
I.J. Modern Education and Computer Science, 2018, 7, 1-12
Published Online July 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2018.07.01

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 1-12

The Circumstances in which Modular

Programming becomes the Favor Choice by

Novice Programmers

Ilana Lavy
Department of Information Systems, Yezreel Valley College, Israel

Email: ilanal@yvc.ac.il

Rashkovits Rami
Department of Information Systems, Yezreel Valley College, Israel

Email: ramir@yvc.ac.il

Received: 16 May 2018; Accepted: 04 June 2018; Published: 08 July 2018

Abstract—One of the key indicators for testing code

quality is the level of modularity. Nevertheless, novice

programmers do not always stick to writing modular code.

In this study, we aim to examine the circumstances in

which novice programmers decide to do so. To address

this aim, two student groups, twenty each, were given a

programming assignment, each in a different set-up. The

first group was given the assignment in several stages,

each add complexity to the previous one, while the

second group was given the entire assignment at once.

The students' solutions were analyzed using the dual-

process theory, cognitive dissonance theory and content

analysis methods to examine the extent of modularity.

The analysis revealed the following findings: (1) In the

first group, a minor increase in the number of modular

solutions was found while they progressed along the

stages; (2) The number of modular solutions of the

second group was higher than of the first group. Analysis

of students' justifications for lack of modularity in the

first group revealed the following. The first stages of the

problem were perceived as rather simple hence many

students did not find any reason to invest in designing a

modular solution. When the assignment got complex in

the following stages, the students realized that a modular

solution would fit better, hence a cognitive dissonance

was raised. Nevertheless, many of them preferred to

decrease the dissonance by continuing their course of

non-modular solution instead of re-designing a modular

new one. Students of both groups also attributed their

non-modular code to lack of explicit criteria for the

evaluation of the code quality that lead them to focus on

functionality alone.

Index Terms—Novice Programmer, Code Modularity,

Program Design, Cognitive Dissonance Theory, Dual-

Process Theory.

I. INTRODUCTION

The principle of modular design is defined [1] as

splitting up large computation into a collection of small,

nearly independent, specialized sub-processes. In other

words, modular programming is a design principle that

divides the functionality of a program into modules each

responsible to one aspect of the desired functionality. The

modules are independent and can be easily replaced or

extended with minimal changes in other modules [2].

Modularity hence supports gradual development, easy

maintenance and reusability. To be able to create a

modular solution, one needs to possess abstract thinking

abilities to deconstruct the solution into logical parts, and

then integrate them to create the complete solution.

Among the difficulties novice programmers encounter

while coping with programming assignments, is the

application of the modularity principle in their solutions

[3].

The issue of modularity is part of the curriculum of

introductory programming course [4]. During this course,

students are engaged in problem solving in an increasing

level of difficulty. At the beginning of the course, the

students learn the basic structures of the programming

language, such as variables, conditions, loops etc.

Functions and classes are usually taught afterwards. In

order to introduce the basic program structures, educators

usually use non-modular examples, and give homework

assignments in which all aspects of the program are

applied in one module. As a result, students acquire "bad

habits" of programming when it comes to modular code

writing. These habits are sometimes difficult to change

even though students learn to program using functions,

which enables modular programming. Modular

programming necessitates investing considerable mental

2 The Circumstances in which Modular Programming becomes the Favor Choice by Novice Programmers

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 1-12

efforts in pre designing the program, hence the "bad

habits" are difficult to cutoff. However, real-world

software systems are far more complex than homework

assignments, and necessitate modularity for proper

functionality and easy maintenance. Nevertheless, people

prefer to invest minimal mental efforts in tasks involving

problem solving, even if it comes at the expense of the

solution's quality [5].

The issue of modularity is part of the curriculum of

introductory programming course [4]. During this course,

students are engaged in problem solving in an increasing

level of difficulty. At the beginning of the course, the

students learn the basic structures of the programming

language, such as variables, conditions, loops etc.

Functions and classes are usually taught afterwards. In

order to introduce the basic program structures, educators

usually use non-modular examples, and give homework

assignments in which all aspects of the program are

applied in one module. As a result, students acquire "bad

habits" of programming when it comes to modular code

writing. These habits are sometimes difficult to change

even though students learn to program using functions,

which enables modular programming. Modular

programming necessitates investing considerable mental

efforts in pre designing the program, hence the "bad

habits" are difficult to cutoff. However, real-world

software systems are far more complex than homework

assignments, and necessitate modularity for proper

functionality and easy maintenance. Nevertheless, people

prefer to invest minimal mental efforts in tasks involving

problem solving, even if it comes at the expense of the

solution's quality [5].

Proper design requires the recursive dismantling of the

solution into modules until it is simple units each

responsible to one and only aspect. This recursive process

requires abstract thinking and the ability to identify units

that can be used to implement multiple functionalities.

For this purpose, the unit design should include its

structure (e.g., variables, algorithm), its inputs (e.g.,

parameters), and its output (e.g., return value, exception).

Many programmers in general and novice ones in

particular, do not invest sufficient efforts in the solution's

design, due to lack of experience and skills. As a result,

many software systems suffers from lack of modularity at

some level [6, 7]. Software that is characterized by poor

modularity cause high error rates and costly maintenance

[8].

In this paper, we examine the level of code modularity

of novice programmers under various conditions.

Specifically, we set two goals: (1) Examine the

programming style of novice programmers with special

focus on modularity depending in the task's level of

complexity and in the absence of explicit instructions

regarding quality. (2) Examine whether there is a

difference in the extent of use of modular programming

between a complex task given at once and the same task

that is disassembled into simple stages.

