
I.J. Modern Education and Computer Science, 2018, 3, 38-46
Published Online March 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2018.03.05

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 3, 38-46

Specific Queries Optimization Using Jaya

Approach

Sahil Saharan
Department of Computer Applications, National Institute of Technology, Kurukshetra, India

Email: sahil.saharan_1376@nitkkr.ac.in

J.S. Lather
Department of Electrical Engineering, National Institute of Technology, Kurukshetra, India

Email: jslather@nitkkr.ac.in

R. Radhakrishnan
Department of Computer Science and Engineering, ABES Ghaziabad (Uttar Pradesh), India

Email: ramaswamiradhakrishnan@gmail.com

Received: 24 November 2017; Accepted: 15 December 2017; Published: 08 March 2018

Abstract—The Fast query engine is a requirement as a

supporting tool for the semantic web technology

application such as Electronic Commerce environ. As the

large data is represented using the effective data

representation called RDF. The focus of this paper is to

optimize the specific type of the query called Cyclic

query and star query on main-memory RDF data model

using ARQ query engine of Jena. For the considered

problem, we ruminate a Jaya algorithm for rearrangement

of the order of triple pattern and also compare the results

with an already proposed approach in the literature. The

evaluation result shows that Jaya performs better in terms

of execution time in comparison to Ant Colony

Optimization.

Index Terms—Resource Description Framework (RDF),

Query Optimization, Jaya, SPARQL, Reordering triple

patterns, Semantic Web

I. INTRODUCTION

With the increasing popularity of Semantic Web [1],

overwhelmed data stored over the many heterogeneous,

yet interconnected resources which are generally

represented using RDF representation. RDF(Resource

Description Framework) [2] is a framework to describe

and interchange meta-data, which empower machine-

interpretable by providing contextual information of the

data i.e. meta-data of data. So this interconnected data

instead of pages, fulfill the complex information required

in an efficient manner than that of the current web. The

technologies of Semantic Web explore different RDF

sources to meet very specific need of information. To

execute queries W3C’s provides a protocol called

SPARQL [3, 4]. The fast query engine is vital

requirement for SPARQL queries to fetch the results of

the user query from the widely distributed RDF data in

real-time environments. Execute the query with lower

execution time requires optimization of triple patterns in

SPARQL query. An efficient optimization algorithm for

triple patterns can, therefore, contribute to efficient

execution time. A list of optimization techniques has been

proposed already as a solution to the current problem

such as 2-Phase Optimization (2PO) algorithm [5],

genetic algorithm (GA) [6], Ant Colony Optimization

(ACO) algorithm [7] etc.

The proposal of the current study has been encouraged

by the optimization of query paths in traditional databases.

For dynamic semantic web, which support the change in

the data time to time and needs a better optimization

strategy; Jaya [8] is an alternative to the current

approaches and have already been applied to the different

field like: constrained mechanical design optimization

problems [9], optimization of machining performance

characteristics during the turning of CFRP composites

[10], optimum power flow (OPF) problems [11],

optimization of traditional machining process named

surface grinding [12], dimensional optimization of a

micro-channel heat sink [13], optimization of combined

economic emission dispatch solution [14] etc.

The behavior of the proposed algorithm is such that it

works in a continuous manner and allows accommodating

to changes in the data in real time. Through this paper, we

are introducing Jaya applicability to the RDF query

optimization in specific query forms over a single data

source.

The rest of paper is organized as follows. Section 2

introduced a literature review. Section 3 introduces the

concepts for RDF and SPARQL queries. Additionally,

Jena API and the ARQ engine are also introduced. The

BGP construction from where clause predicates of

SPARQL queries are illustrated. Section 4 introduced

Jaya optimization algorithm. Section 5 describes the

problem. Section 6 describes the observations using

experimental study of the proposed algorithm and its

comparison in terms of execution time, fitness function

 Specific Queries Optimization Using Jaya Approach 39

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 3, 38-46

value and solution quality. Finally, in later sections the

discussion which is followed by a conclusion.

II. RELATED WORK

Regarding RDF databases context, literature study of

rearrangement of the order of triple patterns and other key

factors for optimization of join ordering in RDF

databases is discussed here.

