
I.J. Modern Education and Computer Science, 2018, 2, 1-15
Published Online February 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2018.02.01

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 2, 1-15

MLRTS: Multi-Level Real-Time Scheduling

Algorithm for Load Balancing in Fog Computing

Environment

Mohamed A. Elsharkawey
1

Email: melshrkawey1964@yahoo.com

Hosam E. Refaat
2

1, 2 Suez Canal University, Faculty of Computers & Informatics, Information System

Department Ismailia 41522, Egypt

Email: hosam.refaat@ci.suez.edu.eg

Received: 09 October 2017; Accepted: 29 November 2017; Published: 08 February 2018

Abstract—Cloud computing is an innovative technology

which is based on the internet to preserve large

applications. It is warehoused as a shared data over one

platform. In addition, it offers better services to clients

who belong to different organizations. In spite of the

maximum utilization of computational resources provided

by the cloud computing with lower cost, it suffers from

specific restrictions. These restrictions are encountered

through the load balancing of data in the cloud data

centers. These restrictions are represented in the less

bandwidth utilization, resource limitations, fault tolerance

and security etc. In order to overcome these limitations,

new computing model called Fog Computing is presented.

It aims to offer the required service of the sensitive data

to end users without delaying. The function of the fog

computing is similar to the cloud computing with two

preferred advantages. The first one is that it is placed

more near to the end users to introduce its service in less

time. Secondly, it is more valuable for streaming the real

time applications, sensor networks, IOT which need high

speed and reliable internet connection.

In this paper, a novel load balancing algorithm has

been proposed over a novel architectural model in the

Fog Computing environment. The proposed model aims

to serve the real-time tasks within their deadline. In

addition, it serves the different soft tasks without starving.

The soft tasks are classified according to the execution

time and the priority levels. In addition, they are served

according to their waiting time and priority-level.

Furthermore, the proposed algorithm is employed to

maximize the throughput, the resources and the network

utilization and preserving the data consistency with less

complexity to accomplish the end users demand.

Index Terms—Cloud system, Fog computing, resource

allocation, Real-Time Systems.

I. INTRODUCTION

Cloud computing is introduced as a recent technology,

which is utterly reliant on the internet. The architecture of

the cloud computing is based on a central server that

maintain a huge amount of sharing database, different

resources and a large number of commercial applications.

On the other hand, an enormous number of remote clients

that belongs to different organizations can benefit from

the different services provided by the central server as

shown in Figure 1. Each remote client has its own,

operating system and web browser that work

independently on the contents of the cloud server [1, 2].

The connection of the client to the internet is the only

requirement from the client to utilize the cloud server

abilities. So, the IT industry and any small organization

can acquire these services from the cloud center without

spending huge amount of money in hardware or software.

Fig.1. Cloud Computing Features

2 MLRTS: Multi-Level Real-Time Scheduling Algorithm for Load Balancing in Fog Computing Environment

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 2, 1-15

Actually, the implementation of the cloud presents

several related concepts. These concepts deal with

virtualization, resource allocation, computing distribution,

utilization of bandwidth, load balancing, fault tolerance,

high availability and dynamic scalability for different

categories of data and applications. The management of

the operations related to all these concepts is performed

by the cloud service provider.

Virtualization is the one of the major challenging in the

cloud computing to accomplish the optimum utilization

of the cloud resources. The virtualization is implemented

by allocating numerous virtual machines (VMs) on the

individual physical server known as host server. However,

each virtual server works as a physical server which

multiplies the capacity of any single physical machine.

Each virtual machine has its own applications and its own

resources. The running processes are distributed on the

Virtual machines in parallel manner. Therefore, the

execution of each process is accomplished in less time

through the magic of virtualization [3].

The cloud providers assign the resources to the end

users as a service depending on the dissimilarity of the

service models and also based on the user requirements.

The service models may include Software as a service

known as SAAS, Platform as a service known as PAAS,

Infrastructure as a service known as IAAS. These

services are slanted on each other and in a pool way.

Generally, the implementations of the different

processes on the cloud present several benefits to the end

users. At First, the data becomes shared over one

platform, so better services are delivered to each client.

Secondly, the end user can get his on-demand services or

resources usage in a secure, reliable and flexible manner

according to his need only.

Despite of these benefits that can be offered by cloud

computing to massive applications, it suffers from a set of

certain restrictions [4]. The first restriction occurs when

the numbers of the end users are increased. In this case,

the demands are enlarged to get more services than the

cloud capacities. This increases leads to the high latency

of the accessible services unless the available resources

and the available bandwidth are upraised to acquire all

the extra requests. The second limitation occurs when the

data produced by the cloud service is transferred through

a long distance from the cloud center to the end users.

The far distance may affect the data security and

maximize the probability of losing. Furthermore, an

irregular excess in the workload may cause the need to

validate a novel load balancing technique. The load

balancing is the fair allocation of the work load among

multiple computing resources such as networking, hard

drives and computers [5]. So, it will be required to

accomplish the development in the employment of the

computation resources and storage devices.

In order to overcome these restrictions, a new

technology of highly virtualized computing model has

been presented known as Fog computing. The model [6]

is proposed by CISCO to be held as cloud edge of an

enterprise network. The occupation of the fog computing

is not a replacement of the cloud computing. Actually, it

works as a supportive environment that has the ability to

provide high QoS to the different client requests of the

near distances. So, the whole fog-cloud environment

consists of a set of fogs computing servers and a set of

the clouds computing centers as shown in Figure 2.

Fig.2. Fog Computing Features

Generally, the operations of the fog computing is

similar to the cloud computing with two main differences.

The first difference is related to the location of the fog

computing that is placed very close to the end users.

Hence, the fog computing can be imagined as a local

cloud. The second difference deals with the resources

abilities of the fogs that have fewer abilities compared to

the abilities of the cloud resources. However, each fog

computing include its own server that is supported by its

own resources. In addition, each fog server is occupied by

the necessary software or firmware to establish the

required VMS such as the hypervisor.

From the point of the interaction view, the location of

the fog computing seems as an intermediate layer

between the end users and the cloud computing data

centers presented within the internet. Actually, the fog

computing presents massive features for storage devices,

computation resources and networking. Therefore, the

fog computing is more appropriate for the applications

that may need real time service, low latency and the

geographical distribution support. So, the fog computing

offers great aids in numerous areas of business process

optimization, agriculture, deep sea survey, health

manufacturing, merchandise prices, real time intelligence,

smart orders, weather forecasting and many other areas.

Consequently, the fog computing has to be able to deal

with the devices that are operable at a very rapid rate such

as Internet of things (IOTs) [7]. IOTs are basically a

network of wireless things including ordinary devices

from medical devices to home machines.

The emerging of the fog computing presents a novel

prearrangement in the on-demand service provided to the

end users. When the fog computing is implemented the

on-demand services may provide by one of three methods.