To address this aim, we gave two student groups a

programming assignment. The first group (hereinafter

Group-1) had to address the assignment given in three

stages where each successive stage adds requirements to

the previous one. The second group (hereinafter Group-2)

had to address the same assignment provided at once.

In what follows, we present related works and

theoretical background, the study, results and discussion

and concluding remarks.

II. RELATED WORKS AND THEORETICAL BACKGROUND

In what follows, we present a brief theoretical

background on modularity in programming; dual-process

theory; and cognitive dissonance theory.

A. Modularity in programming

Modularity in programming refers to a technique

design that separates the functionality of a code into

independent, extendible, reusable, maintainable and

interchangeable modules, each responsible for one aspect

of the desired behavior of the program [2] Modular code

is obtained by decomposing a problem into sub-problems,

and designing a solution for each of them as an

independent unit, accompanied by an interface definition

for their execution (i.e., parameters, return value, etc.).

Afterwards, these units are integrated to achieve the

complete solution to the given problem. The above

process is recursive in nature because the sub-problems

created in the initial decomposition can be broken down

again. During the decomposition, software components

(e.g., classes, functions) are defined, each with an

appropriate interface. Recursive process can be stopped at

different stages of dismantling the problem and the

deeper the level of decomposition, the more time and

efforts required to define the components and their

interfaces. In addition, on the "way back", to construct

the complete solution, one should invest time and efforts

in assembling the components into an integrated whole

[9].

The concept of modularity in software systems was

widely discussed in the research literature and lack of

modularity was found as a source of errors, and costly

maintenance [9, 10, 11, 12]. In addition, it was found that

modular programming affects the quality of the product

in a way that it improves the software's readability and

understanding, facilitates maintenance and increases the

reuse of the software components [11, 12].

In this study, we examine the level of modularity of

code written by novice programmers as a function of the

complexity of the problem under examination.

B. Dual-process theorey

Dual-process theory deals with the distinction between

intuitive and analytical modes of thinking. This theory

suggests that human cognition and behavior operate in

two different modes, in parallel, called System 1 (S1) and

System 2 (S2)[13, 14, 15]. These modes resemble our

perception of intuitive and analytical modes of thinking

([16]. These modes are activated by different parts of our

brain, and have different evolutionary history. The dual-

process theory refers to S1 thinking processes as being

automatic and fast. They are perceived as unconscious,

 The Circumstances in which Modular Programming becomes the Favor Choice by Novice Programmers 3

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 1-12

effortless, and inflexible. S2 thinking processes on the

other hand, are being effortful and slow. In addition, they

are perceived to be conscious, flexible, and expensive in

terms of working memory resources. S1 and S2 systems

differ mainly on the level of accessibility referring to the

easiness and rapidness thoughts come to our mind.

Usually, S1 and S2 systems work hand-by-hand to

provide responses adapted to the situation at hand. S1 is

usually the first system to be activated and provide

response to the current situation. S2 system then, may or

may not be activated to monitor and critic S1's responses

and override them if necessary. It is sometimes possible

to explain people's erroneous answers (usually obtained

by activating S1) to certain questions in the failure of

activating S2. The dual-process theory is also used to

explain problem-solving results obtained in mathematics

and computer science education researches [5, 17, 18, 19].

Leron & Hazzan [17] asserted that the most important

educational implication of the dual-process theory is

bring people's awareness to the way S1 and S2 operate,

and to include this awareness in their problem solving

toolbox. They also claim that S1 and S2 working in

concert is an ongoing recursive process.

In software engineering, as in mathematics, complex

abstract concepts exist. Both domains require a certain

amount of analytical rather than intuitive thinking. We

find this theory suitable to explain novice programmers'

performances referring to the level of modularity in their

code.

C. Cognitive dissonance theory

Cognitive dissonance refers to the mental discomfort

that might occur to an individual who at the same time

holds two or more incongruous beliefs, ideas, or values.

The occurrence of cognitive dissonance is a consequence

of a person performing an action that contradicts personal

beliefs, ideals, and values; and it can also happen when

one is confronted with new information that contradicts

her beliefs, ideals, and values [20, 21].

Leon Festinger (1957) established the Theory of

Cognitive Dissonance, which refers to human tendency to

strive for internal psychological consistency in order to

mentally function in the real world. An individual who

experiences internal inconsistency tends to become

psychologically uncomfortable, and is motivated to

reduce the cognitive dissonance. This can be achieved by

making changes in the stressful behaviour, either by

adding new information to the cognition causing the

psychological dissonance to reduce the dissonance,

and/or by actively avoiding contradictory information

likely to increase the degree of the cognitive dissonance.

In the context of this study, we provide the students

with a problem decomposed into stages each adds

requirements to the previous one. The solution of each

stage may or may not rely on the solution of the previous

stage. Using the previous stage's solution is tempting

since it requires fewer efforts than redesigning and

rewriting the entire solution. Nevertheless, such course of

solution results in code duplication and hence non-

modular solution. This situation might raise a conflict,

within this study we examine the ways students dealt with

this conflict, and we use the dissonance cognitive theory

to analyse their behaviour.

III. THE STUDY

In what follows, we present information regarding the

study participants, the data collection and analysis

methods, and results with discussion.

A. The study participants

The data were collected during the academic years

2017-2018. The study participants were third (and final)

year Information Systems students in an academic college

in Israel. Forty students participated in the research, All

the participants were graduated from the following

programming courses: "Introduction to computer science",

and "Object oriented programming". In these courses, the

students were exposed to the advantages of code

modularity and its effects in both procedural and object

oriented paradigms. The modularity was practiced via

many courses' assignments. Out of these forty students,

12 were females.

