
I.J. Modern Education and Computer Science, 2018, 5, 17-26
Published Online May 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2018.05.03

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 5, 17-26

Continuous Delivery Pipelines for Teaching

Agile and Developing Software Engineering

Skills

Héctor F. Cadavid
Decanatura de Ingeniería de Sistemas, Escuela Colombiana de Ingeniería, Bogotá, Colombia

Email: hector.cadavid@escuelaing.edu.co

Received: 08 December 2017; Accepted: 15 January 2018; Published: 08 May 2018

Abstract—The amount of research reports on how to

properly teach, in conjunction with technical topics, agile

skills in undergraduate courses is a good indicator of how

important are such skills in academy and industry

nowadays. Such investigations have addressed challenges

like how to engage students with agile principles and

values without getting distracted by technology, or how

to balance theory and practice to get students to meet

learning objectives through practical experience. This

paper intends to contribute to this research topic by

describing new strategies for our particular needs for

teaching agile in an introductory software engineering

course, including better evaluation criteria for agile

values and practices, and higher quality projects. The

described strategies include a new approach for

theoretical, laboratory, and project sessions arrangement,

as well as a ‘Continuous Delivery Pipeline’ adapted to

our educational context, with very promising results.

Index Terms—Software Engineering, Agile Teaching,

Software Engineering Education, SDLC Teaching.

I. INTRODUCTION

The differences between academy and industry when it

comes to working settings (schedules, workload, working

environments, etc.), have motivated the development of a

significant body of research on how to achieve

meaningful learning processes of Software Development

Life Cycles (SDLC) in the former, in order to ease the

incorporation processes of new Software Engineers in the

latter.

Such research works have evolved together with the

SDLC themselves, in particular between the early 2000s

when most programs taught highly prescriptive

methodologies like RUP/UP or Extreme Programming

(XP) [1, 2, 3], and a decade later, when agile SDLC like

SCRUM had already become one of the most widespread

agile methodologies in the industry and academia slowly

began to embrace it (near 100 references in Google

Scholar for "teaching agile software development"

between 2010 and 2017).

An important consensus that has been reached with

regards to teaching SCRUM is that the strong orientation

towards values and the hands-on nature of agile values

and practices mean that traditional approaches to teaching

-through theoretical communication- are incapable of

leading to a real adoption of such principles and values

[4]. In contrast, in our own experience, these agile

elements are difficult to assess objectively in the end of a

software engineering course, mostly when the work is

group-based and individual grades are expected.

This paper describes a proposed methodological

approach a for the first software engineering course at the

Escuela Colombiana de Ingeniería, built upon ideas of

previously published works and a novel strategy based on

an extension of the concept of Continuous Delivery (a

popular practice in IT industry) that aims to:

 Gather data during project development process

for more objective evaluations of practices and

values.

 Encourage agile values through continuous semi-

automated feedback of such assessments and

other software metrics.

 Achieve a realistic software project scenario

within the limited time of a course and the

rigorous schedule of an undergraduate course.

This paper is organized as follows: section 2 describes

the related works on which this methodological proposal

is based; section 3 provides an overview of the traditional

approach of the software engineering courses at the

Escuela Colombiana de Ingeniería, including new

problems identified in the learning of software

engineering concepts; sections 4 and 5 describe the

proposed methodological approach, including the course

outline, contents, and methodology. Section 6 describes

and analyzes the results obtained so far, and conclusions

are then presented in section 7.

II. RELATED WORK

Starting in the 2010s, and given the growing popularity

in the industry of management-oriented agile

18 Continuous Delivery Pipelines for Teaching Agile and Developing Software Engineering Skills

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 5, 17-26

development frameworks such as Kanban, Lean, and

especially Scrum, research efforts on the topic of

software engineering teaching methodologies were

focused on how to create appropriate environments and

contents for the learning process of these agile

approaches. Mahnic and Viljan Mahnic [5] proposed a

project-oriented software engineering course focused

exclusively on Scrum by performing four sprints (one

theoretical and three practical) in a quasi-real project.