At First, the services may be offered by the closest fog

computing. Secondly, they may be offered by one of the

neighboring fogs computing closest to the demanded fog

 MLRTS: Multi-Level Real-Time Scheduling Algorithm for Load Balancing in Fog Computing Environment 3

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 2, 1-15

within a specified region. Finally, they may be offered by

the cloud computing communicated to this specified

region. The election of which service provider will be

used to perform the requested task is based on three

aspects. The first one is the type of service required to be

served that is either a service of real time or service of

non-real time. The Second one is the amount of the

waited time for current work load that is needed for the

services in the intended fog and its neighboring ones

within a specified region and the related cloud. The third

aspect deals with the used strategy of the work load

distribution to accomplish the required load balance.

In general, the Load balancing appears to play a vital

role for scheduling the different types of the users’ tasks.

Load balancing can be classified [8] into different

fundamentals such as the applied state that maybe static

or dynamic, the load balancer type which is hardware or

software and the policies rules such as resource,

information, selection, location and transfer. In the fog-

cloud environment, the load balance must be

accomplished in two situations. The first situation is

between the end users and fog layer i.e. at the

intermediate layer. The second situation is between the

fog and cloud layer. So, the job scheduling algorithm is

used to allocate the load from the clients to all servers to

satisfy the fair distribution. The achievement of the

fairness will minimize the long time waiting of any task.

In addition, it will increase the execution speed of the

user's tasks in using the available resources with optimum

consumption of storage to minimize the response time of

the submitted tasks.

In fact, the load balancing includes two basic

approaches. They are the static load balancing approach

and the dynamic load balancing approach. In the Static

load balancing approach, the decisions are made in

deterministic way during the run time. The decisions are

based on the performance of the processing nodes that

remained unchanged during the run time. Also, the

number of tasks in each node is unchanged [9]. The

methods of the static load balancing are non-preemptive

i.e. the allocated load to the node cannot be moved to

another node. On the other hand, the dynamic load

balancing decisions are taken during the execution based

on the states of the information at the run time [10]. The

dynamic load balancing algorithms redistribute the work

load is based on the changes in all the workloads which

are monitored through the working of the system.

In the following, the rest of the paper is organized as

follows. Section II; discuss the related work of the load

balancing algorithms and techniques that are proposed for

working with the cloud systems. In section III, the

architecture of the proposed model is presented. In

addition, the details of the modules that are included

within the model are clarified and explained. In section

IV, the performance evaluation and the results of the

simulations are introduced. Section V concludes the

paper and provides the venues for the future work.

II. RELATED WORK

In this section, Several Load Balancing algorithms are

introduced for various authors. These algorithms are

studied and reviewed based on the different available

parameters such as deadline, execution time, bandwidth,

cost, priority, reliability, scalability, task length and

throughput. Essentially, the efficient load balance

algorithms have been implemented in the cloud

technologies. In this paper, the proposed algorithm is

introduced to be implemented in the fogs computing

environment. However, this illumination is revealed

according to the relation between them.

Generally, the management of the load balancing

operations is similar in both of the cloud and fog

computing with only main difference. In the fog

computing, the load balancing makes the balancing

operation more feasible and effective with the limited

resources. It offers access to the resources of less

bandwidth and time. So, the Fog computing has satisfied

the needs for the nearest end users at a tremendous rate

without any confusion similar to what may occur for the

network traffic.

In this section, the first load balancing technique is

introduced in [11]. This technique is designed to

accomplish good services by increasing the resource

utilization based on two parameters, which are the task

priority and its length. The selection of the tasks for the

scheduling may be obtained from both of the first and last

indexed queue to achieve a more steady system. The

tasks are scheduled based on the total credit system

sponsored from grouping of credit length computed from

task length and credit priority computed from the task

priority. Finally, the priority of execution is given to the

high credit task. However, this algorithm suffers from

certain weaknesses when the total credits of several tasks

became identical. In this case, the FCFS has to be

implemented without guarantee of tasks to be completed

earlier or to its deadline.

Another algorithm is based on analogous behavior of

Honey bee model (HBB-LB) is proposed by Dhinesh

babu L.D et al. [12]. In this algorithm, the priority is

taken as a main QoS factor to Bar any process from

waiting for a long time in the queue to reduce the

execution time and maximize the throughput. HBB-LB

algorithm depends on two types of bees. The first type is

known as the scout bees. Its role is searching for the food

source until it is found. So, the second type is defined as

forager bees receive a signal from the scout bees. This

signal will carry the required information about the

quantity, the quality, and the distance from the beehive

through the waggle/tremble/vibration dance. However,

when the signal is strong, it means more available foods.

Thus, the forager bees will track the short path

determined by the scout bees to get the food location.

When the forager bees get their required foods from the

source, they work as the scout bees to inform the other

bees about how much food is still left and so on.

4 MLRTS: Multi-Level Real-Time Scheduling Algorithm for Load Balancing in Fog Computing Environment

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 2, 1-15

In the same way, the tasks can be represented as the

Honey bees and the Virtual Machines can be represented

as food sources. In addition, The VMs are categorized

according to three situations, balanced overload, high

overload and low overload. When the VMs are

overloaded, the tasks are removed and act as a honey bee.

So, these tasks are submitted to the VMs that has the low

overload. These assignments are reliant on how many

high priority tasks are performed on those VMs. It must

be noted that the selection of the VM is performed only

for the VM which has the low overload and the least

number of the executed priority tasks. After appropriate

assignment of tasks on VM, all information is updated so

that the remaining tasks can obtain their needs under load

VM. This algorithm has introduced certain advantages

represented in the appropriate resource utilization;

maximizing the throughput while keeping the other QOS

parameters which are built on the task priority. On the

other hand, the drawbacks are presented for the low

priority tasks which suffer from idle state or long time

waiting in the queue. These tasks may be neglected

causing the unbalancing of the workload balancing.

The dynamic and the optimization of the centralized

based algorithm presented for the load balancing in [13].

In this algorithm, the decision of distribution is taken by

the central node. The decision is based on the workload

of fewer messages. However, the shortcoming is occurred

when the central node fails. In this case, the entire work

of the system will be stopped causing the corruption of

the system performance. So, better performance can be

accomplished by obtaining the maximum throughput

based on the optimization which is considered as one of

the possible solutions. It can be performed in two ways.

The first way implements the method that is defined as

the complete method. So, the valid values are allocated to

all variables to get the intended results. If one of the

allocated values gets to be incorrect the solution is

excluded. The second way is defined as the incomplete

solution and the key factor is used as a probability. It

assumes that its solution based on the input parameters

which give more correct answers. The characteristics of

these parameters have to offer the simplicity,

effectiveness, and speed for resolving problems. This

approach is known as Stochastic Hill Climbing. It is the

most preferred one to solve the optimization problem.

The Multi-Objective tasks scheduling algorithm that is

based on the offering of an efficient resource utilization

to enhance the throughput is introduced in [14].

