing,

data mapping and querying enabling users to query the

database through the mediating ontology. This tool

provides the user with functionality that is not available

in RDBMSs with SQL queries, which is an inference of

subsumption queries. Another advantage is the possibility

to query the data source through the ontological domain

model.

RDBToOnto [21]: is a tool that eases the design and

implementation of methods for ontology learning from

relational databases. It supports an iterative approach for

refinement of the learning process through the definition

of constraints by users. RDBToOnto's development is

oriented towards the recognition of categorization

structures by jointly analyzing the database schema and

stored data. Thus, the RTAXON converter, central in this

tool, implements a generic method of recognition of

categorization attributes, based on the one hand on the

name of the attribute and the other hand on the

redundancy in the extensions of the attributes using an

entropy-based method

OWL to ER and ER to OWL [22]: is an approach

based on conceptual graphs. The first step is the

transformation of OWL ontology to ER and the second

step is the transformation from ER to a relational

database. The tool that supports this approach is not

entirely automatic, and only central OWL constructs are

covered.

OntoRel [23]: is specified as a tool providing a

mechanism to transform the OWL ontology into a

relational database. In this approach, ontology is first

generated from an XML document using the OntoGen

tool, which is a semi-automatic tool for ontology

generation, and then the OWL ontology is transformed

into a relational model by implementing the OntoRel tool

and applying specific transformation rules. The

disadvantage of this tool is that it only transforms the

main components of the ontology.

Hybrid approach [24]: this tool transforms OWL 2

ontologies into relational databases using a hybrid

approach. A part of ontology constructs is directly

represented by relational database structures, the other

part with no direct correspondences in a relational

database is stored in metadata tables. It combines the

direct representation of ontology classes, properties, and

instances in database tables with representing axioms and

restrictions in metatables. According to the authors. The

correctness of the transformation means that for every

construct of OWL 2 ontology metamodel the direct and

reverse transformation exist and they are related.

OWLMAP [25]: is a fully automatic tool that serves in

mapping ontology (OWL) to relational database format.

Information is extracted according to each ontology

construct. Next, proposed mapping rules are applied

automatically to ensure lossless transformation. Proposed

mapping rules are as follows: ontology classes are

transformed into tables, object type properties are

mapped into columns or tables, data type properties

 Proposal for a Mutual Conversion Relational Database-Ontology Approach 17

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 13-28

should be mapped into columns or tables according to

mapping rules, and restrictions are stored into metadata

tables.

According to the study of similar works, the works

dedicated to each conversion way are about the same

number, however, the literature shows that the works of

databases conversion to ontologies based on the logical

model are more frequent. As indicated by [11], mostly,

research work has been dedicated to direct transformation

from databases to ontologies, but little effort has been

made to develop research on the conversion of ontologies

into databases. We think that the loss of semantics when

converting an ontology into a database due to the

difference between the two artifacts regarding language

representation expressivity is the most important reason

for this observation.

Approaches transforming ontologies to relational

databases should tackle the issue of structure, and data

loss, i.e., commonly constraints are ignored. Most of the

proposed conversion tools are incomplete and miss

essential OWL constructs. Besides, most of them are not

fully implemented.

Table 2. Comparative table of works dealing with conversion between RDBs and ontologies

Related works

Way of conversion

Mapping rules

Definition

Approach

Category

Automaticity

limitations

RDB to

Ontology

Ontology

to RDB

D2R MAP [5]

 predefined rules Conceptual Model Fully

automatic

No support for Named Graphs and

inference

Ontology

Modeler/Docume

nt & Resource

Manager [12]

predefined rules Logical model Fully

automatic

Some object Properties are lost

during the transformation process,

and property restrictions are not

considered

Relational.OWL

[7]

 predefined rules the logical model Fully

automatic

Use of OWL Full which limits

decidability of the resultant

ontology

KAON2 [13]

 Manual

definition of

rules

Logical model Fully

automatic

Inheritance relationships are

ignored

Vis-à-vis [6]

manual

definition of

mapping rules

Logical model Semi-

automatic

Performs mapping, not conversion

and the user is heavily involved

DBOM [14] predefined rules

+possible

configuration

by the user

Logical model Semi-

automatic

the user is involved and must

master SQL

OWL2DB based

Approach [15]

 predefined rules Logical model Fully

automatic

Only Part of OWL DL syntax is

covered

DATAMASTER

[16]

 predefined rules Logical model Fully

automatic

Database Instances and inheritance

relationships are ignored

DB2OWL [17] predefined rules Logical model Fully

automatic

Only some fundamental mapping

rules are applied

OntER [18] predefined rules Intermediate

model

Fully

automatic

Oriented design, the result of

ontology conversion is a

conceptual schema of an RDB

RDB2ONTO [19] predefined rules

+ possible user

configuration

Conceptual model Fully

automatic

Multiple inheritances is excluded,

two levels of

maximum depth obtained

OBDA [20]

 predefined rules Logical model Fully

automatic

the limited

expressiveness of DL-Lite

RDBToOnto [21] predefined rules Logical model Fully

automatic

No recommendations on how to

select data to be transformed

OWL to ER and

ER to OWL [22]

predefined rules Intermediate

model

Not fully

automatic

Only main OWL constructs are

covered

OntoRel [23]

predefined rules Logical model Semi-

automatic

Only transforms the main

components of the ontology

Hybrif Approach

[24]

 predefined rules Logical model Fully

automatic

Query capabilities are limited

OWLMAP [25]

predefined rules Logical model Fully

automatic

 Some ontological constructs are

not taken into accounts, such as

Class complements, intersection

classes and Reflexive and

Irreflexive properties

Our proposal

predefined rules Logical model Fully

automatic

OWL 2 constructs are not taken

into account

To the best of our knowledge, no method performs

mutual conversion between relational database and

ontology, each of the methods presented in this section

deals with a single direction of transformation, from the

RDB to the ontology, or from the ontology to the RDB

and which is fully automatic. The notion of inheritance in

both artifacts is supported by our approach and tool

concerning classes, attributes, and relationships. Besides,

18 Proposal for a Mutual Conversion Relational Database-Ontology Approach

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 13-28

the most commonly used constraints are supported such

as uniqueness, not null, a single value or multiple value

constraints.