To address the research aims, the participants were

randomly assigned into two groups. The two groups (20

students in each) had to provide solution to the same

programming assignment, which was presented to them

in two different ways. The assignment was presented to

the first group divided into three successive stages (See

Fig. 1) each given after the completion of the previous.

The second group had to address the same programming

assignment, presented as a whole task (See Fig. 1). Both

groups were given no specific guidelines other than the

requirement to provide a solution in any programming

language they deem fit.

B. The course of the study

In this section, we elaborate on the programming

assignment (two versions), its expected modular solution,

collection of data and analysis tools.

1) The problem

The problem provided to the first group of the study

participants is shown in Fig 1. They first had to address

stage 1's requirements, and upon delivery of their solution,

each student was given stage 2's requirements, followed

by stage 3's requirements. The study participants of the

second group were provided with the entire problem

shown in Fig. 1, without separation to stages.

A good possible solution is presented in Fig. 2. The

solution is considered modular, clear, and reusable. As

shown, it includes two classes. One, class Polynomial

(Fig. 2a) representing the Polynomial function and the

other, class Program (Fig. 2b) represents the program,

which uses it.

The Polynomial class has an array of coefficients with

a constructor to initialize them. In addition, a method for

each utility specified in the requirements: (1) evaluating

the polynomial at point x; (2) building the derivation

polynomial; (3) formatting a string to represent the

4 The Circumstances in which Modular Programming becomes the Favor Choice by Novice Programmers

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 1-12

polynomial; (4) testing for zero polynomial; (5) getting

highest degree of the polynomial. In addition, two extra

utility methods are defined, to support the

implementation of the toString() method, one for the

formatting of a coefficient, and second for the formatting

of the degree of each component of the polynomial.

Fig.1. The problem.

2) The problem's solution

The solution presented in Fig. 2 is modular since it is

composed of several components, each responsible for

one aspect of the requirements. Fixing a bug, replacing an

algorithm (e.g., different printout, another form of

derivation) or adding extra functionality is easy, since it

requires the change of only one method, and does not

require re-implementation of other methods. This solution

is also clear, enabling its understanding even with the

absence of documentation. Upon maintenance, it is easy

to locate the code segment that requires a change, make

the change, and test it with isolation from the rest of the

code. It is also easy to add new methods (e.g., integral,

adding) since it does not require any change in existing

methods. Moreover, the implementation of a new method

may be achieved via the use of existing methods,

avoiding code duplications. This solution also supports

reusability, as the Polynomial class is independent of the

Program class, and hence can be taken to new systems

and be used in other contexts, without dragging irrelevant

code.

C. Data collection and analysis tools

The aim of the study was to explore the circumstances

in which novice programmers consider modular design

while developing software solutions, and the underlying

reasons. Hence, we used qualitative research methods.

During the study, we used various research tools to

collect and analyze data in order to perceive a

comprehensive yet in depth and particular overview

regarding the above aim.

The data were comprised of the students' solutions of

the given programming assignment from both student

groups. During the review of the students' solutions, we

classified each solution of every stage into three main

categories: 1-non-modular, 2-partial-modular, 3-full-

modular. In the first category, we classified solutions in

which the entire code was written in one or two methods

in a single class. In the second category, we classified

solutions in which only one class exists, however, several

methods are defined, each responsible for few aspects. In

the third category, we classified solutions that resemble

the modular solution (Fig. 2), in the sense that it contains

Stage 1:

You are asked to write a program (Java, or pseudocode) that takes the following input: (1) positive

integer n referring to the highest degree of a polynomial function; (2) n+1 real numbers referring to

the coefficients of that function; (3) additional real number x.

To remind you, a polynomial function of degree n: f(x) = anx
n+ an-1x

n-1 +…+ a1x
1 + a0x

0

Then, the program evaluates the value of the given polynomial function at point x and prints the

result. Herein, an example of a run:

Polynomial function's degree: 4

Coefficient of X4: 3

Coefficient of X3: -7

Coefficient of X2: 0

Coefficient of X1: 1

Coefficient of X0: -5

Provide x-value: 10

Evaluation of 3X4-7X3+X-5 at 10.0 is 23005.0

Stage 2:

In addition to the requirements of the previous task, the program has to compute also the derivative

of f(x), that is f'(x), and evaluates its value at point x and prints the result.

To remind you, a the derived polynomial function of f(x) = anx
n+ an-1x

n-1 +…+ a1x
1 + a0x

0 is

calculated as f'(x) = nanx
n-1+(n-1)an-1x

n-2+(n-2)an-2x
n-3…+ a1

Herein, an example a run (following the previous printouts):

Evaluation of 12X3-21X2+1 at 10.0 is 9901.0

Stage 3:

In addition to the requirements of the previous tasks, the program has to compute also the second,

third, etc derivative polynomials of f(x), evaluates their values at point x and prints the results.

Herein, an example a run (following the previous printouts):

Evaluation of 36X2-42X at 10.0: 3180.0

Evaluation of 72X-42 at 10.0: 678.0

Evaluation of 72 at 10.0 is 72.0

 The Circumstances in which Modular Programming becomes the Favor Choice by Novice Programmers 5

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 1-12

a Polynomial class separated from the main class

(program) that includes several methods.

Then we conducted open interviews with all the

participants in which we asked them to elaborate on the

reasons and motivations underlying their solutions with

special focus on modularity.

In the data analysis process, we interpreted the research

data through the dual process theory [14, 13, 22]. We also

used concepts of cognitive dissonance theory (Fetinger,

1957, Cooper, 2011) to interpret the obtained results. In

addition, we used content analysis methods [23, 24] to

examine the impact of the assignment formulation on the

level of modularity of the solution.