This algorithm accomplishes the decrease of the cost of

an application running in a SAAS environment without

changing in the service level agreements. In this

algorithm, the tasks are tied to the VMs by a way that

achieves faster execution. The algorithm is applied based

on two main steps. At first, the priorities are assigned to

the tasks such that the High QoS is set to the low value

and the low QoS is set to the high value. Hence, the tasks

of lower values has the higher priorities and vice versa.

Secondly, the QoS values are allocated to the VMs such

that the high QoS values are allocated to VMs that have

high MIPS and low QoS values are allocated to VMs that

have low MIPS. On the other hand, the sorting function is

performed to arrange the tasks based on the minimum

size and minimum QoS value. The sorting function is

implemented in descending order from the high MIPS to

the low MIPS. After the completion of sorting, the tasks

are allocated to a list of the sorted VMs. The allocation is

performed such that the first VM in the VM list is

assigned by the first task in the task list. By the same way,

the second VM in the VM list is allocated by the second

task in the task list. In addition, the allocation process

proceeds in the same way for the further tasks with the

remaining VMs. When all the VMs in the VMs list are

occupied by all the tasks, the upcoming tasks is allocated

to the first VM and this process continues. In this

algorithm, the limitations are introduced due to the usage

of the minimal QoS parameters such as the execution

time. So in the future, it requires the other QoS factors to

be added.

An Optimal Model for priority based service

Scheduling Policy is introduced in [15]. This algorithm is

based on the priority and the admission control as a

service scheduling policy to offer the moral optimization

and the maximum throughput. The algorithm operations

are based on the offering of the fully utilization of the

available resources. It aims to serve the user requests with

less time spent in the queue. However, the higher

precedence in using the cloud services is presented to the

user that pays higher than the others. In this algorithm the

performance is affected by the limitations of the applied

features. Especially, the futures that are related to the

security and the resources that hired from other cloud.

In order to manage the massive data of the expensive

load balancing for the physical network, the framework

for the virtualization network load balancing has been

proposed in [16]. In this context, the load balancer in the

data center is organized to be adjusted dynamically

according to the change in the data of each customer

requirement and the availability of the network service

providers. The balancing is applied in the two levels of

the master and the slave. The first load performs as the

master where the other performs as a slave that will be

selected by the load balancer and network load balancer

in the future. High availability of web services is obtained

due to the employment of this network load balancer. In

this framework, the employment of software-type load

balancer is favored than hardware-type load balancer that

adds lots of efforts and financial burdens on the users.

Generally, some of the advantages have been introduced

as follow. In the single network, the web connection

limitation has been resolved. In addition, the implanted

algorithm can be updated through the users by changing

the number of the load balancers. In the future, the

performance may be enhanced for a huge number of the

users participated on the internet by applying it in the

hybrid cloud.

Actually, the various scheduling algorithms of the

changing in the used QoS parameters have been offered

for different environments in [17]. The scheduling is

performed to accomplish the massive income and to

improve the effectiveness of the work load. Therefore,

 MLRTS: Multi-Level Real-Time Scheduling Algorithm for Load Balancing in Fog Computing Environment 5

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 2, 1-15

there are several versions that are implemented for each

of the dissimilar types of the scheduling algorithms such

as FCFS algorithm, Min-Min algorithm and Max-Min

algorithm, Round-Robin algorithm. However, the most

effective one among them is the heuristic technique. Its

scheduling operations involve three phases in a cloud

computing environment. At first, the resources are

located. Then, the best target resource is selected.

Finally, the task is submitted to the target resource.

Recently, the real efficient time scheduling (RETS) is

introduced in [18]. It aims to verify the executing the

real-time tasks without delay. So, it saves ten percentages

from the all available resources for the real time tasks.

However, this percentage is lost if there are no real-time

tasks.

In the end of this section, it is important to mention

that the Scheduling objective is to reduce the response

time and completely exploiting the resources. So,

different scheduling algorithms have been proposed

based on the deadline. For these algorithms the selection

of the task by different tools and over dissimilar

environment has been compared in [19]. These

algorithms are developed from the different viewpoints

such as execution time, cost, delay, response time and

resource utilization time.

In general, various types of the scheduling algorithms

have been offered based on the deadline such as the

sporadic task approach with the deadline constraints, the

Preemptive scheduling of online real-time service with

the migration of the task , the Priority and the admission

control based algorithm, the schedule–as–soon-as-

possible algorithm and the level based scheduling

algorithm.

III. PROPOSED MODEL

Generally, the fog computing servers are spread in the

neighboring manner. Each fog computing server is

centered in the specific location mainly to serve all the

clients requests in a specific region. So, each fog server is

supplied by its own load balancing algorithm. The

proposed model is designed to serve the different real-

time tasks or the soft-tasks required by all clients in the

fog computing region. In addition, it is introduced the

required services for all the soft tasks that may arrive

from any neighboring fog. This case will be occurred

when one of the neighboring fogs is suffered from the

excess load of the soft tasks. Furthermore, the proposed

load balancing algorithm has been applied to satisfy the

tasks issues. So, it deals with the deadlines time, the

execution time, the consistency of data and appropriate

resource utilization.

The architecture of the proposed load balancing model

in the fog computing is shown in Figure 3. It consists of

four main modules. They are the Classifier, Task-load

Monitor, (TLM), the Fog-Cloud-Balancer (FCB) and the

VM-Manager (VMM). In the following, subsections, the

design of the proposed model for the load balancing will

be introduced and explained.

Fig.3. The Proposed model for Fog Data Center.

A. The Classifier

The Classifier module includes two basic functions.

They are the Task-Classifier and the Share-Ratio function.

In the following, these functions are explained.

1. The Task Classifier

The Task-Classifier is used to differentiate between the

received tasks that may be of the real-time type or the soft

type. However, the soft tasks are classified again into two

different types. They are the Long-Task and the Short-

Task. This classification is performed based on the

expected execution time of each task compared with the

defined threshold value that is defined as (Ω). The soft

task of the expected execution time less than the

threshold value is known as the Short-Task. In addition,

the soft task of the expected execution time greater than

the threshold value (Ω) is defined as the Long-Task. The

threshold value is a dynamic value that may be

determined and changed by the system administrator

based on the nature of the service provided. According to

these classifications, the received tasks are differentiated

within the Task-Classifier before submitting to the (TLM).

Each type of these tasks will be inserted and sorted in its

own queue through the (TLM). However, the execution

times of the real-time tasks are stored in the RT queue.

The execution times of the Short-Tasks are stored in the

SST queue. The execution times of the Long-Tasks are

stored in the LST queue.

The operations of the task classifier are performed

according to the values of the flags in the TLM. These

flags are defined as the S-flag and the L-flag. The two

flag types will be introduced and explained in the section

of the TLM. In addition, the type of the incoming task

will affect the execution operations of the Task-Classifier.

The whole operations of the two different methods in

the Task-Classifier can be clarified in the following

procedures.