IV. MOTIVATION

The conversion can be defined as the process of

changing or causing something to switch from one form

to another. We aim to establish a conversion approach

that allows for a crossover transformation between

relational databases and ontologies, as well as the

implementation of a tool to perform the task of

conversion automatically. The primary motivations

behind this proposal are:

A. Motivation for Conversion from Relational Database

to Ontology

Ontologies are increasingly used because they allow

automatic manipulation and smarter access to data by

taking into account the semantic dimension of data

(through the formal languages of ontologies) [26].

Whereas, relational databases store data expressed as

terms and values that cannot be interpreted by machines.

In this context, an ontology can act as an intermediary for

the integration of heterogeneous databases provided that

the ontology correctly covers the concepts and

relationships related to the knowledge domain of the

databases to be integrated [27, 28]. In what follows, we

explain some other reasons that lead to the conversion:

relational databases-ontologies.

 Exploitation of the semantic reasoner: The

semantic reasoner applied on an ontology makes it

possible to infer new rules from the rules already

described in the ontology. So relational databases

would benefit from being converted into

ontologies to take advantage of this characteristic

of ontology and continually enrich their

conceptual schema [29, 30, 31, 32].

 Complex construction process: The development

of an ontology is a time-consuming and

challenging process. As for databases, they are

defined for a specific field of application, and

database development methods are now mature

and well mastered by a large number of developers.

So it is easier to design and implement a database

then convert it into ontology than to develop an

ontology from scratch.

 Databases can exploit web-based capabilities

offered by ontologies. Availability of web

applications such as OntoQuery or AmiGO,

enabling the exploitation of ontologies by

providing interfaces for the interrogation of

ontologies (using the SPARQL language which is

a query language for RDF data) and the display of

results according to different formats as well as

various functionalities such as syntax assistance

and validation of SPARQL queries entered.

Several web applications, such as Ontology

Lookup Service or WebVOWL, provide an

interactive visualization and ontology discovery

service. They allow display of the elements of

ontologies and also have interaction techniques to

allow an in-depth exploration of ontologies.

B. Motivation for Conversion from Ontology to

Relational Database

A large number of ontologies on various domains are

available on the web which encourages and enhances

their reuse. The ontology is used for the modeling of the

conceptual data primarily for reasons of sharing and reuse.

So ontology is a representation of consensual knowledge

and can be reused in whole or in part. Ontologies have

been widely used to automate the process of integrating

heterogeneous databases. The advantages of using

ontologies for the development of relational databases

can be summarized as follows:

 Reusability of available knowledge representations:

If an ontology representing the domain of a

database is available, and has been recognized by

the community of experts and users as valid, the

design and implementation of this database will be

more comfortable and less time-consuming [33].

 Avoid the non-decidability of ontologies: The

OWL FULL language is the most complex version

of an OWL, it allows the highest level of

expressiveness and is intended for situations where

it is essential to have a high level of representative

capacity but without guaranteeing the decidability

and completeness of the calculations made on the

ontology. So to take advantage of the content of

FULL ontologies and avoid incompleteness and

non-decidability when queried, converting the

OWL FULL ontology into a relational database

can be considered as a solution to this problem

because databases are structures that ensure

decidability. However, a considerable loss of

semantics remains inevitable, because it is a

passage from a very expressive language to a

language much less expressive.

 Exploit the maturity of RDB technologies:

Relational databases have been on the market

since the 1970s. Large firms such as Oracle,

MySQL AB, Microsoft have ensured this

dominance through the creation and the

continuous evolution of their database

management systems (Oracle DataBase, Microsoft

SQL Server, MySQL). This evolution can be

summed up in several features added to these

systems, such as interoperability and portability,

Programmable Logical Structured Query

Language (PL / SQL), for writing functions and

procedures, and so on. DBMS providers are

continuously improving the speed of processing

and the reduction of storage space as well as

adapting their products to the needs of companies

[34]. As a result, ontologies could benefit from

this maturity of RDB technologies by being

converted into relational databases.

 Proposal for a Mutual Conversion Relational Database-Ontology Approach 19

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 13-28

V. PROPOSED CONVERSION APPROACH

Our application is based on the OWL language for the

manipulation and description of ontologies, and the SQL

language for databases. The conversion process, in both

directions, goes through two main steps, acquiring and

classifying metadata from the ontology or source RDB,

and then building the RDB or the corresponding ontology

according to a set of mapping rules that we will specify

for each direction of conversion.

A. Conversion Approach from RDB to Ontology

The process of converting an RDB into an ontology

begins by collecting the set of information from the RDB

schema that will be used to build the corresponding

ontology. The set of information to be collected is

summarized in the name of each table, all of its primary

and foreign keys, their types, tables providing each

foreign key and the rest of the attributes and their

respective types.

The broad outlines of the process of transforming a

database into an ontology are as follows:

1. Metadata of each table is extracted and stored so that

it can be mapped into ontology components.

2. Schema tables are transformed into classes

according to mapping rules.

3. Referential integrity constraints, or foreign keys, are

mapped to object properties in the ontology according to

mapping rules.

4. Attributes are transformed into data properties in the

ontology.

5. Tuples are converted into instances in the ontology.

Our approach is based on a classification of database

tables that will be taken into consideration during the

construction process of the corresponding ontology.