Stuckenschmidt et al. [15] presented the first solution

for the reordering triple pattern (by optimizing the order

of path expression) using hybrid algorithm two-phase

optimization (2PO) (a combination iterative improvement

and simulated annealing) over RDF Cyclic query by

extending the Sesame system [16]. They considered the

issue of integrated access to distributed RDF repositories

from a practical point and provide flexibility, freshness,

and independence of data as advantages over the

centralized approach. Shironoshita et al. [17] introduce an

algorithm for cardinality estimation of queries over

ontology models of data. The introduced algorithm is an

important section for building an efficient query engine

for distributed and heterogeneous data sources.

Maduko et al. [18] presented a framework using

pattern-based summarization to estimate cardinality. The

strategy proposed follows 1) pattern and their sub-pattern

can have almost equal frequencies and 2) previous

knowledge of pattern’s importance. For results

calculation, they use Dynamic programming with two

greedy solutions over real world and synthetic datasets.

Stocker et al. [19] presented a static optimization

approach using reordering triple patterns of the BGP. For

joined triple patterns, they presented a set of heuristics for

the selectivity estimation and summary statistics of RDF

data. Ruckhaus et al. [20] presented a hybrid cost model

and dynamic programming based optimization approach

for queries optimization and named it as deductive

ontology base (DOB). Additionally, they used an

adaptive sampling technique to estimate the cardinality of

intermediate inferred facts.

Next, Hogenboom et al. [6] introduced a GA based

optimization approach and experimental results over

datasets presented the effectiveness of proposed approach

over 2PO in case of large Chain queries and for small

queries having 10 predicates, 2PO presents better results.

Neumann and Weikum [21] presented an RDF-3X engine

and dynamic programming for optimal plan generation

and selectivity histograms to estimate the cost of joins

between triple patterns. To meet the scalability when

querying a large number of triple patterns, Neumann and

Weikum [22] introduced a very light-weight strategy for

sideways information passing between separate joins and

used aggregated statistics to accurately estimate the

selectivity of join-ordering. Kaoudi et al. [23] studied the

query optimization problem on top of distributed hash

tables and using three greedy algorithms. These 3

algorithms are used to optimize the intermediate relations

generated using the selectivity-based heuristics named:

naive static algorithm, semi–naive static algorithm ,and

dynamic algorithm. Neumann and Moerkotte [24]

proposed new accurate cardinality estimation for RDF

databases based on characteristic sets. They show

experimentally that new method is superior to the

estimation methods of commercial DBMSs and RDF-

3X[21].

For multi-join ordering problem, Ouyang et al. [25]

introduce a strategy using a genetic algorithm (GA) to

optimize the execution plan and for generating the best

plan, they use a bushy tree. Hogenboom et al. [7]

introduce a new solution to the current problem of query

optimization using ACO algorithm over Chain query and

shows best results when compared with [21] and 2PO

[15]. The heuristic used by this experiment is introduced

by [14]. In these solutions for query optimization,

Gomathi et al.[26] also contributes to an efficient

algorithm named adaptive Cuckoo search (ACS) to an

optimal query plan for large RDF data. Next, Kalayci et

al. [27] proposed a new optimization strategy using Ant

Colony Optimization (ACO) algorithm for reordering

triple patterns and they used statistics for selectivity

estimation proposed by [19] with some modification.

Meimaris and Papastefanatos [35] present a new

approach of join reordering that converts a query into a

multidimensional vector space and performs distance-

based optimisation.

They compared the results with existing approaches

and proved that the proposed approach is better than

existing.

The prior work studies suggest that there is still need

for better heuristic and so we are investigating a new

algorithm called: Jaya. The efficiency of the proposed

approach can be seen through the experimental results.

III. RDF AND SPARQL

RDF is data model which has a flexibility of schema-

free. RDF develops major momentum in different areas

like knowledge-management communities by collecting

facts about entities and their relations using RDF

representation. RDF data can be shown by entity-

relationship graph and each triple of RDF can be

represented as a node-arc-node link [28].

SPARQL query depends on matching of graph patterns

with triple patterns of the query and SPARQL queries

generally made of triple patterns known as BGPs (Basic

Graph Patterns) [4]. The structure of triple pattern is such

that it contains <s, p, o>, that could be concrete or

variable [19].