Task-Classifier function

Step 1: Classify the received task type (real or soft)

Step 2:

- If ((task is real) and (S-flag=1) or (L-flag=1))

 Compute its expected execution time

6 MLRTS: Multi-Level Real-Time Scheduling Algorithm for Load Balancing in Fog Computing Environment

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 2, 1-15

 Save the value of the expected execution

time in the RT queue

 Submitted the task to the Task-Monitor to

be inserted in the Real-Tasks Queue.

- Else If ((task is real) and (S-flag=0) and (L-

flag=0)):

o Submitted the task to the Monitor-Task

to be inserted in the Real-Tasks Queue.

Step 3: If the task is soft:

- Compute its expected execution time.

Step 4: Classify the type of the soft task:

- Compare the expected execution time of each

soft task with the threshold value (Ω).

Step 5: If ((the expected execution time of the soft task is

 > Ω) and (L-Flag=0) and (S-flag=0))

o Submitted the Long-task to the

Monitor-Task to be inserted in the

Long_Tasks Queue

- Else If ((the expected execution time of the soft

task is < Ω) and (S-Flag=0) and (L-flag=0))

o Submitted the Short-task to the

Monitor-Task to be inserted in the

Short_Tasks Queue

Step 6: If ((the expected execution time of the soft task is

 > Ω) and (L-Flag=0) and S-flag=1))

o Submitted the Long-Task to be inserted

in the Long-Task-Queue

o Save the value of the expected

execution time in the LST queue

Step 7: If ((the expected execution time of the soft task is

 > Ω) and (L-Flag=1) and S-flag=0))

o Submitted the Long-Task to the FCB to

be inserted in the F-Task-Queue

o Save the value of the expected

execution time in the LST queue

Step 8: If ((the expected execution time of the soft task is

 < Ω) and (S-Flag=0) and L-flag=1))

o Submitted the Short-Task to be inserted

in the Short -Task-Queue

o Save the value of the expected

execution time in the SST queue

Step 9: If ((the expected execution time of the soft task is

 <Ω) and (S-Flag=1) and (L-flag=0))

o Submitted the Short-Task to the FCB to

be inserted in the F-Task-Queue

o Save the value of the expected

execution time in the SST queue

Step 10: the expected execution time of the soft task is

 <Ω) and (S-Flag=1) and (L-flag=1))

o Submitted the Short-Task to the FCB to

be inserted in the F-Task-Queue

o Save the value of the expected

execution time in the SST queue

Step 11: the expected execution time of the soft task is

- > Ω) and (S-Flag=1) and (L-flag=1))

o Submitted the Long-Task to the FCB to

be inserted in the F-Task-Queue

o Save the value of the expected

execution time in the LST queue

Step 12: IF ((L-flag turn to 0) while (S-flag=0)) 7




m

i

deff TasksLongExeTime
1

)(





n

j

n

j

TasksTimealExeTimeTasksShortExeTime
11

)(Re)(

o Call Share-Ratio(deff)

Step 13: IF ((S-flag turn to 0) while (L-flag=0))




m

i

deff TasksLongExeTime
1

)(





n

j

n

j

TasksTimealExeTimeTasksShortExeTime
11

)(Re)(

o Call Share-Ratio(deff)

Step 14: IF ((L-flag turn to 0) and (S-flag turn to 0))




m

i

deff TasksLongExeTime
1

)(





n

j

n

j

TasksTimealExeTimeTasksShortExeTime
11

)(Re)(

o Call Share-Ratio(deff)

2. Share- Ratio function

According to the operation performed in the classifier,

the Share- Ratio function is presented. It aims to compute

the resources ratio that should be assigned to each type of

tasks. The Share-ratio for each type of the tasks is

computed based on the total amount of the execution-

time of each type. The procedure of the Share-Ratio

computation can be clarified in two principle cases. The

initial case is pushed at the starting of the system

operations. Secondly, the iterative case that will be

implemented according to the different iterations

determined and called by the Task-classifier. Generally,

the VMs are divided between two clusters. Each cluster

comprises the half of all the fog computing resources. So,

the maximum waiting times in both clusters, defined as

follows:

σL : defined as the maximum allowable waiting time

for the last task that may be appended to the Long-

Task-Queue.

σSR : defined as the maximum allowable waiting time

for the last task that may be appended to the Short-

Task-Queue .

For initial state, the values of σL and σsr are equal, and

both of the values are assigned to the value of (multiple

number of VM in each cluster * 1 sec)

On the other hand, the iterative case is defined as the

ordinary case of the system. The value of the share ratio

of each cluster is recomputed according to the change in

the status value of the S-flag and L-flag that are based on

the Task Load Monitor. In addition, the values of the

maximum allowable waiting times σSR and σl are

recomputed according to the execution times of the

different types of all the tasks. In the following, the share

ratio re-computation through the iteration case can be

explained as follows:

Step 1: if (0deff)

 deffLL   '

 MLRTS: Multi-Level Real-Time Scheduling Algorithm for Load Balancing in Fog Computing Environment 7

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 2, 1-15

 deffSRSR   '

 Else

 deffSRSR   '

 deffLL   '

Where:

L' : is the total sum of the remaining execution time of

the tasks in Long-Task-Queue.

SR' : is the total sum of the remaining execution time

of the tasks in the Short-Task-Queue and the Real-Task-

Queue. Hence, the share ratio of the reserved resource to

serve the VMs in each cluster is computed according to

the following equation.

SRL

L
LC








 LL CNVM *

LSR VMNVM 

Where:

LC : The ratio of the resource allocated to serve the

Long-Tasks.

N: The maximum number of the VMs that can be created

by the fog server.

LVM : The total number of VMs that will be assigned to

the Long-task-Cluster.

SRVM : The total number of VMs that will be assigned to

the Real and short-task-Cluster

Step 3: notify the VM-Manager by the computed ratios to

use them in allocating the VMs for each cluster.

B. Task-Load-Monitor (TLM)

The TLM comprises four components. The first two

components are the flags. They are defined as the S-Flag

and the L-Flag. Each of them is used to indicate the status

of load for a type of the soft tasks. The S-Flag is used to

refer to the status of load in the queue that contains the

Short-Task. The L-Flag is used to refer to the status of the

load in the queue that contains the Long-Tasks. Set the

value 0 to any of the both flags, mean its queue in the

local fog is able to receive additional task. Otherwise, set

the value 1 to any of the both flag, which mean its queue

becomes fully loaded. Each soft task belongs to a flag of

the value =1 will be directed by the Task-classifier to the

F-Task-Queue.

However, the other components represent the two

functions that are performed in the TLM. They are

defined as the Sort-Task function and the Monitor-Task

function. In Fact, the operation management of the TLM

components depends on the status of the soft loads in

their queues. The status of the soft loads can be

assembled into two different cases in the proposed model.

The first case is encountered when the Share-Ratio is re-

computed. In this case, the Monitor-Task function is

halted.