IV. RESULTS AND DISCUSSION

In this section, we present the students' solutions (of

both groups) and compare the differences between the

levels of modularity in each. Then we discuss the

findings and analyze them using the dual process and the

cognitive dissonance theories.

Fig.2(a). The modular solution – Polynomial Class.

public class Polynomial{
 private double[] coefficients ;
 public Polynomial(double[] coefficients) {
 this.coefficients = coefficients;
 }
 public double evaluate(double x) {
 double sum = 0.0;
 for (int i=0; i<coefficients.length; i++)
 sum += coefficients[i]*Math.pow(x, i);
 return sum;
 }
 public String toString() {
 String str = "";
 // first coefficient handled outside loop because of the sign
 str += formatCoefficient(coefficients[degree()]);
 str += formattedDegree(degree());
 for (int i = degree()-1; i >= 0; i--){
 if (coefficients[i] == 0.0)
 continue;
 str += (coefficients[i] > 0.0)? "+":"";
 str += formatCoefficient(coefficients[i]);
 str += formattedDegree(i);
 }
 return str;
 }
 private String formatCoefficient(double d) {
 if (d==0.0 || d==1.0) return "";
 else if (d == (int)d) return ""+(int)d;
 else return ""+d;
 }
 private String formattedDegree(int i) {
 if (i==0) return "";
 else if (i==1) return "X";
 else return "X^"+i;
 }
 public Polynomial derivate() {
 double[] derivativeCoefficients;
 if (coefficients.length == 1)
 return new Polynomial(new double[0]);
 derivativeCoefficients = new double[coefficients.length - 1];
 for (int i = coefficients.length - 1; i > 0; i--)
 derivativeCoefficients[i - 1] = i * coefficients[i];
 return new Polynomial(derivativeCoefficients);
 }
 public int degree() {
 return coefficients.length - 1;
 }
 public boolean isZero() {
 return (coefficients.length == 0);
 }
}

6 The Circumstances in which Modular Programming becomes the Favor Choice by Novice Programmers

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 1-12

Fig.2(b). The modular solution – Program Class.

A. Group 1 – stage 1

At the first stage, the students were asked to write a

computer program that gets input of a polynomial

function that includes the degree of the polynomial, its

coefficients and x-value (Fig. 1). The program evaluates

and prints the polynomial's value in the given point x.

Classifying the solutions to the above categories revealed

that 85% were non-modular, 10% were partial-modular,

and only 5% were modular.

The majority of the students provided a non-modular

solution (Fig. 3). This solution addresses all the

problem's requirements in one method. It includes a

single class with a main method containing the code

segments for handling the user input, initializing the

polynomial coefficients and calculating the polynomial

value at the given point. This code suffers from lack of

clarity, and impossible for reuse. To understand the code,

one must read it carefully and follow many line of non-

cohesive code. The code cannot be reused because it is

built as a single unit. It is worth noting that none of the

non-modular solutions dealt with the formatting of the

polynomial output according to example given in the

problem text (i.e., positive vs. negative coefficient,

coefficient with zero or one value vs. other values, zero

or one degree vs. other degrees). Instead, they output the

polynomial component as is.

At this point, the students did not know that they might

be required to use what they have already done at this

stage, and therefore did not set the goals of modularity,

clarity and reusability for themselves. From their point of

view, they dealt with a specific task, and their solution

met their own expectations regarding the required

solution. The following excerpt is taken from the

interviews conducted with the students. It reflects the

students' thoughts in similar words:

"Why not use a modular solution? Good question. I did

not really think about it. This looks like a specific task

and we learned that a modular solution is effective

when a generalization is required. If I knew there were

follow-up tasks, I might have done a modular

solution."

In terms of the dual-process theory [14, 13, 22], we

might say that the students did not activate S2 but instead

turned to S1, which employs intuitive considerations.

Activating S1 saves cognitive efforts. To be able to

design a modular solution, the students had to

demonstrate abstraction abilities and high programming

skills. For novice programmers, these skills are not yet

intuitive part of their professional toolbox and hence had

to activate S2 in order to come with a modular solution.

In the absence of explicit instructions regarding the

desired quality of the solution, the students' goal is to

deliver a solution that addresses the problem with

minimal efforts investment. For that purpose, they

implemented the first solution came to mind (activate S1)

and were satisfied with the results. Minimal investment of

mental efforts results in none modular solution as it

avoids pre-design. This pattern of behavior is more

public class Program {
 static Scanner input = new Scanner(System.in);
 public static void main(String[] args) {
 Polynomial p = acceptPolynomial();
 double value = acceptValue();
 do {
 evaluate(p,value);
 p=p.derivate();
 } while (!p.isZero());
 }
 private static double acceptValue() {
 System.out.print("Value to evaluate polynomial function at: ");
 return input.nextDouble();
 }
 private static void evaluate(Polynomial p, double value) {
 System.out.println("evaluation of "+ p
 + " is " + value + ":"+ p.evaluate(value));
 }
 public static Polynomial acceptPolynomial() {
 System.out.print("Highest polynomial function's degree: ");
 int n = input.nextInt();
 double[] coefficients = new double[n+1];
 for (int i=n; i>=0; i--) {
 System.out.print("Coefficient of X^" + i + ": ");
 coefficients[i] = input.nextDouble();
 }
 return new Polynomial(coefficients);
 }
}

 The Circumstances in which Modular Programming becomes the Favor Choice by Novice Programmers 7

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 1-12

common among novice programmers, which lack the

understanding of the importance of modularity and thus

concentrating on the shortest path to satisfactory solution.

It is worth noting the only student who provided a

modular solution was an experienced programmer.