Notation

Let T be a table of a relational database DB, Col T ,

the set of columns of the table T . PK T the set of

primary keys of the table T and FK T the set of

foreign keys of the table T . We also note PFK T , the

set of keys that are both primary and foreign for the table

T and A T the columns that are simple attributes in the

table T (they are neither primary keys nor foreign keys).

We also put the RIC notation as the set of referential

integrity constraints to specify the foreign key containing

table and the table providing the foreign key. This

relationship will be represented by the RIC triple

 1, , 2T A T where 1T is the table containing the foreign

key, 2T is the table that provides the foreign key. A is the

foreign key that belongs to 1T and referenced from a

column of 2T .

 Tables Classification

Our conversion approach from RDB to Ontology

classifies the tables in the database into four categories.

We will rely on the following sample database to provide

examples on the tables’ categories. Primary keys are in

bold and foreign keys are underlined.

 , , ,

 ,

()

,

 , ,

 , , , ,

 ,

(

()

)

()

CLIENT NumEnterprise NameClient NSS

VEHICLE NumBrand Year

LOCATION NumClient NumVehicle Amount

CAR NumVehicle NumBrand Color Type

BRAND NameBrand

SUPPLI

NumClient

NumVehicle

NumCar

NumBrand

(

 ,

 ,

 , ,

)

ER Address

BRANDSUPPLY NumSupplier NumBrand

ENTERPRISE Address NameEnterprise

NumSupplier

NumEnterprise

Category 1 Definition: a table T is classified in this

category, if it is linked to a table 1T by a referential

integrity constraint. The common attribute between the

two tables is a foreign key for the table T and is at the

same time a primary key in the table T . This common

attribute also corresponds to the primary key of the table

1T . This case corresponds in RDB to an inheritance

relationship between two tables (table T inherits from

table 1T), and this can be formulated as follows:

 , , 1 h 1RIC T A T PFK T PK T (1)

Example: Consider the CAR table in the sample

database. NumVehicle is part of the primary key of the

CAR table , PK CAR NumVehicle NumCar , it is

also in the referential integrity

constraint , , RIC CAR NumVehicle VEHICLE , which

makes the NumVehicle column a primary and foreign key

in the CAR table, referring to the primary key in the

VEHICLE table. So the CAR table inherits from the

VEHICLE table and therefore ranks in this first category.

Category 2 Definition: When a table T is used to link

two other tables 1T , 2T in a many-to-many relationship,

it can be divided into two disjoint columns 1, 2A A , each

participating in a referential constraint with 1T and 2T

respectively:

 1 2 :

1 , 1, 1 2 , 2,

}

2

{RIC T ric ric

ric T A T and ric T A T

 (2)

All the columns of T are foreign keys and primary

keys: Col T FK T PK T ,

therefore: Col T PFK T . Thus, the T table is

classified in the category 2.

Example: Consider the table "BRANDSUPPLY"

which is composed of the two

columns , NumSupplier NumBrand .

20 Proposal for a Mutual Conversion Relational Database-Ontology Approach

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 13-28

 .

 ,

 , ,

,

PK BRANDSUPPLY NumSupplier NumBrand

and FK BRANDSUPPLY NumSupplier NumBrand

so

PFK BRANDSUPPLY Col BRANDSUPPLY

Besides, }1 2{RIC BRANDSUPPLY ric ric

where:

1 , , ,

 2 , , ,

, .

ric BRANDSUPPLY NumSupplier SUPPLIER

and ric BRANDSUPPLY NumBrand BRAND

so the BRANDSUPPLY table belongs to the second category

Category 3 Definition: The tables in this category are

similar to tables belonging to category 2, in addition they

include at least one non-key attribute, which can be noted

as follows:

 FK T PK T PFK T Col T (3)

Example: let consider the LOCATION table, which

can be described as follows:

 , ,

 , ,

, , ,

, , , ,

,

PK LOCATION NumClient NumVehicle

and FK LOCATION NumClient NumVehicle

so PFK LOCATION NumClient NumVehicle

and Col LOCATION NumClient NumVehicle Amount

so PFK LOCATION Col LOCATION

 .

 3.LOCATION table belongs to category

Category 4 Definition: In this category are ranked

tables that do not meet the requirements of the previous

categories. Example: tables that belong to this category in

our sample database are: The ENTERPRISE table,

described by:

 , , ,

,

 ,

 , :

 , ,

Col ENTERPRISE NumEnterprise Address NameEnterprise

and PK ENTERPRISE NumEnterprise

and FK ENTERPRISE

and the CLIENT table described by

Col CLIENT NumClient NumEnterprise NameClient

wh

 .

ere PK CLIENT NumClient

and FK CLIENT NumEnterprise

 Rules for Mapping RDB Elements into Ontology

Elements

In the mapping process, we use obtained information

from the source database, to build an ontology. We

explain in the following the mapping rules of each

category.

Category 1 Mapping Rules: Category 1 tables will be

mapped into subclasses of classes corresponding to their

parent tables. If T is in category 1, then there is a

referential integrity constraint

 , , 1 , 1RIC T PFK T T where PFK T PK T .

So T is mapped to the subclass of the class

corresponding to 1T . Example: The CAR table is

transformed into a subclass of the class corresponding to

the VEHICLE table.

Category 2 Mapping Rules: Category 2 tables will

not be mapped into classes, as these tables are used to

link two other tables (in the case of many-to-many

relationships), without containing any additional

information (attribute). These tables will be transformed

into object properties linking the two corresponding

classes to the two tables associated with a many-to-many

relationship. Two object properties will be added, one for

each class. In other words, when a table T is in the

second category, there are two referential constraints,

moreover, if we consider that 1, 2C C the two

corresponding classes to 1, 2T T respectively, so we

assign to 1 1 2C an object property Op whose range is C , and

to 2 2 1C the object property Op whose range is C while

specifying these two properties 1, 2Op Op being inverse of

each other. Example: in our sample database, the

SUPPLYBRAND table falls into this category, it links two

other tables: SUPPLIER and BRAND , so it is mapped to a

first objet property: .BRAND SUPPLIER property with

SUPPLIER class as domain, and its range is the

BRAND class, and we define .SUPPLIER BRAND inverse

object property whose range is the SUPPLIER class and

domain the BRAND class.