On other hand, the procedures of the Sort-Task

function are synchronous in the execution with the Share-

Ratio computation in the classifier. The Sort-Task

function can be summarized in inserting and sorting each

task according to each type in its own queue. The real

tasks are sorted according to their deadline time. The set

of the soft tasks that are sorted is performed according to

the SJF scheduling. In addition, the value of the priority-

level=1 is assigned to the all tasks in each soft queue

when the Share-Ratio is recomputed. The similar

priorities =1 for these tasks mean the sorted tasks at the

priority-level =1 will remain unchanged until they are

executed by the VMs.

On other hand, any of the soft tasks may arrive after

the Share-Ratio is recomputed and will be assigned to the

priority-level =2.

However, all the tasks are considered after the Share-

Ratio computation were loaded to their queues, the values

of the S-Flag, L-Flag for this state are defined as follows:

 S-Flag = 0

 L-Flag = 0

This case is defined as the reasonable state that should

be obtained after the Share-Ratio computation. In

addition, both values of the σL and σsr are re-defined as

follows:

 σL: is evaluated to be the value of the waiting time

of the last task in the long-Task queue.

This means the waiting time for any Long-Task should

not exceed the value of the σL until the Share-Ratio is re-

computed again.

 σSR: is evaluated to be the value of the waiting

time of the last task in the Short-Task queue.

This means, the waiting time for any Short-Task

should not exceed the value of the σL until the Share-

Ratio is re-computed again. .

The σL and σsr are used as a constraint values to control

the load balancing and the module operations of the

proposed architecture in the fog computing. The S-flag

value will be remained = 0 as the waiting time of the last

appended task to the Short-Task-Queue is less than σsr.

Similarly, the L-flag value will be remained = 0 as the

waiting time of the last appended task to the Long-Task-

Queue is less than σL.

During the reasonable state, some tasks of the different

queues types are executed on their allocated VMs. On

other hand, some of the new tasks are reached to these

queues after obeying to the Task-Classifier operations.

Therefore, the Sort-Task function is halted while the

Monitor-Task is pushed to accomplish three main

objectives. At first, it inserts and sorts each task in its

own queue. Then, it assign a priority-level = 2 to each

upcoming soft tasks when inserted in their soft queues of

8 MLRTS: Multi-Level Real-Time Scheduling Algorithm for Load Balancing in Fog Computing Environment

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 2, 1-15

the local fogs. Finally, it continuously observes the

waiting time of each soft task appended to the tail in both

of the soft queues.

On other hand, the real-time tasks are inserted in the

Real-Tasks-Queue. They are sorted according to their

deadline time. However, they are pushed to be executed

according to their deadline time only. The execution is

done regardless the state of the soft queues in the system.

1. Sort-Task function (during Share-Ratio computation)

Step 1:

- Sort the Short-Tasks in the Short-Task-Queue

according to SJF

- Assign the value 1 to the Short-Tasks priority.

- Sort the Long-Tasks in the Long-Task-Queue

according to SJF

- Assign the value 1 to the Long-Tasks priority.

- Sort the Real-Tasks according to their deadline

time in the Real-Tasks-Queue

- Add the execution times of the Real-Tasks to the

waiting time of the last task in the Short-Task-

Queue.

Step 2:

- Set the values of the S-Flag = 0 and L-Flag = 0.

2. Monitor-Task function

Step 1: For each arrived task:

- If real-time task, insert it in the Real-Task-Queue

- Add the execution time of this Real-Task to the

waiting time of the last task in the Short-Task-

Queue.

- If soft task, compute its waiting time

Step 2:

- If the waiting time for the last Long-Task < σL.,

assign the value 2 to the priority-level of that task.

- Re-sort all the tasks of the priority-level =2

according to SJF schedule.

- If top task has priority-level =2. (i.e. the task

becomes occupying the top of the queue and all

tasks has the priority-level=1 are transferred to the

VMs)

o Stop the SJF sorting of the tasks that

has priority-level =2.

o Change the priorities of all the

currently existing tasks in the queue to

level =1

o For each upcoming task in the queue,

set its priority-level to 2.
Step 3: If the waiting time for the last long task > σL.

- set L-Flag =1

- Stop receiving tasks form the Task-Classifier.

- Change the priority-level of all the tasks existing

in the Long-Task-Queue into the priority-level =1

Step 4: notify the tasks classifier to send the soft Long-

Tasks to the FCB.

Step 5: notify the Task-Classifier by new L-Flag =1

When the L-Flag or S-Flag or both change from 0 to 1,

the model is transferred from the reasonable state to other

state defined as an effective state. This state means the

system is heavily overloaded. Hence, the incoming tasks

that have the flag value =1 will be directed to the F-Cloud

Balancer to be executed. In addition, the Share-Ratio

should be re-computed before backing to the reasonable

state. Furthermore, the excess load should be performed

before the Share-Ratio is re-computed

Notice: the same procedure steps (2:5) that applied to

Long-Task-Queue are applied to the Short-

Task-Queue with reference to σSR

C. The Fog-Cloud Balancer (FCB)

The third module is defined as the Fog-Cloud-Balancer

(FCB). It consists of the two vectors that defined as the

SF-Fog and the LF-Fog. Each vector of them comprises

the number of slots that equal to the number of all the

neighboring fogs in addition to the local fog. Each slot in

the SF-Fog vector is allocated to one of the Short-Tasks

queues in the fogs computing. Each slot is used to refer to

the loads circumstances of the Short-Tasks queues in the

definite fog computing. When the slot value is set to 1,

this means that the queue of the Short-Tasks of that fog is

fully loaded. Otherwise, the slot value is set to 0 if the

queue of the Short-Tasks able to receive additional tasks.

By the same manner, each slot is used to refer to the loads

circumstances of the Long-Tasks queues in a definite fog

computing. When the slot value is set to 1, this means

that the queue of the Long-Tasks of that fog is fully

loaded. Otherwise, the slot value is set to 0 if the queue of

the Long-Tasks is able to receive additional tasks.

Based on the circumstances of all the slots in both of

the vectors, each fog computing is alerted by the loads

circumstances for both of the types of the soft queues in

all the fogs.

Actually, the main FCB function is presented when the

value of the S-Flag or L-Flag of local queues is changed

to 1. This means that the local queue of the Short-Task or

Long-Task in turn is fully loaded.

So, the coming Short-Tasks or Long-Tasks are

delivered to the FCB from the Task-Classifier. In this

case, the FCB guided the received tasks either to one of

the neighboring fogs or to the cloud computing. The

following steps clarify the operations of the FCB.

Actually, the main function of the FCB is activated when

the value of the S-Flag or the L-Flag in the local queues

is changed to 1. In this case, the local queue of the Short-

Task or the Long-Task in turn was fully loaded. So, the

coming Short-Tasks or the Long-Tasks are delivered to

the FCB from the Task-Classifier. Accordingly, the FCB

guides the received tasks either to one of the neighboring

fogs or to the cloud computing. The following steps

clarify the operations of the FCB.