This course had previous software engineering courses as

a pre-requisite where all the required technical concepts

for basic software development were covered using

a ’traditional’ software development process.

Kropp et at Kropp and Meier [6] went one step further

by going into more detail on this topic and proposing the

pyramid of competencies for software engineering course

design: software engineering practices, management

practices, and agile values. They proposed a project-

oriented software engineering course where the agile

values are expected to be taught in lectures and

workshops, but more importantly, through the practice in

the form of a project (a 2D game) and some

collaboration-related activities: sprint-retrospective,

common code ownership, or pair programming. On the

other hand, as engineering practices, topics such as

eXtreme Programming (XP), software versioning, and

Continuous Integration (CI) were covered; whereas

Scrum roles and principles, pair programming and

planning poker—among others— were studied for

management practices. In this case, there is no real

‘stakeholder’, as the teacher defines the product and

assumes the role of product owner.

In the same year, Václav Rajlich [7], besides proposing

a similar competencies-based course design, documented

what is known as the ‘deadly sins’ of software

engineering education. These can be summarized as

follows:

1. Unrealistic projects and unrealistic quality

expectations.

2. Courses focused on outdated, out of the current

mainstream practices.

3. Course practices or roles too advanced for the

average student.

4. Too much time spent on software development

processes surveying.

5. Course projects in unfamiliar and difficult

domains.

6. Course projects that are aimed at producing

a ’pretty’ final product, without emphasizing the

process.

7. Group evaluation based only on the project

outcome and fail to consider individual

contributions (unfair grades).

Another important milestone in this research topic is

the concept of agile games, which consists of

methodological proposals for teaching -in the practice-

agile principles in a small time-scale. Given that software

development is a heavy time-demanding task, previous

approaches to software engineering teaching allow for

reflection about the agile process only at the end of the

course. The agile games challenge the students to create

simpler non-software artifacts that meet certain

acceptance criteria, by using the same ’ceremonies’ and

artifacts of a software-oriented Scrum project. Some

examples of such games include SCRUMIA [8], a game

focused on the building of origami artifacts; SCRUMI [9],

an electronic board serious game; and Scrum4Lego [10],

a game focused on the building of cities with Lego blocks,

which has become the most popular of these activities

thanks to its creative-commons licensed material.

Kropp et al. [11], who participated in some of the early

investigations mentioned above, proposed an updated

version of the agile competency pyramid by performing a

survey of the most relevant practices in today’s Swiss IT-

industry (for technical and collaborative practices), and

including Scrum4lego as a key activity for teaching agile

values. On the other hand, Matthies et al [12] proposed a

set of metrics to improve the evaluation process in

Software Engineering courses by quantifying the

outcome of an agile process, including collective code

ownership (GIT Statistics), untested complexity,

committing rate, and Agile User Stories quality. More

recently, Ochodek [13] proposed an approach to

synchronize theoretical and practical sessions of a regular

Software Engineernig course towards an incremental

understanding of Scrum principles.

III. PROPOSED APPROACH BACKGROUND

The computer and systems engineering program at the

Escuela Colombiana de Ingeniería has trained hundreds

of highly skilled professionals since the 1980s, most of

them with a strong background in software engineering.

Starting with the thirteenth curriculum upgrade process in

2009, the program committee defined three consecutive

courses as the core of the software engineering

component of the curriculum. Preceded by computer

programming and database design courses, and inspired

by the unified process phases (see Fig. 1), the following

learning objectives were defined for such courses:

 Software Engineering 1 (Inception): software

development life cycles, with a strong emphasis

on unified process. Requirements for software

gathering and analysis.

 Software Engineering 2 (Elaboration): Software

Architectures, Quality Attributes, and

Architectures documentation.

 Software Engineering 3 (Construction): Software

Construction, with an emphasis in Software

Configuration Management.