Category 3 Mapping Rules: Unlike category 2 tables,

category 3 tables will be mapped into classes because

they stand for connecting two tables with a many-to-

many relationship while carrying additional information

(attributes that are not keys). For that, they will be

mapped into classes, to which we will assign two

functional object properties, each linking this class to one

of the classes corresponding to the two tables linked with

the many-to-many relationship. Moreover, for each of the

two properties created, we will specify an inverse

property. In other words, we have two referential

constraints:

 1 , , 1 2 , , 2

, 1, 2 , 1, 2

ric T A T and ric T A T and

C C C be the classes corresponding to T T T respectively

So we attribute to C a functional object property

1Op whose range is 1C , and a second functional property

2Op whose range is the class 2C , then the inverse

properties will be created for each of the properties.

Example: in our sample database, LOCATION table

falls into category 3, since it links two tables:

CLIENT and VEHICLE while having “Amount” attribute.

So, it will be mapped to a LOCATION class. A functional

.LOCATION CLIENT object property will have as a

domain the class LOCATION , and as a range: the

CLIENT class (it will be specified as being functional to

say that each instance of the LOCATION class

 Proposal for a Mutual Conversion Relational Database-Ontology Approach 21

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 13-28

corresponds to a single instance of the CLIENT class), its

inverse .CLIENT LOCATION will be created and will thus

have as domain the CLIENT class and as range the

LOCATION class.

Category 4 Mapping Rules: If a table T is in

category 4 and has a referential integrity

constraint , , 1ric T A T , and we assume that C , 1C are

the classes corresponding to T , 1T respectively. We

assign to C an object property Op whose range is 1C ,

and we assign to 1C an object property 1Op whose range

is C to preserve the original direction of the referential

constraint from T to 1T . The object property Op will be

specified as functional, so an instance of class 1C will

correspond at most to a single instance of class C .

Example: CLIENT table belongs to category 4. This

table has a referential integrity constraint with the

COMPANY table:

 , , RIC CLIENT NumEnterprise ENTERPRISE , we will

assign to its corresponding class a functional object

property .CLIENT ENTERPRISE , whose range is the class

corresponding to the ENTERPRISE table and we will

assign to the corresponding class in the ENTERPRISE

table an .ENTERPRISE CLIENT object property whose

range is the CLIENT corresponding class.

Mapping of Non-Referential Columns: For all tables,

we complete the conversion by adding non-referential

columns (neither primary nor foreign keys), to their

corresponding classes in ontology as data properties.

Each data property will have the same name as its

corresponding column in RDB, and the type will be

assigned to it according to a table of types’

correspondences (Table 3). Example: in the BRAND table,

the NameBrand attribute will be mapped to a data

property .BRAND NameBrand in the BRAND class.

Mapping of the “Unique” Constraint: A column

with the unique constraint means that its value must be

unique to each tuple of the table. Following the definition

of a functional property, the unique constraint will be

mapped to a specified data property as functional.

Because by

definition, if P is a property marked as functional

Then , , for all P x y and P x z we have y z .

Example: In the CLIENT table, there is the NSS

column, this attribute must be unique for each client in

the CLIENT table, so it must be specified as Unique. This

attribute will be mapped to a .CLIENT NSS data property

of the corresponding CLIENT class in ontology and

marked as functional. The type of the property will be

assigned according to the table of correspondences

between SQL and XSD types.

Mapping of Not Null Constraint: A column that has

the Not Null constraint means that for any row in the

table, this attribute must have a value. This constraint will

be mapped into a restriction on the data property, i.e., the

minimum cardinality 1:

: 1 / : OWL minCardinality rdf OWL minCardinality

Example: The NSS attribute in the client table will be

mapped to a data property with the restriction of

minimum cardinality equals to 1.

Mapping of Table Tuples: The tuples contained in the

database tables will be mapped to individuals in the

ontology such that, for each tuple, an individual (instance)

of the corresponding class is created, and the attributes

values will be mapped to data properties values.

Mapping of Types or Cross-Type Mapping Table:

In Table 3, we will present the correspondence between

XSD types and SQL data types.

At the end of this subsection, we summarize the set of

correspondences between relational database elements

and ontology elements in Table 4.

Table 3. Correspondence between SQL and XSD data types, transition

from the RDB to the ontology

SQL Type XSD Type

TINYINT

SMALLINT

MEDIUMINT

INT

BIGINT

NUMERIC

FLOAT

DECIMAL

REAL

DOUBLE

CHAR

VARCHAR

TINYTEXT

TEXT

MEDIUMTEXT

LONGTEXT

DATE

DATETIME

TIMESTAMP

YEAR

TIME

INTEGER

INTEGER

INTEGER

INTEGER

LONG

DECIMAL

FLOAT

DECIMAL

DOUBLE

DOUBLE

STRING

STRING

STRING

STRING

STRING

STRING

DATE

DATETIME

INTEGER

INTEGER

TIME

B. Conversion Approach from Ontology to RDB

The process of converting an ontology into an RDB

begins by loading the OWL file containing the source

ontology using the Jena API. Using the different methods

provided by Jena, information about the source ontology

components is extracted. The extracted information

consists in: classes, object properties linking these classes,

data properties, sub-properties (object and data

properties), and properties’ types. Based on the extracted

information, the construction of the RDB corresponding

to the initial ontology is carried out according to the

different mapping rules that describe the correspondence

between the ontology elements and the RDB elements.