Step 1: If S-flag or L-Flag is set to 1, broadcasting all the

fogs with the new local Flag status.

Step 2: Change the value of SF-Fog or LF-Fog according

to the up-to-date status in other fogs.

Step 3: FCB receives the tasks from the Task-classifier If

S-flag =1 or L-Flag =1

 MLRTS: Multi-Level Real-Time Scheduling Algorithm for Load Balancing in Fog Computing Environment 9

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 2, 1-15

Step 4: According to the type of soft task (long or short),

FCB finds the nearest fog based on the value of

its dedicated flag slot in the flag vector (SF-Fog

or LF-Fog).

Step 5: If there is a free fog in the flag vector (i.e. it has

zero value in SF-Fog or LF-Fog), FCB send the

task to that fog for execution.

Step 6: If there are no free fogs found to execute the task,

FCB send it to the related cloud.

D. The VM-Manager (VMM)

The fourth module is the VM-Manager (VMM) that

consists of a set of the homogenous virtual machines. The

role of the VMM can be clarified through two main

functions. The first function is dividing the whole VMs

into a two main clusters. The first cluster comprises the

VMs that are allocated to the both of the real-time tasks

and the short-soft tasks together. The second cluster

includes the VMs that are allocated to the long-soft tasks

only. This division is performed to allow the existing load

of the tasks in each cluster to obtain an appropriate Share-

Ratio from all the existing VMs. So, the Share-Ratio is

computed for each cluster based on the existing loads

type in each cluster relative to all the existing load types

in both of the clusters.

The Share-Ratio is not a constant value. It is changed

according to the effective change (defined as an effective

state in the TLM) in the existing loads type of each

cluster. So, the change in the Share-Ratio (number of

assigned VMs) to each cluster should be performed.

This change allows each cluster to obtain an

appropriate new Share-Ratio from all the VMs of both

clusters.

However, the instantaneous migration of the VMs from

one cluster to another may cause a problem if they are

busy by executing tasks. So, the instantaneous migration

may be performed only if enough numbers of the free

VMs are available. On the other hand, if the required

numbers of the VMs are not available, the VMs

migrations may be postponed until the VMs ends their

current tasks and become free.

The second function of the VM-Manager is the

allocation of the tasks on the VMs. For both of the types

of the soft tasks, the tasks are managed as a two

dissimilar groups. The first group is directly inserted after

the Share-Ratio computation. The value of the priority-

level=1 is assigned to all the tasks of this group. On other

hand, the value of the priority-level = 2 is assigned to the

second group that is inserted during the Monitor-Task

operations.

In order to avoid starving for the tasks in the soft queue,

the re-sorting of tasks according to the waiting times are

performed only for the tasks of the priority-level=2. The

re-sorting is not performed for the tasks of the priority-

level=1. Therefore, when all the tasks of priority-level=1

are allocated to the VMs, the priority-level=2 is changed

to priority-level=1 for all the tasks. But, the value of the

priority -level =2 is assigned to the upcoming tasks.

The long tasks cluster includes only one type of tasks

that is defined as Long-Tasks. Hence, for the free VMs,

the tasks that have the smallest waiting times are

allocated.

On the other hand, the short tasks cluster, includes two

types of tasks. At first, the Short-Tasks are sorted

according to their waiting times. Next, the Real-Tasks are

sorted according to their deadline times. Hence, the VMs

management in this cluster is performed according to the

deadline of the real-time tasks and the smallest waiting

time of the Short-Tasks. Based on the values of deadline

and the smallest waiting time, three cases may be

occurred for executing tasks in the short tasks cluster.

Based on the values of deadline and the smallest

waiting time, three cases may be occurred for executing

tasks in the short tasks cluster.

- When there are no Real-Tasks, the Short-Tasks are

behaving as the tasks of the long tasks cluster. For the

first free VM, the task that has the smallest waiting time

is allocated.

- When there is a Real-Task and a Short-Task

competing on the expected available VM.

 If the deadline of the Real-Tasks allows the Short-

Tasks to be executed partly or completely, the

Short-Tasks are submitted to the available VM.

Otherwise, the Real-Task is submitted to the

available VM.

 When the Deadline of the Real-Task will be spent

without the available VM.

 In this case, the Short-Task on the VM

which has the shortest remaining time

is suspended. Its status is buffered in

the Short-Task buffer

 Allocate the Real-Time task to the free

VM

 When the Real-Time task has been

executed, the buffered Short-Task is

resumed.

The procedures of the VM-manager have been clarified

the following two main functions:

VM-Manager initiation

Step 1: Create two empty clusters

Step 2: Divide the amount of the share between the two

clusters.

Step 3: Distribute the homogenous VMS to each cluster

such that each cluster will have the half of the

processing power of all the available VMs.

VM-Manager share-update

Step 1: Receive the notification of the share change from

the Share-Ratio function

Step 2: Re-allocate the VMS between the two clusters

according to the new share value

Step 3: The assigned tasks are to be the migrated VMs

according to the old share must finish their task

before implementing the migrations (i.e. the

migration is not performed for the VM has a

task).

Real-task-allocation

Step 1: If the new real task arrived, choose a VM which

has the shortest remaining time remtVM . .

10 MLRTS: Multi-Level Real-Time Scheduling Algorithm for Load Balancing in Fog Computing Environment

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 2, 1-15

Fig.4. Turnaround Time Soft-Real Tasks Test.

Step 2: If remtVM . plus the expected execution time for

the real task exeTimetr.
will not break its

deadline, let soft task to be finished.

exeTimetVMdeadlinet rremtr .. . 

Step 3: If remtVM . plus the expected execution time for

the real tasks exeTimetr.
greater than the

deadline:

- Suspend the soft task and buffer it.

- Hold its status in the Short-Task buffer

- Assign the Real-time task to the free VM

Step 4: After the execution of the Short-Task the VM-

Manager resume the execution of the holding

Short-Task backing its status from the Short-Task

buffer

IV. PERFORMANCE EVALUATION

In order to evaluate the experimental results, the

WorkflowSim [20] is used to simulate the different

methods of the scheduling. The WorkflowSim is an open

source workflow simulator that extended the CloudSim

[21]. The simulation assessment is performed by using

the homogeneous characteristics in the fogs computations.

They are based on the characteristics of the VMs in the

Amazon EC2. So, each task is performed on a T2.Micro

instance of Amazon EC2 that is available for free.

The proposed model was implemented in order to

compare another four models. Firstly, the FCFS which is

used to serve the tasks according to their arrangements

that are based on the arrival time. In addition, another

three compared models are already published for the

cloud environment. They are the Max-Min, the PBATS

and the RETS. The Max-Min maintains a task status table

to anticipate the actual loads of the virtual machines and

the estimated completion time of tasks, which can assign

the workload among nodes [22]. The Priority Based

Autonomic Task Scheduling (PBATS) that schedule its

tasks according to three different priorities levels [23]

[24]. On the other hand, the Real Time Efficient

Scheduling (RETS) is based on allocating a ten

percentage for the real-tasks. All these scheduling

methods are compared by the proposed method to

measure the load balancing in the proposed model.