In the subsequent program upgrades, during the

transition to agile methodologies as the base approach for

software engineering courses, the three courses were

reformulated as a set of transversal competencies, with

different levels of detail in each one. With this approach,

 Continuous Delivery Pipelines for Teaching Agile and Developing Software Engineering Skills 19

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 5, 17-26

Fig.1. Sequence of courses in the Software Engineering line. Adapted

from an illustration at [14].

the first software engineering course aims to the

development of competencies in SCRUM, including

values, principles, and how to follow SCRUM master and

team member roles while covering the minimal amount

of technical and architectural concepts in the process as

depicted in Fig. 2. In the courses that follow it

competencies in software architecture/development, user-

centered design, and software entrepreneurship are

developed in greater depth, applying and extending the

methodological elements of the first course (for example,

by taking on the role of Product Owner).

Fig.2. Sequence of courses in the Software Engineering Line revisited:

now defined as a set of overlapping competencies, which we cover to

varying degrees in courses.

Through the transition described above, the program’s

staff identified a particular set of ‘deadly sins’ of agile

teaching, complementary to the ones previously reported

by authors like Rajlich [7]. These methodological

mistakes or ‘sins’, described below, were what motivated

us to seek and propose the strategies described in this

paper:

1. Trying to encourage the students to follow an

agile approach (e.g., SCRUM) in a project, while

teaching all the required technical concepts for its

architecture and technology stack. In our

experience (unlike the one described by Ochodek

[13]), this causes two problems: first, this

sometimes makes it impossible to follow the agile

principle of using working software as

measurement of progress, and second—but most

importantly—the novelty and the challenges of

the newly presented technologies tend to shift the

students’ focus from the methodological elements

of the software development to the technical ones.

2. Not identifying ‘cowboy’ coders and ‘negative

solidarity’ opportunely. These are two variations

of the same problem. In the first case, some

‘skilled’ but rule-aware students known as

cowboy coders (a term coined by Janes and Succi

[15]) tend to take on most of his/her team’s work

(in most cases, because of a lack of confidence in

their teammate’s skills). In the second case a

project team—motivated by a false sense of

‘solidarity’—allow one of its members not to

contribute to the project, sometimes due to a

recognition of a lack of software development

knowledge or skills on the part of the non-

contributing team member. Besides the problem

of passing students who lack key skills to more

advanced classes, this also leads to some team

members feeling that the process is unfair when a

group evaluation is performed (Rajlich’s seventh

‘deadly sin’).

3. Missing opportunities to learn from mistakes due

to late feedback. Time is a very limited resource

for a teacher, mainly when he/she has large

groups of students on his hands. This situation

sometimes leads to only a few shallow and/or

mediocre reviews of the projects (e.g., code

quality), which may hide fundamental problems

until final reviews. Given that at the end of a

course students tend to be more concerned about

their grades than on reflecting on errors that they

have no time or reason to fix, late feedback is a

lost opportunity for students to learn from their

mistakes.

4. Allowing unjustified postponement

(procrastination) due to lack of progress tracking.

Starting work close to the deadline seems to be a

cultural issue for many students, but last minute

‘coding marathons’ simply mean —besides a

mediocre outcome—a lost opportunity to learn,

through the practice, the benefits of applying

Software Management Principles.

IV. INTRODUCTION TO AGILE: COURSE STRUCTURE.

To address the methodological mistake #1, we propose

the rearrangement of the 16-week course activities in two

big phases: the first, for theoretical/technical foundation

phase, and the second, a hands-on agile principles

interiorization phase as depicted in Fig. 3 and detailed in

Fig. 4. The theoretical/technical foundation phase, which

takes approximately two weeks, aims to develop the

minimum required skills of software design principles,

configuration management, and the project’s technology

stack. In the remaining six weeks, after evaluating the

skills mentioned above and forming the SCRUM teams,

three SCRUM sprints are performed.

The theoretical/technical foundation phase follows a

problem-based approach, where software design concepts

20 Continuous Delivery Pipelines for Teaching Agile and Developing Software Engineering Skills

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 5, 17-26

are deepened through hands-on software refactoring

laboratories, gradually including software engineering

and management practices (configuration administration).