The broad outlines of the process of transforming an

ontology into a database are as follows:

1. The ontology contained in an OWL file is loaded,

necessary information for conversion is extracted using

the Jena API.

2. Connection to MySQL for building the RDB using

JDBC.

3. Classes and subclasses are transformed into separate

tables, and relationships between classes are created

according to defined mapping rules.

22 Proposal for a Mutual Conversion Relational Database-Ontology Approach

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 13-28

4. Object properties are transformed into relationships

between schema tables according to mapping rules.

5. Datatype properties are mapped into attributes in the

tables corresponding to their classes. Data properties with

sub-properties are transformed into tables.

6. The process of switching from ontology to relational

database will be completed by transforming the tuples of

each database table into instances of the corresponding

class ontology.

Table 4. Summary of mapping rules for the transition from RDB to

ontology

RDB Element

Equivalent

Element in the

OWL ontology

Contribution

Nonassociative Table Class Existing Rule

Inheritance between two

tables

Inheritance

between two

classes (<owl:

SubClassOf)

Existing Rule

Primary key URI Existing Rule

Foreign Key: the case of

relation 1 to many (n)

Functional

object property

Existing Rule

Foreign

Key: the

case of

many to

many

relation

Associative

table

without

attributes

Two object

properties, one

inverse to the

other, linking the

two

corresponding

classes to the

tables linked by

the many to

many

relationships.

Proposed as part

of our work

Associative

table with

attributes

A class linked by

two functional

object properties

to classes

corresponding to

tables linked by

the many to

many relations.

The attributes of

the associative

table are mapped

to data properties

in the class.

Proposed as part

of our work

Table column Data property Existing Rule

Not Null Attribute

Constraint

Restriction

<owl :minCardi

nality

rdf>1</owl :min

Cardinality> on

the data property

corresponding to

the column

Existing Rule

 Unique Attribute

Constraint

Make data

property

functional

Proposed as part

of our work

 Mapping Rules

Classes: Each class will be transformed into a table in

the relational database, it will have the same name of this

class and a primary key written as ID_TableName will be

assigned to it. A table that corresponds to a subclass will

have as primary key, the foreign key that refers to its

parent table.

Object Properties: are mapped according to their

characteristics as follows:

 A functional object property will be mapped to a

foreign key in a table. As, the object property

domain will be the table containing the foreign key,

the range of the object property will be the table

referenced by the foreign key. The name of the

foreign key will have the name of the object

property. Example: the following OWL functional

object property

This property is translated into natural language by the

fact that a woman can have one and only one husband. In

a relational database, this axiom is translated by creating

a foreign key in the table "Woman" corresponding to the

domain class of the property, which will be named

"is_wife_of", and which will refer to the primary key of

the table Man corresponding to the range of the object

property.

 An inverse functional object property will be

mapped to a foreign key in the table that

corresponds to the range of the object property.

This foreign key refers to the primary key of the

table corresponding to the domain of the object

property. The foreign key will have the same name

as the object property, preceded by the prefix

"Inverse. ». Example: In the same context of the

previous example, the following inverse functional

object property:

According to the definition of inverse functional object

property that we have already discussed, and which

indicates that if a subject is linked to an object by an

inverse functional predicate, that subject is the only

subject for that object. For this example, the natural

language translation is that a woman can only be married

to one man. This inverse functional property is mapped in

the RDB, into a foreign key in the Woman table

corresponding to the range of the property, referring to

the key of the Man table, corresponding to the domain

class.

 An object property that is not specified as

functional or inverse functional will be mapped

to a table (Associative table), its primary key will

be the combination of two foreign keys. One of the

 Proposal for a Mutual Conversion Relational Database-Ontology Approach 23

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 13-28

two foreign keys referring to the primary key of

the corresponding table to the domain and the

other to the corresponding table to the range of the

property. The name of the object property will be

assigned to this associative table. Example of the

following object property:

This object property represents the relationship

between students and courses, several students can attend

the same course, and a student can attend several courses.

This relation is of many to many type. It will be mapped

in a table having the name of the object property

"Assists" and its primary key will be the combination of

two foreign keys. One referring to the primary key of the

table "Student" corresponding to the domain, it will,

therefore, have the same name as this primary key. The

second one referring to the primary key of the table

"Course" corresponding to the range and will also have

the same name as this last one.

Object sub-properties are converted in the same way

as object properties since hierarchy between relationships

is a concept that cannot be represented in an RDB.

Example: The object sub-property "hasSoldOn",

according to the mapping rules that have already been

defined, will be mapped to an associative table.

Data Properties: Like object properties, data

properties are mapped according to their characteristics,

and their mapping rules are as follows:

 A simple data property (single value) will be

mapped into a column in the table that corresponds

to the domain class of the property. The name of

the data property will be assiged to this property,

and the property type will be specified according

to the OWL and SQL type mapping table that we

will present later. Example of the data property

“Age” of integer type with a single value:

The Age data property will be mapped into a column in

the "employee" table corresponding to the domain class

"Employee", this column will have the same name as the

data property, and its type will be specified according to

the matching table between types.

 A multiple value data property will be mapped

to a table because in RDB an attribute cannot

accept multiple values for the same instance, for

this purpose a table is created, and the same name

of the multiple value data property will be

assigned to it. A primary key, named ID_Value,

will be assigned to this table, as well as a foreign

key referring to the primary key of the table

corresponding to the domain of the data property,

it will have the same name of the primary key of

this table. Since the multiplicity of values is at the

origin of this table, an attribute named Value will

be assigned to this table, and its type will be

specified according to the table of

correspondences between types. In this way, we

can link a set of values to the same tuple of the

corresponding table to the domain of the multi-

value property.