The assessment has been performed in a two cases.

The first case is implemented to measure the performance

of the system for the soft tasks. The second case is to

measure the reliability of the system for the real-time

tasks. In both cases, the performance is measured based

on three parameters. They are the average turnaround

time, the average waiting time and the throughput. These

parameters are measured with the existing tasks for the

proposed model and all the other compared scheduling

methods. In addition, all the following comparisons are

performed using 10 VMs of the Amazon EC2. The VMs

are homogenous of processing power of 2000 MIPS

while the sizes of the executed tasks are different from

2000 to 6000 instructions.

The following subsections are organized into two

subsections. The first subsection measures the

performance of the system using all types of tasks. The

second section measures the effect of the system on the

real time tasks only.

A. performance measurment for All types of tasks

In the next subsection, the effect of the number of all

tasks on the response time is tested. Also, subsection II

measures the waiting time of the system. Finally,

subsection III measures the throughput.

1. Turnaround Time performance Test

The first experiment is performed based on the

Turnaround time parameter. The proposed model

(MLRTS) is compared to the whole mentioned four

algorithms. All of the experiments are performed using

10 different workloads from 40 to 400 tasks. The real

time tasks will represent 20 % from all of the inserted

workload in each experiment. The task sizes are ranged

from 2000, 8000. The sizes of the tasks less than 3000 are

considered as the Short-Tasks. The tasks of the sizes

more than 3000 are considered as the Long-Tasks. All of

the tasks are executed based on the ten VMs of

processing power of the 2000 MIPS for each machine.

The obtained results that represent the average turnaround

times of all of the algorithms are shown in Figure 4.

It is clarified that, the curve that represent the average

of the turnaround time of the FCFS is rapidly increased.

Especially, as the number of the tasks are increased. This

increase is caused due to the non-preemptive property of

that algorithm. The non-preemptive property of the long

tasks at the front of the queue causes the short tasks at the

end of the queue to wait for more time. Also, the Max-

Min curve is the nearest curve to the FCFS curve.

Actually, the Max-Min algorithm is based on the

assigning the longest tasks to the VMs that have

minimum remaining execution time. So, the short tasks

will be waited for a long time to get the VMs to be

executed. The delays accumulation of the short tasks will

affect the average amount of the turnaround time for the

Max-Min curve. In addition, the PBATS curve is

revealing a less in the average turnaround time results as

compared to the FCFS and Max-Min. Actually, the tasks

of the PBATS algorithm are exposed to three levels of

 MLRTS: Multi-Level Real-Time Scheduling Algorithm for Load Balancing in Fog Computing Environment 11

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 2, 1-15

priorities. Hence, the different sizes of the performed

tasks are affected by these priority levels.

On other hand, the curve of the RETS refer to

reasonable results with a light load up to 150 of tasks.

However, as the number of the tasks increase, an

inefficient performance is occurred if compared by the

proposed algorithm (MLRTS). The RETS ineffective is

caused due to the 10% of the resources assigned to the

real tasks. This constant percentage presents a problem if

there are no adequate real tasks. Also, it is a problem if

the real tasks exceed the assigned resources. Moreover,

there is no priority or classification strategy in the RETS.

Actually, the MLRTS doesn’t suffer from these

problems. It is designed based on the permanent balance

between the resources of the fog center and the expected

workload within the fog center. In addition, the overload

tasks are instantly directed to one of the neighboring fogs

or to the related cloud. I.e. this ratio doesn't measure in

the average of the turnaround time computation.

Moreover, the MLRTS efficiency is not affected by the

excess in the workload. Thus, the MLRTS doesn't upset

the scalability of the system and offers the less amount of

the turnaround time. Accordingly, the MLRTS is the

most efficient algorithm among all of the Scheduling

Algorithms in the fog and cloud environment.

2. The Waiting Time Performance Test

In this experiment, the performance is measured based

on the average of the waiting time parameter. The

experiment is performed based on the same work load of

the previous experiment. The obtained results for all the

algorithms are shown in Figure 5. It is revealed that, the

average waiting time of the FCFS is rapidly increased.

Especially, as the number of the tasks are increased. The

reasons of the increasing are similar to the reasons that

cause the increase in the average turnaround times. Also,

the curve represents the Max-Min algorithm is the nearest

one to the FCFS curve. The results of this curve are

logically accepted due to the increase in the waiting time

of the short tasks. The accumulation waiting time of these

tasks will increase the total average waiting time that is

computed for all the tasks. For the PBATS, the tasks are

distributed according to the three levels of priorities

causing the rations from the incoming tasks to wait for

long time according to their levels. The increase in the

waiting times of these tasks causes the increase in the

sum of the average waiting time.

On other hand, the RETS algorithm gives reasonable

sum for the average waiting time for the workload less

than or equal to 100 tasks. But, when the work load

increases, the average waiting time is rapidly increased.

This increase is reasoned due to the unbalanced state

between the amount of the real time tasks and the

quantity of the allocated resources. The restricted

quantity of the resources make a lot of the real time tasks

lose their deadline times. This problem has been

overcome by the the MLRTS as shown from the results

applied on its curve. The MLRTS is employeed to serve

the real-time tasks and the short-tasks on the same VMS

and the long-tasks are served on the other VMs. This

division guarantees no idle VMs while the tasks of both

of the types waits for the execution. Moreover, the Share-

ratio is re-computed according to the change in the load

types to accomplish the required balancing between the

tasks and the resources. So, the shortage that may occur

in the resources of the soft tasks are balanced by the

resources of neighboring fogs computing centers or the

related cloud.

3. The Throughput Performance Test

In this experiment, the performance is measured based

on the average of the throughput parameter. The

throughput is computed as the number of the executed

tasks per time. Also, the experiment is performed based

on the same workload of the previous experiments. The

obtained results for all of the algorithms are shown in

figure 6. It is shown that, the throughput of MLRTS is

clearly increased than the throughputs of the other

algorithms. In addition, the throughputs of the FCFS are

the nearest curve to the MLRTS. The combination of

short and long tasks of the FCFS will increase the number

of the executed tasks. In addition, the Max-Min and

PBATS are fallen back as the lower throughputs. Both of

these algorithms will execute the tasks of the long sizes at

first. So, the number of the completed tasks will be

reduced than other algorithms. Hence, the Max-Min and

PBATS throughputs are minimized due to the

computation that based on the number of output

tasks/time. In addition, the RETS throughput is fallen in

an intermediate range among all the throughputs for all

the compared algorithms. The RETS results are expected

due to the unbalance between the loads types and the

distributed resources.