For example, the third-week laboratory 1 deepens in

S.O.L.I.D. principles and GoF (Gang of Four) behavioral

patterns, introducing at the same time elements of test-

driven development and test design techniques. The more

advanced -and latest- laboratories, by following the same

approach, aims to the development of a proof of concept

of the architecture, application stack, and configuration

management environment expected to be used in the final

project. In order to achieve this, each laboratory is aimed

at the development of a different layer

(presentation/security, middleware, and persistence), with

a final integration exercise 2 , where the benefits of

loosely-coupled/layered architectures are demonstrated.

The agile principles interiorization phase, on the other

hand, is focused on the development of agile skills

through a near-real SCRUM process, with a real problem

and real stakeholders. In order to achieve a more realistic

working environment—where people usually are focused

on fewer tasks simultaneously—, during this phase the

students are allowed to devote 10.5 hours/week out of the

12 hours/week (defined by the course’s academic credits)

to the project. The remaining 1.5 hours are devoted to

reflection activities to introduce and compare alternative

software development life cycles (Waterfall, UP, Lean,

etc), activities that are highly benefited from the student’s

new perspective as active members of an agile (SCRUM)

team. To create a bank of real projects, inspired by the

experience documented by Viljan Mahnic [5], we

perform a survey of information systems needs within

several institutional administrative departments and

academic programs. Such needs were prioritized in

accordance with the feasibility implementation taking

into account the technical limitations of the architecture

and technology stack selected for the course. Each

selected, and the first version of the product vision and

product backlog are defined between the stakeholder and

Fig.3. First Software Engineering Course: Proposed Course schedule

and Phases distribution.

1 https://github.com/PDSW-ECI/GoF-Testing-BehavioralPatterns-

CADTool_Rotation
2 https://github.com/PDSW-ECI/MyBatisGuice_Integration_VideoRental

semester, therefore, a new project and stakeholder (a

representative of the selected program or department) are

the product owner, a role played by the teacher in

question.

Agile games are the key activities that link the two

phases of the course described above. Although there are

several variations of such games, the Scrum4Lego

workshop [10] has been repeatedly used in recent years

given the excitement and engagement observed

(Steghöfer et al. [16]) amongst students during its

application.

Fig.4. First Software Engineering Course: detailed schedule and

contents.

With this activity, shown in Fig. 5, the students are

exposed, for a first time, to a small-scale SCRUM sprint,

where the goal is to build a Lego city based on a product

vision and a set of user stories. Activities such as user

stories’ estimation and prioritization, sprint planning,

sprint retrospective and sprint review—previously

presented in class—, are experimented through an

entertaining but meaningful group dynamic. For this kind

Fig.5. Agile games: SCRUM4Lego activity in a classroom specially

designed for collaborative work.

 Continuous Delivery Pipelines for Teaching Agile and Developing Software Engineering Skills 21

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 5, 17-26

of activities, our program has designed what we call ’the

interactive classroom’ (also shown in Fig. 5), a classroom

that encourages teamwork, with a special distribution of

roundtables, whiteboards, and computers (one for each

team).

V. CONTINUOUS DELIVERY PIPELINES AND EVALUATION

METRICS.

Methodological mistakes 2, 3, and 4 are all, at the end,

related to a lack of individual and continuous progress

tracking. To address these issues we propose the

inclusion of the concept of Continuous Delivery pipeline

(CDP), a popular software strategy that enables the

delivery of new features to users as quickly and

efficiently as possible, by including elements that also

enable a continuous delivery of progress and evaluation

metrics. The proposed production pipeline is depicted in

Fig. 6, and can be summarized with the following

activities (not necessarily sequential), assuming an in-

progress sprint (after sprint planning):

1. Based on the selected user stories for the current

sprint, the development team (students) start

creating test cases and software artifacts and

committing them to a central repository.

2. When a piece of code is committed to the

repository, a continuous integration platform

applies the test cases to the developed artifacts

and performs a static code quality analysis with

PMD (identifying common coding bad practices)

and code coverage reports (measuring, partially,

test cases quality).