 A data property divided into sub-properties

will also be mapped to a table. A primary key:

ID_PropertyName will be assigned to it. A

Value_PropertyName attribute of the type

corresponding to the type of data property to store

its value. A foreign key referring to the primary

key of the table corresponding to the property

class having sub-properties and each of the data

sub-properties will be mapped to a column in the

table. The table will take the name of the data

property, and each column will have the same

name as its corresponding sub-property. Example:

a data property “Weight” for a canned mixed salad,

the “salad” containing “green salad” and

“tomatoes”, and their weights are specified as sub-

data properties of the weight data property.

The weight property will be mapped into a table, with

an ID_Weight key, a column for the Value_Weight, a

foreign key ID_VariateSaladBox referring to the

VariedSaladBox table, and two columns Tomato and

GreenSalad corresponding to the two data sub-properties

Tomato and GreenSalad.

24 Proposal for a Mutual Conversion Relational Database-Ontology Approach

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 13-28

 A data property specified as being functional
will be mapped to a column. The equivalent of the

functional characteristic in RDB is the Unique

attribute constraint.

For example, the NumSS data property, which

represents the social security number and has

Employee class as its domain, will be mapped to a

column with the Unique attribute constraint.

Individuals of the ontology: Each individual in the

ontology will be mapped into a tuple in the database. The

individual’s class will become the table where the tuple

will be inserted, and values in data properties will be

stored in the attributes values of tuples.

Table of correspondences between types

In Table 5, we present the correspondence between XSD

and SQL types when switching from OWL ontology to

RDB.

Table 5.Correspondence between XSD and SQL data types, transition

from ontology to RDB

XSD Type SQL Type

STRING

NORMALIZED

STRING

TOKEN

NMTOKEN

NAME

NC NAME

LANGUAGE

BYTE

SHORT

INTEGER

LONG

UNSIGNED

INTEGER

NEGATIVE

INTEGER

NONNEGATIVE

INTEGER

UNSIGNED INT

UNSIGNED

LONG

DECIMAL

FLOAT

DOUBLE

HEXBINARY

TIME

DATE

DATETIME

GYEARMONTH

GDAYMONTH

GMONTH

GDAY

BOOLEAN

ANYURI

VARCHAR

VARCHAR

VARCHAR

VARCHAR

VARCHAR

VARCHAR

VARCHAR

INTEGER

INTEGER

INTEGER

BIGINT

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

DECIMAL

FLOAT

DOUBLE

PRECISION

VARCHAR

TIME

DATE

TIMESTAMP

DATE

DATE

DATE

DATE

BIT

VARCHAR

At the end of this subsection, we summarize the set of

mapping rules for converting an OWL ontology to an

RDB in Table 6.

Table 6. Summary of the mapping rules for switching from ontology to

RDB

Ontology Element Equivalent Element

in the RDB

Origin or

Contribution

Class Table Inversely to the

rule of

transition from

RDB to

ontology.

SubClassOf Inheritance

relationship

between two tables.

Inversely to the

rule of

transition from

RDB to

ontology.

Object

Property

Non-

functi

onal

Associative Table is

linking tables

corresponding to

the domain and the

range.

Inversely to the

rule of

transition from

RDB to

ontology.

Funct

ional

A foreign key in the

corresponding table

to the domain,

referring to the

primary key of the

table corresponding

to the range.

Inversely to the

rule of

transition from

RDB to

ontology.

Rever

se

functi

onal

A foreign key in the

table corresponding

to the range

referring to the

primary key of the

table corresponding

to the domain.

proposed as

part of our

work

Data

properties

Has

one

value

Column Inversely to the

rule of

transition from

RDB to

ontology.

Has

multi

ple

value

s

Table linked to the

table corresponding

to the domain of the

property.

proposed as

part of our

work

With

data

sub-

prope

rties

Table and sub-

properties as

columns of the

table. Linked to the

table corresponding

to the domain.

proposed as

part of our

work

Funct

ional

Column with a

Unique constraint

Inversely to the

rule of

transition from

RDB to

ontology.

 With

cardin

ality

restric

tion :

Min

Cardi

nality

=1

Column with a Not

Null constraint

Inversely to the

rule of

transition from

RDB to

ontology.

 Proposal for a Mutual Conversion Relational Database-Ontology Approach 25

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 13-28

VI. IMPLEMENTATION AND TESTS

The tool (Fig. 1) is implemented in Java using Jena

API library for ontology manipulation and MySQL

database as a relational database using JDBC connector.

We will present in what follows, some results obtained

after executing our conversion tool on a source file: RDB

then ontology.

Fig.1. Conversion tool interface

A. Testing Automatic Conversion of a Sample RDB into

Ontology

For the conversion of a database to ontology, we

applied our tool on a sample database which has the

following schema (primary keys are in bold and foreign

keys are underlined):

 , , _

 , , , , _ , ()

(), ,

 ,

 , (

PERSON name first name

STUDENT idPerson idUniversity name first name ssNum

UNIVERSITY nameUniv addressUniv

COURSE domainCourse

EXAMMARK idCourse idStu

idPerson

idStudent

idUniversity

idCourse

,)dent mark

The property ssNum has constraint NOT NULL and

UNIQUE. Some results obtained after the conversion of

this sample database into ontology are presented through

the following OWL code portions:

Conversion of the inheritance relationship between

Person and Student tables into an inheritance relationship

between the two classes Person and Student, and

conversion of the Not Null constraint and ssNum attribute

to the minimum cardinality constraint assigned to this

property.

Conversion of the relationship represented by the

foreign key idUniversity between the tables University

and Student into a functional object property between the

two classes: University and Student.

Conversion of a set of attributes from University

table into data properties.

Conversion of an ExamMark associative table with

attributes to a class.