Fig.3. Non-modular solution – stage 1

B. Group 1 – stage 2

In this stage, the students were asked to write a

computer program that in addition to the requirements

from the previous stage, requires the derivation of the

given polynomial and computes the derivative's value at

the given point x (Fig. 1). The students were provided

with their previous stage solutions after we took a

snapshot of them.

The classification of the students' solutions of this

stage revealed that 75% were non-modular, 15% were

partial-modular, and only 10% were modular. At this

stage, majority of students still adhere to the non-modular

solution (Fig. 3). As shown, they proceeded with the

solution from the point where it ended in the previous

stage, adding more lines of code in the main method,

including code duplications. However, two students had

improved their solution. One of them rewrote his solution

and built a separate class to represent the polynomial

function, and the other change the code structure by

dividing the main method into several methods.

Among the other students who kept the course of non-

modular solution, buds of understanding as regards to the

need for modular problem was raised. Nonetheless, since

they have already solved the first part in a non-modular

way, they chose to continue with the same course of

solution in order to avoid solving the problem from the

beginning. In other words, at this stage we can see a start

of understanding that a modular solution is more suitable,

but laziness still prevails, and only 10% of students

improved their solution. The following excerpt from the

interviews reflects the students' thoughts as regards to the

solution of the second stage (none modular) in similar

words:

"In fact, it occurred to me that the code for the

evaluation of the derivative polynomial is identical to

part of the code I wrote earlier. However, since I

already had a solution to the previous stage, it seemed

a waste of efforts to rewrite the solution. Therefore, I

decided to continue without changing the code from

earlier stage."

From the above excerpt, we can learn that there was a

dilemma between focusing their efforts in the new

assignment and providing a satisfactory solution, as fast

as possible (activating S1), and redesigning the entire

solution of both stages (activating S2) to avoid code

repetitions and improve modularity and clarity. The

majority of the students preferred the first alternative to

avoid greater cognitive efforts. In terms of dissonance

cognitive theory (Cooper, 2011), we may say that the

problem of this stage created a cognitive dissonance, and

to overcome these stressful feelings, they justified their

modus operandi in that it was a waste of time and effort

to write the solution from the beginning without explicit

requirements for modularity.

C. Group 1 – stage 3

In this stage, the students were asked also to calculate

all the remaining derivative polynomials of the original

one and computes their values at the given point x (see

public class Program {
 public static void main(String[] args) {
 // getting user input and initializing coefficients

Scanner input = new Scanner(System.in);
 System.out.print("Polynomial function's degree: ");
 int n = input.nextInt();
 double[] coefficients = new double[n+1];
 for (int i=n; i>=0; i--) {
 System.out.print("Coefficient of X^" + i + ": ");
 coefficients[i] = input.nextDouble();
 }
 System.out.print("Value to evaluate polynomial function at: ");
 double x = input.nextDouble();

// calculating the polynomial value
 System.out.print("evaluation of ");
 double sum = 0.0;
 for (int i=0; i<coefficients.length; i++) {
 sum += coefficients[i]*Math.pow(x, i);

System.out.print(coefficients[i] + "X^" + i + "+");
}

 System.out.println("at "+ x + " is " + sum);
 }
}

8 The Circumstances in which Modular Programming becomes the Favor Choice by Novice Programmers

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 1-12

Fig. 1). The students were provided with their previous

stages solutions after we took a snapshot of them.

The classification of the students' solutions of this

stage revealed that 60% were non-modular, 25% were

partial-modular, and only 15% were modular. Three

additional students redesigned their solutions at this stage

and provided modular (or partial-modular) solutions. Still,

majority of the students chose to invest minimal efforts in

solving the task and avoid redesigning the entire solution.

The partial modular solution (Fig. 5) includes several

methods in one class. In the majority of the solutions

classified as partial-modular, we found methods for (1)

user input; (2) evaluating the polynomial at the given

point; (3) deriving a polynomial; etc. However, the

methods themselves are partial-modular. For example,

the derivate() method in Fig. 5 includes many commands:

(1) creating an array of coefficients for the derivative

function (2) calculating the coefficients (3) evaluating the

derivative function at point x (4) printing the polynomial

itself and the evaluation results. The derivate() method

could be further divided into smaller, cohesive logical

units, each responsible for a single operation. Clearly, the

partial-modular solution (Fig. 5) is less clear and more

difficult to reuse than the modular solution (Fig. 2).

During the interviews, one of the few students that

changed their solution from non-modular to partial-

modular stated:

"At this stage I noticed that repeated actions of

polynomial derivation had to be done a second time

and I saw that the code I wrote for the previous stages

began to be cumbersome with lots of repetitions.

Therefore, I decided to write a function that calculates

the derivative and avoid some of these repetitions. If I

would get the entire problem from the start, I might

design and implement the derivative method from the

start".

The following excerpt was stated by one of the

students who did not changed their solution:

"At this stage it became obvious to me that the

continuing with the same course of solution will lead to

many code repetitions. However, I did not consider

redesigning since I wanted to complete the task as fast

as possible, having in mind that the achieving a

solution that solve the problem is the most important

criterion."

At stage 3, in which the entire problem was revealed to

the students, most of the students who solved the

previous stages in a non-modular way came to realization

that their course of solution was problematic (code

repetitions, unclear). In terms of the dual-process theory

[14, 13, 22], we may say that when receiving new

information that do not support the previous choices

regarding the course of solution, S2 was activated and a

cognitive dissonance [20, 21] was created. The cognitive

dissonance stems from the students' understanding that

the solution they chose is problematic in that it requires

repeatedly writing the same code for calculating the

following polynomial derivatives, which contradicts the

planning principles they have learned. In order to solve

the dissonance, most of them chose to continue the course

of solution they had chosen earlier, and attributed their

choice to their desire to complete the assignment quickly.