3. The teaching assistant (and sometimes the teacher

himself/herself) assumes the role of quality

assurance advisor and periodically performs more

advanced code quality analysis. The quality

assurance advisor receives, as review criteria, our

own database of hard-to-find—but common—bad

design and coding practices, like bad separation

of concerns through layers, or the inefficient use

of computational resources. When such poor

practices are identified, an ‘issue report’ is

included in the GitHUB repository.

4. The development team, through the continuous

integration platform and the versioning control

system, automatically receive all the reports

mentioned above in order to address all the

related problems in the following sprints.

5. When the software artifacts pass all the tests, the

continuous integration platform automatically

deploys a new version of the application in the

cloud, making it available as a working software

for the teacher and the stakeholder.

6. The deployed application is used during the sprint

reviews with the stakeholder and the product

owner.

7. The teacher generates statistics from the

versioning control system (GIT) in order to

identify: a) The consistency of teams’ sprint

backlogs, and b) teams or team members with

irregular commitment rates.

Fig.6. An overview of the Continuous Delivery Pipeline introduced in the first Software Engineering Course.

22 Continuous Delivery Pipelines for Teaching Agile and Developing Software Engineering Skills

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 5, 17-26

A. Evalation Metrics

On the basis of the Continuous Delivery Pipeline

described above, we proposed the evaluation criteria for

early problems detection (process) and final evaluations

(product) listed in Table 1.

Table 1. Evaluation Criteria

Criteria Metrics

Sprint

Performance

Planned story points vs Accepted Story

Points.

Internal Quality Final reports of the static code analysis

tools, and the rate of solved/reported

issues opened by the Quality

Assurance Advisor or the Teacher, as

shown in Fig. 7.

External Quality

/ Usability

Stakeholder: User interface Usability.

Fig.7. Issues Tracking through GITHub’s interface.

B. Process

Application of Continuous Integration Principles.

One of the principles of CI practice states that

"Everyone commits to the baseline every day". This is a

key principle when it comes to work-distribution

problems previously discussed, as its validation ensures

the identification the real contribution of each team

member. Unlike the approach followed by authors like

Matthies et al [12], where CI metrics were calculated

automatically using GIT’s history, we propose an

automatic generation of timeline graphics of the

individual contributions (commits/lines of code vs time).

The reason for this is that graphical information is easier

to follow and get analyzed by the teams (when compared

to a single result of an automated calculation), and gives

more discussion elements with the teacher at early stages

of the sprints.

Figs. 8 and 9 show two opposing examples of GIT’s

committing timelines. The first, with a similar, regular

slopes from the beginning of the project; and the second,

with extremely high slopes near the end of the project and

heterogeneous contributions through the time (even with

a team member that reports only a single, insignificant,

contribution).

Fig.8. A good example of the expected source code repository timeline

for a team committed with Continuous Integration, and with fair work

distribution. Although there are duplicate authors (due workstations

misconfigurations, a problem we expect to solve), all the team members

show a similar progress slope through the time.

Fig.9. This source code repository timeline shows (1) a lack of

Continuous Integration -most of the code was committed to the baseline

near the end of the project-, and (2) some team members with minimal

contributions (red circle).

Application of Test-Driven Development, and Test

Design Principles.

Fig.10. Automatic project building performed by Circle.CI, the

Continuous Integration Platform chosen for the course. Each time a new

commit is performed, the platform executes unit tests, marking with

green the absence of errors, and with red its presence.

 Continuous Delivery Pipelines for Teaching Agile and Developing Software Engineering Skills 23

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 5, 17-26

In order to evaluate the application of the test-first

principle, it is validated that (1) the timeline of the tests

begins before the timeline of the target source code, and

(2) the CI (Continuous Integration) Platform -see Fig. 10-

reports failed test cases from the earliest builds.

Sprint planning and progress tracking for estimation

skills improvement.