Jena[29] is a framework for Semantic Web

applications that is capable to store and manipulate in-

memory RDF data. ARQ [30] as query engine used in

Jena for querying RDF data. We are using ARQ in the

proposed approach.

The study traditional database joins ordering operation

of SQL queries enforces to study the rearrangement of the

order of triple pattern of SPARQL query and this type of

approach also make a greater impact on the execution

time of the query.

We are given an example of Cyclic query to make

clarity and importance about arrangement of order of

40 Specific Queries Optimization Using Jaya Approach

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 3, 38-46

BGP (i.e. where clause of the SPARQL query containing

the different pattern of triples) in Table 1 and we have

taken this Cyclic query with six triple patterns from the

LUBM [31] dataset provided by the Lehigh University.

We have assigned sequence number from 0 to 5 to each

triple pattern.

In the query example, we provide a numbering from 0

to 5 to each triple pattern. For the given order [0, 1, 2, 3,

4, 5] in Table 1, Jaya algorithm execute this 6 cyclic

query with an execution time of 231714ms, whereas the

execution time for [3, 1, 2, 0, 4, 5] order of listing 2 is

71128ms and for the order [0, 5, 2, 3, 4, 1] of listing 3,

the execution time was 65ms. Here, [0, 5, 2, 3, 4, 1] is the

optimal order that have optimal execution time.

Table 1. BGP of an example Cyclic query[31]

0 ?X rdf:type ub:GraduateStudent.

1 ?Y rdf:type ub:University.

2 ?Z rdf:type ub:Department.

3 ?X ub:memberOf ?Z.

4 ?Z ub:subOrganizationOf ?Y.

5 ?X ub:undergraduateDegreeFrom ?Y.

Through the example given above, we observed that

the simple query of SPARQL in ARQ provides longer

execution, [34] suggested a solution: adding more

selective part of the query first, makes an impact on the

execution time of the query.

IV. OPTIMIZATION ALGORITHM: JAYA

The first phase of the introduced strategy consider

three major parts; first is to evaluate the number of

concrete and variable element matching, second is to

estimate the join values using selectivity based on

estimated cardinality and third is to the construction of

cost matrix using these estimated join values and

estimated cardinality values. During the second phase of

the proposed strategy, apply the Jaya algorithm over the

constructed cost matrix for the rearrangement of the order

of triple patterns.

Jaya [8] algorithm procedure is such that: using the

upper and lower bound of the process variables, initially

generate the random solution. Then, update the variable

of every solution by Equation (1). The best candidate

indicates the best value of the objective function from the

whole candidate solutions and worst candidate indicate

the worst value of the objective function from the whole

candidate solutions. If i, j,kS indicate the value of the j-th

variable for the k-th candidate at i-th iteration. The

equation is:

i+1, j,k i, j,k

i, j,1 i, j,best i, j,k i, j,2 i, j,worst i, j,k

S = S +

r (S - abs(S)) - r (S - abs(S))
 (1)

i, j,1r and i , j,2r represents random number chosen from the

range [0,1] for the jth variable at the ith iteration. If the

modified value is better function value than the previous

value then use the modified value otherwise avoid it. The

equation (1) has an expression i, j,1 i, j,best i, j,kr (S abs(S))

which helps to move the solution to the best solution and

i, j,2 i, j,worst i, j,kr (S abs(S)) helps in avoiding the worst

solution. Random number and absolute of the variable

ensures good exploration.

Algorithm: Jaya algorithm[8]

Initialize the population size, number of variable and

stoping criteria

Until stoping criteria met

 Evaluate the fitness for each population

 Evaluate best and worst solution in the population

 Update the solution using:

j,k,i j,k,i 1, j,i j,best,i j,k,i 2, j,i j,worst ,i j,k,iY' Y rand (Y Y) rand (Y Y)

 Update the solution

 No update in the solution

Repeat
Report optimum result

Discrete conversion of Jaya

The originally given for the continuous problem, but

for our use we have to use a discrete version of the

algorithm so that we can use Jaya algorithm in the query

optimization problem of query optimization. So, to

convert it in to a discrete problem, we convert the

equation into such a way:

j,k,i j,k,i j,best,i j,k,i j,worst,i j,k,iY' Y (Y Y) (Y Y) (2)

Operator is the crossover operator we used here the

PMX crossover [33] operator and finally to eliminate the

duplicate value of the final result, we use here the

mutation operation which will generate the final result.