In contrast, few students have chosen to solve the

cognitive dissonance by changing the course of solution

into a more modular one. They realized that the quality

principle is sufficiently important and hence cannot be

ignored.

From the students' interviews, we concluded that

giving the problem in stages makes it difficult for novice

programmers to plan an optimal solution (modular) right

from the beginning, but rather to focus on a specific, non-

modular solution of each part separately. Moreover, when

they already got all parts of the problem, they were not

public class Program {
 public static void main(String[] args) {
 // same as phase 1
 ...
 double[] derivativeCoefficients = new double[n];
 sum = 0.0;
 for (int i = coefficients.length - 1; i > 0; i--)
 derivativeCoefficients[i - 1] = i * coefficients[i];

// calculating the polynomial value

 System.out.print("evaluation of ");
 double sum = 0.0;
 for (int i=0; i< derivativeCoefficients.length; i++) {
 sum += derivativeCoefficients[i]*Math.pow(x, i);

System.out.print(derivativeCoefficients[i]+"X^"+ i + "+");
}

 System.out.println("at "+ x + " is " + sum);
 }
}

Fig. 4. Non-modular solution – stage 2

 The Circumstances in which Modular Programming becomes the Favor Choice by Novice Programmers 9

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 1-12

motivated to change the course of solution and throw

away the code they had already wrote for the previous

stages.

Fig.5. Partial modular solution

At each stage, more information is added that makes it

difficult for the students keep the non-modular course of

solution and in fact increases the cognitive dissonance

they experienced. However, since in early stages they

chose to resolve the cognitive dissonance by justifying

their course of non-modular solution with the problem

character being concrete and simple one, in the

successive stages they continue to justify their choice by

providing additional excuses as minimal time investment

yet providing a solution that address the problem

requirements regardless quality.

D. Group 2 – Entire problem

The students in this group were given the entire

assignment, which is composed of all the parts given to

the first group (Fig. 1). They were also given no further

instructions as regards to the nature of the desired

solution.

The classification of the students' solutions of this

stage revealed that 30% were non-modular, 40% were

partial-modular, and only 30% were modular.

The students, who provided a modular solution (Fig. 2),

asserted the following excerpt it similar words:

"When I read the problem it occurred to me right away

that many calculations of polynomials are required.

Hence, I created a polynomial class to contain all the

necessary methods, just as we learned in object-oriented

programming course. It was not a difficult task for me."

The students who provided partial modular solution

asserted in similar words:

"When I read the problem, I identified repeated

elements such as the polynomial derivation and the

calculation of its value. However, it was difficult for

me to design a perfect solution that included many

classes and methods. I did my best to finish the task

successfully."

As to the students who provided non-modular solution,

they justified it in similar words:

public class Program {
 public static void main(String[] args) {
 Scanner input = new Scanner(System.in);
 System.out.print("Polynomial function's degree: ");
 int n = input.nextInt();
 double[] coefficients = new double[n+1];
 for (int i=n; i>=0; i--) {
 System.out.print("Coefficient of X^" + i + ": ");
 coefficients[i] = input.nextDouble();
 }
 System.out.print("Value to evaluate polynomial function at: ");
 double x = input.nextDouble();
 evaluate(coefficients, x);
 derivate(coefficients, x);
 }
 private static void evaluate(double[] coefficients, double x) {
 double sum = 0.0;
 for (int i=0; i<coefficients.length; i++)
 sum += coefficients[i]*Math.pow(x, i);
 System.out.println("Evaluation at "+ x + ": " + sum);
 }
 private static void derivate(double[] coefficients, double x) {
 int n= coefficients.length-1;
 for (int j=1; j<=coefficients.length; j++){
 double[] derivativeCoefficients = new double[n];
 for (int i = coefficients.length - 1; i > 0; i--)
 derivativeCoefficients[i - 1] = i * coefficients[i];
 coefficients = derivativeCoefficients;
 n--;
 double sum = 0.0;
 evaluate(coefficients, x);
 }
 }
}

10 The Circumstances in which Modular Programming becomes the Favor Choice by Novice Programmers

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 1-12

"As I progressed with my solution, I saw that it

contains many code repetitions. But you [the

researchers] didn't specified any criteria as regards to

the quality of the solution, so I decided to invest the

minimal efforts and come with a working solution… to

provide a modular solution, it would have taken me

longer time to achieve."

Fig.6. Evolution of modularity

From the above excerpts, we can learn that though the

students received the same entire problem, each of them

interpreted it differently according to their abilities and

skills. Thirty percent of the students were able to identify

the problem components, and define appropriate classes

and methods to address them. From the first excerpt it can

be learned that there are students who have internalized

the importance of early planning of the solution, which

eventually leads to a modular one. Yet, it was important

for these students to provide a solution in a short time.

They realized that investing time in planning the solution

would lead to savings in coding time and result in a short

and clear solution. The internalization of the importance

of the designing stage before coding can indicate on

abstraction abilities and planning skills. We may infer

that the planning stage has become an integral part of the

student's cognitive toolbox. In terms of dual-process

theory, we may say that for these students, modular

solution is achieved by activating S1.

Forty percent of the students provided partial-modular

solutions. From the second excerpt, we learn that these

students understand the advantages of modular design but

encounter difficulties in its implementation. In terms of

the dual-process theory, we might infer that modular

design is not becoming completely an integral part of S1.