Keeping tracking of the time spent on each sprint is

essential to identify the improvements in estimation

accuracy as more and more Sprints are performed. To

encourage this practice, at certain points of each Sprint,

the correspondence between the provided Sprint backlog

template shown in Fig. 11 (tasks assignments and time

reports) and the GIT logs is verified.

Fig. 11. Open source Sprint Backlog format with planning and time

tracking elements. The Sprint-burndown chart is generated

automatically.

VI. PRELIMINARY RESULTS

This methodological approach has been applied for

three consecutive semesters, with a total of 57 students.

Given the size of the students’ population at the time of

the definition of this pedagogical approach, it was

impossible to create an experiment with a second ’control’

group. However, preliminary results from the final

products point of view, and the students’ feedback are

presented below.

A. Course Outcomes

A selection of the best projects (from each semester) is

available at https://github.com/LIS-ECI, including links to

their CI environments and Cloud-based hosting. Table 2

shows part of the history of ’real projects’ created

through course’s production lines.

Table 2. Projects created between 2016 and 2017.

Semester Project and Product Backlog

Link

Stakeholder

2017-1 Scheduling System for the

Graduate Programs of Project’s

Unit

https://goo.gl/Fr6DD7

Projects Unit Director

2016-2 Graduates Association System:

https://goo.gl/vdh43A

Graduates Association

Leader

2016-1 Electronic Engineering Lab:

https://goo.gl/oSQcfH

Dean of Electric

Engineering program.

When we asked potential stakeholders to take part in

the course process, in order to motivate them we offered

them the possibility of achieving a good base-line product

for the needs of their departments or programs. Table 3

presents the quantitative product evaluations given by the

respective stakeholder each semester, and the number of

projects that he/she considered to be good candidates—

because of their quality— for a baseline of a real product.

Although there are cases of final products with very low

grades in the earliest version of the course, it is worth

mentioning that the overall evaluations improved over

time. Likewise, it is noteworthy that two projects from

2016-1 and 2016-2 are now officially baselines projects

for the products defined for the electrical engineering

program and the graduate association, waiting for further

funding to continue their development (hopefully, with

the collaboration of the students).

Table 3. Final evaluation of the products by the Stakeholder

Semester Projects

count

Final grades Baseline

candidates

 2016-1 4 3.0, 3.8, 4, 2.9 50%

 2016-2 3 4.1, 4.4, 4.8 66%

 2017-1 4 3.5, 3.8, 4.3, 4.3 50%

Finally, Table 4 shows an average evaluation of two

key practices: test-driven development and continuous

integration, through the aforementioned metrics. These

results show an improvement of such practices adoption

over the time, which may be related to the continuous

evolution of course materials and study cases:

Table 4. Final evaluation of key practices

Semester TDD CI/CD Product

 2016-1 4.3 3.6 3.9

 2016-2 4.3 4.0 4.0

 2017-1 4.5 4.2 3.9

B. Students Survey

Of the 57 students, 34 agreed to take part in an

anonymous, online survey. According to the results, there

has been an excellent perception of the course, as can be

seen in Table 5.

24 Continuous Delivery Pipelines for Teaching Agile and Developing Software Engineering Skills

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 5, 17-26

Table 5. Global perception of the course.

Did you

enjoy the

course?

The

course

content,

on a scale

from 0 to

5, where 0

us Bad

and 5

Excellent.

On the other hand, most of the students recognized the

acquisition of new skills and the appropriation of key

principles and values, as shown in Table 6.

Table 6. Course outcomes perception.

Your Level of

appropriation

of Agile

Principles and

Values, after

the course is:

Do you

consider that

the

‘production

pipeline

approach’

(including

VC, CI/CD)

improved the

teamwork

when

compared

with your

previous

software-

related

projects?

Between the

first and the

third sprint,

your

estimation

accuracy:

Students also reflected on the benefits of the proposed

educational approach in their answers to open questions

asked.

Question(translated):

What is the most important knowledge or skill you

acquired in this course for your professional life?