The intermediate result will use mutation

j,best,i j,k,iY (Y Y) and the mutation operation is the

swapping of the one randomly generated triple pattern of

the BGP with the current generated triple pattern if the

random generated value is less than the mutation

probability.

Algorithm: DJaya algorithm

Initialize the population size, number of variable and

stoping criteria

Until stoping criteria met

 Evaluate the fitness for each population

 Evaluate best and worst solution in the population

 Update the solution using:
 j,k,i j,k,i j,best,i j,k,i j,worst,i j,k,iY' Y (Y Y) (Y Y)

 j,best,i j,k,iY (Y Y) % mutation in above

 intermediate result

 Update the solution

 No update in the solution

Repeat

Report optimum result

 Specific Queries Optimization Using Jaya Approach 41

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 3, 38-46

V. PROBLEM DESCRIPTION

We are considering the problem of optimization of the

triple patterns of SPARQL queries using rearrangement

of the order of these triple patterns. For rearrangement,

we are considering Jaya algorithm.

1. Used Cost Model

From the different triple patterns of BGP, we

constructed a complete digraph [27] of the given Ɓ where

nodes of digraph which represent the triple patterns. And

the arc between nodes is resulted as a join between two

triple patterns whenever join occur between two triple

patterns otherwise it is resulted as a Cartesian product

between triple patterns and resulted as 1(which is the

upper limit of selectivity(range from 0 to1)). The arc is

computed using addition of selectivity of most selective

triple pattern 1st pattern and join estimation of two

patterns whenever some join occur between two triple

patterns. The digraph construction is important due to the

fact that selectivity of one triple pattern is different than

that of other. Rearrangement of order of triple pattern

doesn’t affect join between two triple patterns.

For the calculation of values of arc values, firstly

consider the two triple patterns. The different triple

patterns have different number of bound and unbound

elements. According to these triple patterns, calculate

bound and unbound elements of each triple patterns and

based on these bound and unbound elements, calculate

the different joins between these triple patterns. Each

bound and unbound component have its matching triple

patterns and different bound and unbound elements join

value depends on the cardinality and the estimated

selectivity values. To evaluate these values the steps to be

followed are:

1. Evaluate the number of concrete and variable

element matching.

2. Evaluate the estimated selectivity.

Next, the explanation of the above two steps are as

follow:

1. Evaluate the number of concrete and variable

element matching.

To evaluate the number of concrete and variable

element matching. To make it understandable we are

using an example:

?GraduateStudent rdf:type ub:GraduateStudent

Above triple pattern has two concrete elements rdf:type

ub:GraduateStudent and one variable and due to these

two concrete elements the use the procedure [27] and

evaluate cardinality for each concrete element using

GSH[32]. In other words, we can say that find the

number of triple pattern of each concrete element at the

different position(s, p, and o) of the triple pattern using

GSH and preserve the smallest number of triple pattern as

the new cardinality. And finally, use the lowest value as

the resulted cardinality. Note that, GSH only provide

cardinality for one concrete element. For understanding,

use the following example:

? GraduateStudent ub:memberOf ?Depatment

The example shows that at only predicate position one

concrete element is present, so for this only cardinality

can be provided by GSH.

2. Evaluate the estimated selectivity and join[27].

To evaluate the join between the concrete and the

variable elements of the given two triple patterns

different steps are used:

Step1: Use the two intermediate triple patterns of the

given query.

Step 2: Now find the different that match between the

two intermediate triple patterns.

Step 3: Now find the ranks of each matching and add

them. Different ranks are a modified version of [19].

Steps 4: Assign the cost as 32 [19] and then subtract

the different added rank value. And factor using resulted

cost value/original cost.

Step 5: Finally, calculate the join value between two

intermediate triple patterns. (Fig 1)

3. Jaya based Query Optimization problem

We have SPARQL query with different triple patterns,

we have to generate an execution plan that provides

smaller execution time through rearrangement of the

order of triple patterns. The solution is to construct the

complete digraph according to BGP of given SPARQL

query. Then use Jaya algorithm for rearrangement of the

order of triple patterns.