26 Proposal for a Mutual Conversion Relational Database-Ontology Approach

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 13-28

B. Testing Automatic Conversion of Movie Ontology

into RDB

We applied the conversion tool on Movie ontology

(www.movieontology.org). The result can be summarized

as follows: all Movie ontology classes are transformed

into tables in the database (Fig. 2). For example, Movie

class is transformed into a table in the database (Fig. 3),

with a primary key: ID_movie and mapping of movie

class data properties into attributes in movie table.

Fig.2. List of tables created from Movie Ontology

Fig.3. Movie table with its attributes

BelongsToGenre object property, between Movie and

Genre classes is transformed into an associative table

between Movie and Genre tables in the database (Fig. 4).

Fig. 4. Screenshot of an associative table

Inheritance between the two classes Person and Writer

transformed into inheritance relationship (Fig. 5) between

the table Person (mother table) and the table Writer

(daughter table).

Fig.5. Screenshot of an inheritance relation

VII. CONCLUSION

We believe that relational databases and ontologies can

benefit from each other, by exploiting their respective

content in the process of building databases and

ontologies. Though, the conversion between relational

databases and ontologies remains a research issue

because no standardized mapping rules have been

adopted by a large community of users. Proposed

 Proposal for a Mutual Conversion Relational Database-Ontology Approach 27

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 13-28

solutions differ from each other and have significant

drawbacks, such as the loss of semantics when converting

an ontology to a database and lack of support to

inheritance relationships and instances in the process of

turning a database into an ontology which profoundly

limits reasoning capabilities.

The goal of this work is to propose a complete set of

mapping rules between ontologies and relational

databases throughout an approach supported by a tool

that allows an entirely automatic mutual conversion

between the two artifacts. This feature is exclusive to our

tool because related works handle one conversion

direction, and all of the mapping rules we have defined

and on which our tool is based are, in our view, a

consistent set of rules which ensure a usable and

operational result.

Nevertheless, our work has several limitations,

explicitly considering the set of novelties provided by the

OWL 2 version that is not supported by our conversion

proposal. This limitation implies losses in the passage

from ontology to RDB.

Hence, several improvements are possible, including:

 Support the specifics of version 2 of OWL, such as

intersection, union, complementarity, property

symmetry, and irreflexivity

 Pre-selection of the subset of the artifact to be

converted, this allows more flexibility in which the

user selects the set of entities he wants to

transform

 Comparison of our conversion tool with related

works

 Ensure compatibility of or tool with other popular

DBMS, such as Oracle and SQL server

 Conduct more experimentations to test scalability.

REFERENCES

[1] L. Zemmouchi-Ghomari, “Cohabitation of Relational

Databases and Domain Ontologies in the Semantic Web

Context”, Journal of Systems Integration, Vol.9, No.1, pp.

42-57, 2018.

[2] C. Coronel and S. Morris, Database Systems: Design,

Implementation, and Management, 1978.

[3] M. Dadjoo and E. Kheirkhah, “An approach for

transforming of relational databases to OWL ontology”.

arXiv preprint arXiv:1502.05844, 2015.

[4] T. R Gruber, “A translation approach to portable ontology

specifications”, Knowledge acquisition, Vol.5, No.2,

pp.199-220, 1993.

[5] C. Bizer, “D2R MAP - a database to RDF mapping

language”, in Proceedings of the 12th International World

Wide Web Conference, Budapest, Hungary, 2003.

[6] N. Konstantinou, D. Spanos, M. Chalas, E. Solidakis and

N. Mitrou, “VisAVis: An Approach to an Intermediate

Layer between Ontologies and Relational Database

Contents”, in Proceedings of Workshops and Doctoral

Consortium, the 18th International Conference on

Advanced Information Systems Engineering - Trusted

Information Systems, Luxembourg, Luxembourg, 2006.

[7] C. P. De Laborda and S. Conrad, “Relational.OWL: a data

and schema representation format based on OWL”, in

Proceedings of the 2nd Asia-Pacific conference on

Conceptual modelling. Newcastle, Australia, 2005.

[8] M. R. C. Louhdi, H. Behja and S. O. El Alaoui,

“Transformation rules for building owl ontologies from

relational databases”, in Second International Conference

on Advanced Information Technologies and Applications,

pp. 271-283, 2013.

[9] S. M. Benslimane, M. Malki and D. Bouchiha, “Deriving

Conceptual Schema from Domain Ontology: A Web

Application Reverse Engineering Approach”,

International Arab Journal of Information Technology,

Vol.7, No.2, pp.167-176, 2010.

[10] H. El-Ghalayini, M. Odeh, R. McClatchey and T.

Solomonides, “Reverse Engineering Domain Ontology to

Conceptual Data Models”, in Proceedings of the 23rd

IASTED International Conference on Databases and

Applications (DBA), Innsbruck, Austria, pp. 222-227,

2005.

[11] A. Humaira, N. Tabbasum, S. Ayesha, “A Survey on

Automatic Mapping of Ontology to Relational Database

Schema”, Research Journal of Recent Sciences, Vol.4,

pp.66-70, 2015.

[12] A. Gali, C. X. Chen, K. T. Claypool and R. Uceda-Sosa,

“From ontology to relational databases”, in International

Conference on Conceptual Modeling. Springer, Berlin,

Heidelberg, pp.278-289, 2004.

[13] B. Motik and R. Studer, “KAON2–a scalable reasoning

tool for the Semantic Web”, in Proceedings of the 2nd

European Semantic Web Conference, ESWC’05,

Heraklion, Greece, 2005.

[14] O. Curé and R. Squelbut, “Integrating data into an OWL

Knowledge Base via the DBOM Protégé plug-in”, in

Proceedings of the 9th International Protégé conference,

Stanford, California, US, 2006.

[15] E. Vyšniauskas and L. Nemuraite, “Transforming

Ontology Representation from OWL to Relational

Database”, Information Technology and Control, Vol.35,

No.3, pp. 333-343, 2006.