 Answers (translated):

 “Working in big groups and getting used to appropriate

frameworks”

 “Everything. In this course everything is important. Mostly living a

Scrum Process, and patterns application”

 “The different methodologies that exist for a project development…

View a software product from a Client point of view”.

Additionally, according to the following responses,

although there are still specific teamwork problems,

students recognized the last third of the course as a

realistic and fruitful experience:

Question(translated):

In general, what advantages or disadvantages did you

find in dedicating most of the last third of the course to a

real SCRUM process?

Answers (translated):

 "It allows us to know what a real work environment is like."

 "Advantages: experiencing an agile software development method

(the assigned project). Disadvantages: the number of assigned story

points. Sometimes these didn’t correspond to the real required work."

 "Working in groups with members who did not devote time to the

project."

 "Advantage: ... the sprint reviews were pretty good because these

allowed us to take actions in our groups, evaluating what worked and

what needed to be improved."

 "Advantage: completing a real, high-level project, identifying the

concepts applied through the course."

 "When team members don’t work at the same speed it is sometimes

impossible to finish tasks successfully."

 "Disadvantages: selfish teammates. Advantages: a better

understanding of the concepts, given that when putting them in

practice, it is easier to ’digest’ them better."

VII. CONCLUSIONS AND FUTURE WORK

It is already well known that software engineering

students tend to pay more attention to technical elements

than to methodological ones. This study finds that the last

segment of the course dedicated to a realistic and more

focused process—after all technical elements have been

introduced—, could be more useful as they enable

students to experience, appreciate, and appropriate

software methodologies. The inclusion of real problems

and real stakeholders in the course process drastically

improves motivation and, therefore, the quality of the

process the final products. It is noteworthy that there has

been a high rate of well-scored (by teachers and real

stakeholders) software projects that were created by

students on early stages of their careers (in their sixth

semester of studies, on average). This study also shows a

new point of view of the concept of Continuous Delivery

Pipeline for educational purposes in software engineering

 Continuous Delivery Pipelines for Teaching Agile and Developing Software Engineering Skills 25

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 5, 17-26

education. In the presented study case, the frequent

feedback (regarding teamwork and product quality)

provided by such pipelines drastically improved the

identification of the methodological mistakes described,

including a reduction in team members procrastination,

and more frequent discussions –and reflections—between

the teacher and the students (team members), at early

stages of each sprint, when coding and design issues are

detected. Planned future work includes a deeper review

and integration of emerging platforms like ScrumLint [17]

and INGinious [18]. With the former, we hope to

automate the grading of agile practices and to use the

scores obtained as complementary feedback in our

continuous delivery pipeline. The expectation for the

latter is to improve the theoretical/technical foundation

phase described before by automating part of the

evaluation/feedback process for hands-on laboratories.

REFERENCES

[1] Orit Hazzan and Yael Dubinsky. Teaching a software

development methodology: the case of extreme

programming. In Software Engineering Education and

Training, 2003.(CSEE&T 2003). Proceedings. 16th

Conference on, pages 176–184. IEEE, 2003.

[2] Joe Bergin, James Caristi, Yael Dubinsky, Orit Hazzan,

and Laurie Williams. Teaching software development

methods: the case of extreme programming. In ACM

SIGCSE Bulletin, volume 36, pages 448–449. ACM, 2004.

[3] Görel Hedin, Lars Bendix, and Boris Magnusson.

Teaching extreme programming to large groups of

students. Journal of Systems and Software, 74(2):133–146,

2005.

[4] Jan-Philipp Steghöfer, Eric Knauss, Emil Alégroth, Imed

Hammouda, Håkan Burden, and Morgan Ericsson.

Teaching agile: addressing the conflict between project

delivery and application of agile methods. In Proceedings

of the 38th International Conference on Software

Engineering Companion, pages 303–312. ACM, 2016.

[5] Viljan Mahnic. A capstone course on agile software

development using scrum. IEEE Transactions on

Education, 55(1):99–106, 2012.

[6] Martin Kropp and Andreas Meier. Teaching agile

software development at university level: Values.

Management, and Craftsmanship, CSEE&T, 2013.