Start

Given a query with

BGP and initialize the cost

with the size of given

repositories

Extract triple patterns from

the given BGP

Find cardinality for one or

more concrete element.

If there is join

between two triple

pattern

Find cardinality for one or

more concrete element

True False

42 Specific Queries Optimization Using Jaya Approach

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 3, 38-46

Fig.1. Flow Chart for the evaluation of join

VI. EXPERIMENTAL RESULTS

1. Setup, Dataset detail and Used Queries

The experimental results were taken over the machine

with 32-bit Oracle JDK virtual machine running on

Intel(R) Core(TM) i7 -3770M CPU @ 3.40 GHz, 32-bit

with 4 GB RAM and Window 10 OS.

We are using 162923 triples RDF dataset which was

taken from LUBM. LUBM provides OWL ontology for

university domain. We are considering only Cyclic and

star queries for our experiment with several triple patterns

i.e. 4, 6, 8 and 10 which are constructed from LUBM.

The selection of these triple patterns is due to the fact that

if the number of the triple patterns are small then

sometimes they will address no optimization at all, that’s

why we considered the large triple patterns.

According to our choice for this experiment, we use

synthetically constructed queries [27] over LUBM having

4, 6, 8 and 10 triple patterns with Cyclic and star as shape.

Queries are not bound to Cyclic and star shapes, and

diverse types of the queries with different triple

patterns and complex graph queries are planned.

Here, just one query of every different type has been

taken into account to comparative evaluation of the

proposed method. The selected queries i.e. Cyclic, Star as

are sufficient enough to benchmark the results.

Jaya algorithm is independent of the algorithm-specific

parameters and only uses some common parameters like

population size and a number of generations. For the test

purpose, we apply a series of 10 test over the single query

of every different type and different algorithm.

2. Used Abbreviations and their Detail

1. EWO i.e. Executions Without optimization.

2. AS-MM i.e. Ant System using Modified Method.

3. EAS-MM i.e. Elitist Ant System using Modified

Method.

4. MMAS-MM i.e. MAX–MIN Ant System

algorithm using Modified Method.

5. Jaya-MM i.e. Jaya using Modified Method.

Here, Modified Method is name given to MVC[27]

because it is a modified method. For Jaya algorithm, we

are using different calibration like starting node as

random with population size and iteration size as 100 and

100 respectively. For the result evaluation, consider the

execution time of the query as a sum of the time taken by

optimization, execution and population time (time for the

iteration of the result set in millisecond) for all the

algorithms except EWO.

For the comparison, we have taken different algorithms:

(1) EWO (2) ACO different versions (AS, EAS, MMAS)

[27] (3) Our proposed approach.

3. The results are compared on the basis of:

1. Triple patterns 4, 6, 8, 10 for Cyclic Type Query.

2. Triple patterns 4, 6, 8, 10 for Star Type Query.

1). Cyclic queries

Table 2 shows results of Cyclic queries consist of

various triple patterns wherein query execution time is

considered in milliseconds. Table results show that Jaya-

 Find rank of each

join and evaluate new

rank by rank +

possible join rank

No join means it is a

Cartesian product

For Cartesian product, the

join value is 1

Possible join

b/w

triples?

Assign cost as 32

and find new cost by

subtracting new

ranks and find a

factor by new

cost/cost.

Evaluate join value

between two triples

using multiplication

of factor with

selectivity of two

triple patterns

Evaluate final cost between two patterns

using

addition of selectivity of first triple

pattern and join value

End

Find selectivity using

evaluated cardinality/size of

repository

Find selectivity using

evaluated cardinality/size of

repository

 Specific Queries Optimization Using Jaya Approach 43

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 3, 38-46

MM produces best results in case of 4 triple patterns.

Additionally, EAS-MM, MMAS-MM, AS-MM

represents nearby result to the Jaya-MM and EWO

provides worst results. In case of six triple patterns, Jaya-

MM shows best results and are better than ACO

variations (MMAS-MM, AS-MM, EAS-MM) and EWO.

In 8 triple patterns, proposed Jaya algorithm gives the

best results over others. The result provided by EWO is

again worst. Also, for 10 triple patterns, Jaya-MM

providing the best execution time and in addition,

MMAS-MM, AS-MM, EAS-MM is better than EWO. On

average, we find that proposed algorithm provides better

results than that of ACO versions.