Thirty percent of the students were not able to grasp

the problem as a whole, and instead they view it as a

collection of sub-problems each to be addressed

separately and successively, similar to the situation of the

first group, which received the problem in stages. In

terms of dual-process theory, we might infer that these

students were not able yet to integrate modularity into

their S1. This may be attributed to several reasons. The

first reason is related to the cognitive efforts they are

required to invest while planning a modular solution.

Tough the students studied and practiced the concept of

modularity in several courses; they were not necessarily

exposed to the consequences of non-modular code.

Namely, they were not required to change such code in

order to add functionality or fix bugs in it. As a result, the

modularity principle was not internalized completely. For

some of them, it was not internalized at all, and remained

hollow slogan. In addition, the students got used to

address assignments that include explicit and detailed

instructions. In the absence of such instructions, they set

criteria of their own, which do not necessarily include

modular considerations and pre-design. As a result, the

importance of concepts such as modularity is not

internalized and do not become a natural part of the

cognitive toolbox.

E. Comparative analysis

Fig. 6 demonstrates the evolution of modular solutions

across the stages of group-1 and the distribution of

solutions of group-2.

As to group-1, it might be said that the number of non-

modular solutions decreases from stage to the next stage,

but remains high even after the third stage in which the

entire problem was revealed to the students. As to group-

2, 70% of the students provided partial or full modular

solution and only 30% of them provided non-modular

solutions. Comparing group-1-stage 3 with group-2

distributions reveals that although at this point both

groups had the entire problem, there is a significant

difference between the non-modular solutions among the

groups. The difference between the groups may stem

from the fact that the students of group-2 had the entire

problem right from the beginning and were exposed to

the complexity of the problem, while the students of

group-1, had to cope with a simple problem that was

getting complicated in each consecutive stage. Group-2'

students were able to plan a solution that addresses all

parts of the problem, identify the code repetitions and

avoid them using modular design. Group-1's students, on

 The Circumstances in which Modular Programming becomes the Favor Choice by Novice Programmers 11

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 1-12

the other hand, had to address a simple task at the first

stage, without knowing the future requirements. Even

when they got the additional requirements in successive

stages, most of them kept their previous course of

solution, while handling the new requirements as a patch,

without changing the code written beforehand.

It is worth noting that among group-2's solutions, 30%

provided non-modular solutions although exposed to all

the requirements at the beginning. Many of them

justified their behavior by asserting that no specified

criteria as regards to the quality of solutions was set,

hence they chose the fastest path to come with a working

solution. Some of them asserted that retrospectively they

understand that modular solution could save time by

avoiding code repetitions, however, when coping with the

task it did not occur to them.

V. IMPLICATIONS TO INSTRUCTION

Students who studied programming courses were

exposed to the concept of modularity and its advantages.

Code modularity might decrease the rate of software

errors and results in improved quality [26]. However, this

research reveals that many of them did not fully

internalized the importance of modularity in code design

and tend to avoid investing efforts required for its

implementation. They focus mainly on the criterion of

"working solution", neglecting other important quality

attributes. As a result, the code they write is hardly

readable, difficult to reuse, and includes code repetitions.

To help the students include modularity in their cognitive

toolbox, and make it natural for them to use it (being part

of S1), we suggest to: (1) Integrate tasks in programming

courses, which will provide two implementations of a

given solution, one modular and the other non-modular.

The students will be asked to put changes in the code,

addressing new requirements. In such activities, students

would learn to appreciate the easiness of adding or

changing functionalities to a modular code in contrast to

the complexity of doing the same changes in the non-

modular code; (2) Integrate tasks composed of several

stages, in which each successive stage has to be

addressed by a different student. This student must

continue the solution of previous stage provided by

another classmate. The purpose of such activity it to

confront students with the consequences of non-modular

solutions; (3) Integrate tasks in which students will be

required to reuse parts of code they provided in previous

tasks. The aim of such activity is to raise the student's

awareness to the crucial role of modularity in software

reuse; (4) Conduct class discussions in which difficulties

and insights gained via such experiences are raised and

analyzed. The above activities simulate "real-world" code

which is used for long period of time, maintained by

various programmers and hence has to be clear, modular

and reusable. The above activities differ from the

traditional assignments given in academic studies in

being on going and based on code provided by others.

When students confront situations where modular code

has obvious advantages over non-modular code, they may

internalize its importance and include it in their

professional toolbox despite the efforts it takes.

VI. CONCLUDING REMARKS

In this study, we explored the level of modularity in

code produced by novice programmers. The research data

revealed that when a problem includes several

functionalities that have to be addressed with repetitive

operations, more students turn to modular programming,

although it was not easy for them. Modular programming

requires abstraction and generalization skills to be able to

design the solution before implementation. This is

especially difficult when novice programmers are

involved. However, when the same problem is give as a

collection of simple sub-problems given successively, the

vast majority of students tend to solve the problem in a

non-modular way. This tendency might be explained via

dual-process theory [14, 15, 25] that asserts that natural

tendency of people is to invest minimal efforts in solving

problems they are confront with (activating S1). We also

found that even after they understand that a modular

solution would fit better, a situation, which evokes

cognitive dissonance [20, 21], they adhere the original

course of the solution. To overcome the cognitive

dissonance, many of them assert that it seems ineffective

and a waste of time to "throw away" what they have done

so far and start all over again.

In a follow-up study, we intend to apply the

recommendations specified in the "Implications to

instruction section", and examine its effect on the

students' programming style.

In order to gain further refined insights, this study

should be repeated with large groups of students

separating them according to academic achievements, and

compare their performances to products of experienced

programmers.

REFERENCES

[1] D. Marr, Vision: a computational investigation into the

human representation and processing of visual

information. W. H. WH San Francisco: Freeman and

Company. 1982 .

[2] B. Meyer, Object-oriented software construction. New

York: Prentice hall, 1988.