[7] Václav Rajlich. Teaching developer skills in the first

software engineering course. In 2013 35th International

Conference on Software Engineering (ICSE), pages 1109–

1116. IEEE, 2013.

[8] Christiane Gresse Von Wangenheim, Rafael Savi, and

Adriano Ferreti Borgatto. Scrumia an educational game

for teaching scrum in computing courses. Journal of

Systems and Software, 86(10):2675–2687, 2013.

[9] Adler Diniz De Souza, Rodrigo Duarte Seabra,

Juliano Marinho Ribeiro, and Lucas E da S Rodrigues.

Scrumi: a board serious virtual game for teaching the

scrum framework. In Proceedings of the 39th

International Conference on Software Engineering

Companion, pages 319–321. IEEE Press, 2017.

[10] Maria Paasivaara, Ville Heikkilä, Casper Lassenius, and

Towo Toivola. Teaching students scrum using lego blocks.

In Companion Proceedings of the 36th International

Conference on Software Engineering, pages 382–391.

ACM, 2014.

[11] Martin Kropp, Andreas Meier, and Robert Biddle.

Teaching agile collaboration skills in the classroom. In

Software Engineering Education and Training (CSEET),

2016 IEEE 29th International Conference on, pages 118–

127. IEEE, 2016.

[12] Christoph Matthies, Thomas Kowark, Matthias Uflacker,

and Hasso Plattner. Agile metrics for a university software

engineering course. In Frontiers in Education Conference

(FIE), 2016 IEEE, pages 1–5. IEEE, 2016.

[13] Miroslaw Ochodek. A scrum-centric framework for

organizing software engineering academic courses. In

Towards a Synergistic Combination of Research and

Practice in Software Engineering, pages 207–220.

Springer, 2018.

[14] Ivar Jacobson, Grady Booch, James Rumbaugh, James

Rumbaugh, and Grady Booch. The unified software

development process, volume 1. Addison-wesley Reading,

1999.

[15] Andrea A Janes and Giancarlo Succi. The dark side of

agile software development. In Proceedings of the ACM

international symposium on New ideas, new paradigms,

and reflections on programming and software, pages 215–

228. ACM, 2012.

[16] Jan-Philipp Steghöfer, Håkan Burden, Hiva Alahyari, and

Dominik Haneberg. No silver brick: Opportunities and

limitations of teaching scrum with lego workshops.

Journal of Systems and Software, 131:230–247, 2017.

[17] Christoph Matthies, Thomas Kowark, Keven Richly,

Matthias Uflacker, and Hasso Plattner. Scrumlint:

identifying violations of agile practices using

development artifacts. In Cooperative and Human Aspects

of Software Engineering (CHASE), 2016 IEEE/ACM,

pages 40–43. IEEE, 2016.

[18] Guillaume Derval, Anthony Gego, Pierre Reinbold,

Benjamin Frantzen, and Peter Van Roy. Automatic

grading of programming exercises in a mooc using the

inginious platform. European Stakeholder Summit on

experiences and best practices in and around MOOCs

(EMOOCS’15), pages 86–91, 2015.

Author’s Profile

Héctor F. Cadavid (MSc) is an Assistant

Professor in the Department of Computer

and Systems Engineering, Escuela

Colombiana de Ingeniería, Bogotá,

Colombia. Currently, he is the leader of the

Software Engineering Research Center in

his department and has been continuously

involved in interdisciplinary projects with

several research groups including GIMECI,

ECITRONICA, CTG-Informática, NASA – LFM (Langley

Formal Methods) and Unesco.

26 Continuous Delivery Pipelines for Teaching Agile and Developing Software Engineering Skills

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 5, 17-26

How to cite this paper: Héctor F. Cadavid, "Continuous Delivery Pipelines for Teaching Agile and Developing

Software Engineering Skills", International Journal of Modern Education and Computer Science(IJMECS), Vol.10,

No.5, pp. 17-26, 2018.DOI: 10.5815/ijmecs.2018.05.03