In the comparison, we have compared the different

versions of ACO. MMAS-MM is an algorithm that has

proved its applicability to different applications and is

shown that MMAS-MM is better than other two AS-MM

and EAS-MM. But for the Cyclic query with 4, 6 and 8

and 10 triple patterns, MMAS-MM does not show a

better result than AS-MM and EAS-MM.

Fig 2 represents the pictorial representation of the

results listed in Table 2, where the x-axis represents

different triple patterns of Cyclic queries and the y-axis

represents query execution time.

Fitness value is the value when we apply an algorithm

to the digraph which is result of the sub-section 1 of the

Section V. Applied algorithms produce values according

to the dimension of SPARQL query triple patterns.

Fig 3 provides the fitness value for all different triple

patterns of Cyclic queries here x-axis represents different

algorithm and y-axis represent fitness value.

Table 2. Execution time for cyclic query with different triple patterns

Four

Cyclic

Six

Cyclic

Eight

Cyclic

Ten

Cyclic

 EWO

125

236486

42444

149032

AS-

MM

43

75

450

5341

 EAS-

 MM

40

81

456

5066

 MMAS-

 MM

 46

 84

 459

 5305

Jaya-

MM

39

 65

425

3865

Fig.2. Execution times for the Cyclic queries different triple patterns

2). Star Queries

Table 3 presents the results of the star type queries

with the different triple pattern where for the 4 triple

patterns Jaya-MM shows the best results and is better

when compare with ACO versions (AS-MM, EAS-MM,

Fig.3. Fitness value Vs Algorithm on different triple patterns Cyclic

Queries

44 Specific Queries Optimization Using Jaya Approach

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 3, 38-46

MMAS-MM) and EWO. In case of 6 triple patterns, Jaya-

MM provides the best result. Results of Jaya-MM is

better when compare with ACO different versions and

EWO. For 8 triple patterns, Jaya-MM gives good

execution time over ACO versions and EWO. For 10

triple patterns, Jaya-MM presents the best result and

Jaya-MM result is better than all three versions of ACO.

For this case, EWO result is better than the result of

MMAS-MM.

Here also, we have compared the different versions of

ACO. For the star query with 4, 6, 8 and 10 triple patterns,

MMAS-MM doesn’t show the better result than AS-MM

and EAS-MM. This reason for this is the extra

computational load of MMAS-MM and inapplicability of

MMAS-MM to a particular problem.

Fig 4 represents the graph of table 3 where the x-axis

represents the different triple patterns of Star queries and

the y-axis represents the execution time of the queries.

Fig 5 provides the fitness value for all different triple

patterns of star queries, here x-axis represents different

algorithm and y-axis represent fitness value

Table 3. Execution time for Star query with different triple patterns

Four

Star

Six

Star

Eight

Star

Ten

Star

EWO

606

159

522

259

 AS-

 MM

450

121

281

240

EAS-

 MM

410

125

284

247

 MMAS-

 MM

456

131

300

284

 Jaya-

 MM

408

103

250

168

Fig.4. Execution times for the Star queries different triple patterns

Fig.5. Fitness value Vs Algorithm on different triple patterns Star

Queries

VII. DISCUSSION AND CONCLUSION

The results show execution time and Jaya-MM

provides best execution time in comparison to ACO all

versions. Also, Jaya performs better for all the queries

when compare to EWO results.

In this paper, the on-disk graph implementation of

BGP has not been considered since our work focuses on

static optimization of BGP using main memory using

Jena ARQ engine.

This paper proves the success of the proposed

approach by means of execution time in comparison to

the ACO different versions in semantic web SPARQL

query optimization over different queries forms with

several triple patterns using ARQ query engine.

Through this paper, we are discussed the query

optimization using rearrangement of the order of triple

pattern over the main memory RDF data model. The

scope of the paper can be extended to other frameworks

and query engines over different queries forms with

different triple patterns. Additionally, other heuristic

approaches for query optimization can be applied to the

presented approach in future. Exploring better estimation

techniques for the proposed approach is also another

important future work.

REFERENCES

[1] T. Berners-Lee, J. Hendler, O. Lassila, “The semantic

web”, Sci. Am. vol 284, no.5, pp: 34–43, 2001.