[16] C. Nyulas, M. O’Connor and S. Tu, “DataMaster a Plug-

in for Importing Schemas and Data from Relational

Databases into Protégé”, in Proceedings of 10th

International Protégé Conference, Budapest, Hungary,

2007.

[17] N. Cullot, R. Ghawi and K. Yétongnon, “DB2OWL: A

Tool for Automatic Database-to-Ontology Mapping”, in

proceedings of the 15th Italian Symposium on Advanced

Database Systems, Ginosa, Italy, 2007.

[18] J. Trinkunas and O. Vasilecas, “Building ontologies from

relational databases using reverse engineering methods”,

in Proceedings of the international conference on

Computer systems and technologies, Rousse, Bulgaria,

2007.

[19] M. Laclavık, “RDB2Onto: Relational database data to

ontology individuals mapping”, in: Tools for Acquisition,

Organisation and Presenting of Information and

Knowledge, pp.86–89, 2006.

[20] A. Poggi, M. Rodriguez and M. Ruzzi, “Ontology-based

database access with DIG-Mastro and the OBDA Plugin

for Protégé, in proceedings of the 4th Int. Workshop on

OWL: Experiences and Directions (OWLED 2008 DC),

Vol.496, Karlsruhe, Germany, 2008.

[21] F. Cerbah, “Learning highly structured semantic

repositories from relational databases”, in European

Semantic Web Conference, pp. 777-781, San Jose,

California, USA, 2008.

[22] S. H. Tirmizi, J. Sequeda and D. Miranker, “Translating

SQL applications to the semantic web”, in International

Conference on Database and Expert Systems Applications,

28 Proposal for a Mutual Conversion Relational Database-Ontology Approach

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 13-28

pp. 450-464, Turin, Italy, 2008.

[23] D. De Brum Saccol, T. de Campos Andrade and E. K.

Piveta, “Mapping owl ontologies to relational schemas”,

in Information Reuse and Integration (IRI), Las Vegas,

NV, USA, 2011.

[24] E. Vyšniauskas, L. Nemuraitė, R. Butleris and B.

Paradauskas, “Reversible lossless transformation from

OWL 2 ontologies into relational databases”, Information

Technology and Control, Vol. 40, No.4, pp. 293-306,

2011.

[25] H. Afzal, M. Waqasa and T. Naz, “OWLMap: Fully

Automatic Mapping of Ontology into Relational Database

Schema”, International journal of advanced computer

science and applications, Vol.7, No.11, pp. 7-15, 2016.

[26] V. Jain and M. Singh,"Ontology Development and Query

Retrieval using Protégé Tool", International Journal of

Intelligent Systems and Applications(IJISA), Vol.5, No.9,

pp .67-75, 2013.

[27] H. Abbes and F. Gargouri, "MongoDB-Based Modular

Ontology Building for Big Data Integration", Journal on

Data Semantics, Vol.7, No.1, pp1-27, 2018.

[28] S. Zhao, Q. Qian, "Ontology based heterogeneous

materials database integration and semantic query", AIP

Advances, Vol.7,No.10, 105325, 2017.

[29] L. Zemmouchi-Ghomari, A. R. Ghomari, L. Adjir and L.

Belaala, “Integrating an ontology into a software system”,

Journal of Systems Integration, Vol.8, No.3, pp.27-39,

2017.

[30] N. S. Ougouti, H. Belbachir and Y. Amghar, “A new owl2

based approach for relational database description”,

International Journal of Information Technology and

Computer Science, Vol.7, No.1, pp. pp.48-53, 2015.

[31] G. Yang and J. Feng, “Database Semantic Interoperability

based on Information Flow Theory and Formal Concept

Analysis”, International journal of information

technology and computer science, Vol.7, pp.33-42, 2012.

[32] K. Zarour and N. Zarour, "Data Center Strategy to

Increase Medical Information Sharing in Hospital

Information Systems", International Journal of

Information Engineering and Electronic Business, Vol. 1,

pp. 33-39, 2013.

[33] E. Ong, Z. Xiang, Z., Zheng, J. Smith and Y. He,

"Ontobull and BFOConvert: Web-based Programs to

Support Automatic Ontology Conversion", In

International Conference on Biological Ontology and

BioCreative, Corvallis, OR, USA, 2016.

[34] M. Mohamed Hamri and S. M. Benslimane, "Building an

Ontology for the Metamodel ISO/IEC24744 using MDA

Process", International Journal of Modern Education and

Computer Science, Vol.7, No.8, pp.48-60, 2015.

Authors’ Profiles

Leila Zemmouchi-Ghomari is

currently a Lecturer at ENST: Ecole

Nationale Supérieure de Technologie,

Algiers, Algeria.

She received her PhD in Computer

Science from ESI, Ecole Nationale

Supérieure d’Informatique, Algiers,

Algeria, in January 2014.

Her research interests focus on

Ontology Engineering, Web of Data and Linked Data.

Abdelaali Djouambi received his

Research Master in Software

Engineering (Computer Science) from

USTHB (Université des Sciences et des

Technologies Houari Boumediene),

Algiers, Algeria in June 2017.

His research interests include

Ontology Engineering and Databases

Design.

Cherifa Chabane received her

Research Master in Software

Engineering (Computer Science) from

USTHB (Université des Sciences et

des Technologies Houari Boumediene),

Algiers, Algeria in June 2017.

Her research interests include

Software and Web Development

How to cite this paper: Leila Zemmouchi-Ghomari, Abdelaali Djouambi, Cherifa Chabane, " Proposal for a Mutual

Conversion Relational Database-Ontology Approach", International Journal of Modern Education and Computer

Science(IJMECS), Vol.10, No.7, pp. 13-28, 2018.DOI: 10.5815/ijmecs.2018.07.02