[3] E. Lahtinen, K. Ala-Mutka, & H. M. Järvinen, "A study of

the difficulties of novice programmers". Acm Sigcse

Bulletin, vol. 37, no. 3, pp. 14-18. ACM. June, 2005.

[4] H. Topi, J. S. Valacich, R. T. Wright, K. M. Kaiser, J. F

Nunamaker Jr, J. C Sipior, & G. J. De Vreede, Curriculum

guidelines for undergraduate degree programs in

information systems. ACM/AIS task force, 2010.

[5] U. Leron, & O. Hazzan, "The rationality debate:

Application of cognitive psychology to mathematics

education". Educational Studies in Mathematics, vol. 62,

no. 2, pp. 105-126, 2006.

[6] T. Bollinger, R. Nelson, S.,Turnbull, & K. Self, "From

the editor-response: open-source methods: peering

through the clutter". IEEE Software, vol. 16, no. 4, pp. 6-

11, 1999.

12 The Circumstances in which Modular Programming becomes the Favor Choice by Novice Programmers

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 7, 1-12

[7] I. Stamelos, L. Angelis, A. Oikonomou, & G. L. Bleris,

"Code quality analysis in open source software

development". Information Systems Journal, vol. 12, no. 1,

pp. 43-60, 2002.

[8] H. Zhu, Software design methodology: From principles to

architectural styles. Oxford: Elsevier. 2005.

[9] D. L. Parnas, "On the criteria to be used in decomposing

systems into modules", Communications of the ACM, vol.

15, no. 9, pp. 1053-1058, 1972.

[10] C. Y. Baldwin, & K. B. Clark, Design rules: The power of

modularity (Vol. 1). Cambridge: The MIT Press, 2000.

[11] K. J. Sullivan, W. G. Griswold, Y. Cai, & B. Hallen, "The

structure and value of modularity in software design", In

the Proceedings of the 8th European Software

Engineering Conference, Vienna, Austria, 2001.

[12] A. MacCormack, J. Rusnak, & C. Baldwin, "The impact

of component modularity on design evolution: Evidence

from the software industry", Harvard Business School

Working Paper, 2007.

[13] T. Gilovich, D. Griffin, & D. Kahneman, (Eds.).

"Heuristics and biases: The psychology of intuitive

judgment". Cambridge university press, 2002.

[14] E. Stanovich, & R. West, "Individual differences in

reasoning: Implications for the rationality debate".

Behavioral and brain science, vol. 23, pp. 645-726, 2000.

[15] K. E. Stanovich, & R. F. West, Evolutionary versus

instrumental goals: How evolutionary psychology

misconceives human rationality, 2003.

[16] H. Fischbein, Intuition in science and mathematics: An

educational approach (Vol. 5). Springer Science &

Business Media, 1987.

[17] U. Leron, & O. Hazzan, "Intuitive vs analytical thinking:

four perspectives". Educational Studies in Mathematics,

vol. 71, no. 3, pp. 263-278, 2009.

[18] T. Paz, & U. Leron, "The slippery road from actions on

objects to functions and variables". Journal for Research

in Mathematics Education, pp. 18-39, 2009.

[19] I. Lavy, R. Rashkovits, & R. Kouris, "Coping with

abstraction in object orientation with special focus on

interface class". The Journal of Computer Science

Education, vol. 19, no. 3, pp. 155-177, 2009.

[20] L. Festinger, A Theory of Cognitive Dissonance.

California: Stanford University Press, 1957.

[21] J. Cooper, Cognitive dissonance theory. Handbook of

theories of social psychology, vol. 1, pp. 377-398, 2011.
[22] D. Kahneman, "Maps of bounded rationality: A

perspective on intuitive judgment and choice". Nobel

prize lecture, vol. 8, pp. 351-401, 2002.

[23] R. P. Weber, Basic content analysis (No. 49). Sage, 1990.
[24] K. A. Neuendorf, The Content Analysis Guidebook.

Thousand Oaks, CA: Sage Publications, 2002.

[25] E. Stein, Without good reason: The rationality debate in

philosophy and cognitive science. Clarendon Press, 1996.

[26] O. A. Aljohani, R. J. Qureshi, "Proposal to Decrease Code

Defects to Improve Software Quality", International

Journal of Information Engineering and Electronic

Business (IJIEEB), vol.8, no.5, pp.44-51, 2016. DOI:

10.5815/ijieeb.2016.05.06

Authors’ Profiles

Prof. Ilana Lavy is an associate

professor with tenure at the Academic

College of Yezreel Valley in the

department of Information Systems. Her

PhD dissertation (in the Technion)

focused on the understanding of basic

concepts in elementary number theory

in a computerized environment. After

finishing doctorate, she was a post-

doctoral research fellow at the Education faculty of Haifa

University. Her research interests are in the field of pre service

and mathematics teachers' professional development as well as

the acquisition and understanding of mathematical and

computer science concepts. She has published over hundred

papers and research reports.

Dr. Rami Rashkovits is a senior

lecturer at the Academic College of

Yezreel Valley in the department of

Information Systems. His PhD

dissertation (in the Technion) focused

on content management in wide-area

networks using profiles concerning

users' expectations for the time they are

willing to wait, and the level of

obsolescence they are willing to tolerate. His research interests

are in the fields of distributed systems as well as computer

sciences education.

How to cite this paper: Ilana Lavy, Rashkovits Rami, " The Circumstances in which Modular Programming becomes

the Favor Choice by Novice Programmers", International Journal of Modern Education and Computer

Science(IJMECS), Vol.10, No.7, pp. 1-12, 2018.DOI: 10.5815/ijmecs.2018.07.01