[2] Frank Manola and Eric Miller, “RDF primer”, 2004.

[3] S. Harris, A. Seaborne, “SPARQL1.1querylanguage” –

W3C working draft 05 January 2012.

[4] G.H.L. Fletcher, “An algebra for basic graph patterns”, in:

Proceedings of the Workshop on Logic in Databases,

2008.

 Specific Queries Optimization Using Jaya Approach 45

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 3, 38-46

[5] H. Stuckenschmidt, R. Vdovjak, J. Broekstra, G. Houben,

“Towards distributed processing of RDF path queries”, Int.

J. Web Eng. Technol. vol.2, no.2/3, pp.207–230, 2005.

[6] A. Hogenboom, V. Milea, F. Frasincar, U. Kaymak,

“RCQ-GA: RDF Chain query optimization using genetic

algorithms”, in: Proceedings of the 10th International

Conference on EC-Web, 2, pp:181–192, 2009.

[7] A. Hogenboom, F. Frasincar, U. Kaymak, “Ant colony

optimization for RDF Chain queries for decision support”,

Expert Syst. Appl. Vol.40, no.5, 2013.

[8] R. Rao, “Jaya: A simple and new optimization algorithm

for solving constrained and unconstrained optimization

problems”. International Journal of Industrial Engineering

Computations, vol. 7,no.1,pp:19-34, 2016.

[9] R.V. Rao, G.G. Waghmare. “A new optimization

algorithm for solving complex constrained design

optimization problems”. Engineering Optimization.vol.49,

no.1,pp:60-83, 2017.

[10] Abhishek K, Kumar VR, Datta S, Mahapatra SS.

“Application of JAYA algorithm for the optimization of

machining performance characteristics during the turning

of CFRP (epoxy) composites: comparison with TLBO,

GA, and ICA”. Engineering with Computers. pp.1-9, 2016.

[11] Warid W, Hizam H, Mariun N, Abdul-Wahab NI.

“Optimal Power Flow Using the Jaya Algorithm”.

Energies.vol.9, no.9,pp:678, 2016.

[12] Rao RV, Rai DP, Balic J. “Surface Grinding Process

Optimization Using Jaya Algorithm”. InComputational

Intelligence in Data Mining—vol.2 pp:487-495, 2016.

[13] Rao RV, More KC, Taler J, Oclon P. Dimensional

optimization of a micro-channel heat sink using Jaya

algorithm”. Applied Thermal Engineering.vol.103,

pp:572-82, 2016.

[14] Phulambrikar S. “Solving Combined Economic Emission

Dispatch Solution Using Jaya Optimization Algorithm

Approach”.2016

[15] H. Stuckenschmidt, R. Vdovjak, J. Broekstra, G. Houben,

“Towards distributed processing of RDF path queries”, Int.

J. Web Eng. Technol.vol.2 no.2/3 pp.207–230, 2005.

[16] J. Broekstra, A. Kampman, F. Van Harmelen, “Sesame: A

generic architecture for storing and querying rdf and rdf

schema”, in: International semantic web conference,

Springer Berlin Heidelberg, pp. 54-68,2002.

[17] E.P. Shironoshita, M.T. Ryan, M.R. Kabuka, “Cardinality

estimation for the optimization of queries on ontologies,

SIGMOD Rec.vol.36,no.2, pp:13–18, 2007.

[18] A. Maduko, K. Anyanwu, A. Sheth, P. Schliekelman,

“Estimating the cardinality of RDF graph patterns”, in:

Proceedings of the 16th International Conference on

World Wide Web, ACM, Banff, AB, Canada, pp.1233–

1234, 2007.

[19] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, D.

Reynolds, “SPARQL basic graph pattern optimization

using selectivity estimation”, in: Proceedings of the 17th

International Conference on WWW, ACM, Beijing, China,

pp:595–604, 2008.

[20] E. Ruckhaus, E. Ruiz, M. Vidal, “Query evaluation and

optimization in the semantic web”, Theory Pract. Log.

Program. vol.8, no.3, pp:393–409, 2008.

[21] T. Neumann, G. Weikum, “RDF-3X: a RISC- style engine

for RDF”, Proc. VLDB Endow, Vol.1,No.1, pp.647–659,

2008.

[22] T. Neumann, G. Weikum, “Scalable join processing on

very large RDF graphs”, in: Proceedings of the ACM

SIGMOD International Conference on Management of

Data, SIGMOD'09, ACM, New York, NY, USA, pp:627–

640, 2009.

[23] Z. Kaoudi, K. Kyzirakos, M. Koubarakis, “SPARQL

query optimization on top of DHTs”, in: Proceedings of

the 9th International Conference on the Semantic Web –

vol. partI, ISWC'10, Springer-Verlag, Berlin, Heidelberg,

pp:418–435, 2010.

[24] T. Neumann and G. Moerkotte, “Characteristic sets:

Accurate cardinality estimation for RDF queries with

multiple joins”, in: ICDE, Hannover, Germany, pp:984-

994, 2011.

[25] D. Ouyang, X. Wang, Y. Ye, and X. Cui, “A GA-based

SPARQL BGP reordering optimization method”,

Advances in Information Sciences and Service Sciences,

vol.4, no.9, pp:139–147, 2012.

[26] R. Gomathi, D. Sharmila, “A novel adaptive cuckoo

search for optimal query plan generation”, The Scientific

World Journal, 2014.

[27] E. Guzel Kalayci, T.E. Kalaycı, D. Birant, “An ant colony

optimization approach for optimising SPARQL queries by

reordering triple patterns”, Information Systems, vol.50

pp:51–68, 2015.

[28] J.J. Carroll, G. Klyne, “Resource description framework

(RDF): Concepts and abstract syntax”– W3C

recommendation, 2004.

[29] http://jena.apache.org.

[30] http://jena.apache.org/documentation/query.

[31] http://swat.cse.lehigh.edu/projects/lubm/

[32] com.hp.hpl.jena.graph.GraphStatisticsHandler

[33] S. N. Sivanandam, S.N. Deepa , “Introduction to Genetic

Algorithm”, ISBN 978-3-540-73189-4 Springer Berlin

Heidelberg New York, Springer ñ Verlag Berlin

Heidelberg 2008.

[34] O. Hartig, R. Heese, “The SPARQL query graph model

for query optimization”, in: Proceedings of the forthth

European Conference on the Semantic Web: Research and

Applications, ESWC'07, pp:564–578, 2007.

[35] Meimaris M, Papastefanatos G. Distance-Based Triple

Reordering for SPARQL Query Optimization. in:

Proceedings of the 33rd International Conference on Data

Engineering (ICDE), IEEE, 2017, pp. 1559-1562.

Authors’ Profiles

Sahil Saharan has done her MCA

degree from NIT Kuruksherta and is

pursuing Ph.D from the Department of

Computer Applications, NIT,

Kurukshetra. Her research interest is

focused on Semantic Web, Query

Optimization, Database and Data

Analytics, Soft- Computing.

Dr. J.S. Lather has received B.E, M.

Tech and Ph.D. from REC Kurukshetra.

He has more than 23 year experience and

presently working as Professor in

Electrical Engineering Department, NIT

Kurukshetra. His area of interest

Wireless Communication, Robust

Control of Time Delay Systems,

Networked Control Systems, Consensus in WSN, Coop Control

in Multi Agent Sys, Control of FACTs incorporating renewable

energy. He has published more than 50 papers in various

International National conferences and Journals.

http://jena.apache.org/
http://jena.apache.org/documentation/query
http://swat.cse.lehigh.edu/projects/lubm/

46 Specific Queries Optimization Using Jaya Approach

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 3, 38-46

Dr. R. Radhakrishnana has received

B.E. and M.E. from NIT Trichy and Ph.D.

from Jamia Milia Islamia in Handover

Management in MIPv6. He has more

than 17 years Industry and more than 10

years academic experience. His area of

interest is Mobile and Wireless

Communication. He has published more

than 22 papers in various International National conferences and

Journal.

How to cite this paper: Sahil Saharan, J.S. Lather, R. Radhakrishnan, " Specific Queries Optimization Using Jaya

Approach", International Journal of Modern Education and Computer Science(IJMECS), Vol.10, No.3, pp. 38-46,

2018.DOI: 10.5815/ijmecs.2018.03.05