Therefore, the powerful advantage of the MLRTS is

occurred due to the flexibility in allocating the Short-

Tasks to a specific cluster. This allocation will lead to a

huge number of the complete execution for the Short-

Tasks. Especially, if there is no real tasks or a small

number of them. In addition, the MLRTS has a great

flexibility in re-assigning the available resources

according to the needs of the load type which increase the

throughput without effect on the fairness of the load

balancing.

Fig. 5 Waiting Time Soft-Real-Task Test.

12 MLRTS: Multi-Level Real-Time Scheduling Algorithm for Load Balancing in Fog Computing Environment

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 2, 1-15

B. Real-task performance test

This test is implemented to measure the effect of the

proposed system on the real time tasks. The experiments

are repeated for 10 times. Each experiment is performed

on the percentages of 20% to 25% from the inserted

workload. Through the experiments, the workloads for all

the tasks types are changed from 40 to 400 tasks.

According to the used percentage, the real time tasks are

changed from 10 to 80 tasks. The sizes of the performed

tasks are alternated according to the ranges that

mentioned before. However, all the experiments of the

Real-Time tasks are performed in the presence of the soft

tasks load.

The following subsections will measure the effect of

proposed model on the Real-time tasks compared with

other algorithms. The comparisons were performed based

on the previous measured parameters. Subsection I

measures the turnaround time. Subsection II measures the

waiting time and Subsection III measures the throughput.

The final section will reveal some snapshots for the states

of the Share-Ratio computations.

1. Real-task Turnaround test

The results obtained from the experiments that run for

the average turn aroundtimes of the compared algorithms

are shown in Figure 7. The worst results are shown by the

curves that represent the FCFS, PBATS and the Max-Min

respectively. However, the main disadvantage of the

previous algorithms is the incapability to serve the real

time tasks according to their deadline . I.e. the deadline

times are not considered when the tasks are arranged for

execution. Therefore, the real times tasks are handled as

the soft tasks handling In addition, the RETS introduces a

good behavior when the number of the Real-Tasks are

suited to the 10 percentage of the resources that are

allocated for the real-time tasks. In the figure, the good

result is obtained for the number of 40 tasks. But, bad

results are obtained if the amount of the real-tasks is

increased. On the other hand, in MLRTS, it is not

allowed for the real time tasks to wait more than their

deadline times. In addition, it is not allowed for the real

time tasks to migrate to the neighbor fogs to get their

services. So, the real time tasks are not exposed to any

delay which minimizes the total average of turnaround

time. So, the less turnaround time is obtained by the

MLRTS. In addition, it is the most concerned system that

reduce the turnaround time when the number of the Real-

time tasks is increased

2. Waiting Time Test for Real Tasks

The averages of waiting time curves that reveal the

effect of the proposed model on the execution of the real

tasks are shown in figure 8. In this figure, the least

average waiting time is revealed for MLRTS. Actually,

the proposed model is designed to introduce the highest

priority for the Real-Time tasks. So, the resources may be

migrated from the Long-Task cluster to accomplish the

sufficient resources that may be needed by the Real-

Times tasks. However, the RETS curve is the nearest one

among all the compared algorithms to the MLRTS. But,

the increase in the number of real tasks will cause the

overhead of the intermediate layer in RETS which

increase its average waiting time. Also, using the

traditional scheduling methods that does not consider the

deadline times of real tasks such as FCFS, Max-Min and

PBTES will increase the average waiting time. Hence, the

deadline times of the real tasks may be broken.

3. Throughput Test for Real tasks

The resultant curves of the throughputs for the

compared algorithms are shown in figure 9. It is clear

that, the high amount of the throughput is achieved by the

MLRTS. The throughput results fluctuates between 97%

and 100% for all the inputs of the different loads for the

real tasks. MLRTS combines the Short-tasks and the real-

Fig. 6 Average Throughput of Soft-Real-Task Test.

Fig.7. Real-Tasks Turnaround Time Test

Fig.8. Waiting Time Test for Real Tasks

 MLRTS: Multi-Level Real-Time Scheduling Algorithm for Load Balancing in Fog Computing Environment 13

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 2, 1-15

time tasks on the same cluster. This combination offers

the guarantee for the Real-Time tasks to obtain their

needed resources. The real tasks gains the highest priority

more than the Short-tasks. Moreover, the execution of the

Short-tasks should be suspended to inhibit the deadline

time of the real tasks from the broken. So, the throughput

of the real time tasks will be increased for MLRTS.

On other hand, the throughput curve of the RETS gives

accepted results when the input include a small number of

the real tasks. But, when the input number of the real

tasks increases, the results are reduced to less than 50%

from the input Real-Tasks. The reduction of the RETS

throughput is caused due to two reasons. The first reason

is the constant percentage (10%) of the resources that is

reserved to serve the real tasks, and the second reason is

the migrations of the excess real tasks to the neighboring

fog to get its service. These migrations will consume the

time allowed to the deadline time before the service is

accomplished. However, the throughputs of the Max-Min,

PBATS and the FCFS algorithms are minimal. These

results are logically accepted. The last three algorithms

are not designed to serve the real tasks. So, each real task

served in these algorithms is performed based on criteria

doesn't deal with deadline times. We can say, it is served

by chance.

C. Share Resources Re-Distribution

In this section, some of the successive snapshots for

the test simulation of the Share-Ratio re-computation are

introduced. These snapshots give a set of the re-

computations for the Share–Ratio based on the change in

the number of the different tasks types according to the

L and SR .

According to the table 1, the system starts at the stable

case (state 1). At state 2, the maximum waiting time is

increased for the Long tasks to 1.2 second. So the L-flag

will be changed to 1 and the incoming long tasks are

converted to the FCB.

Accordingly, the resources will be re-distributed again

between the long-task cluster and the short-real-task

cluster. Hence, the number of VM in the long cluster has

been increased on account the Short-real-task cluster.

After changing L at state 4, the load of the Real-Short-

tasks is increased and long-tasks are decreased. So, the

system will adjust itself by re-computing the share-ratio

based on the new
L and

SR .

Table 1. Share Resources Re-Distribution

state

Num

Long

tasks

Num

Real

Short

Tasks

L

SR

 L-

Fla

g

S-

Fla

g

VMs

L-

cluste

r

VMs

S-

clust

er

State 1 6 15 1 S 1 S 0 0 5 5

State 2 12 8 1.2 S 1 S 1 0 6 4

State 3 4 5 1.2 S 1 S 0 0 6 4

State 4 3 21 1 S 2 S 0 1 3 7

State 5 4 14 1 S 2 S 0 0 3 7

State 6 9 17 1 .3 S 2.1 S 1 1 3 7

State 7 11 22 1.2 S 2 S 1 1 3 7

State 8 4 10 1 S 1.5 S 0 0 4 6

However, at some circumstances the load increases

suddenly and both of L-flag and S-flag are changed to 1

value as in state 6. In this case, the incoming tasks from

all the types of the soft tasks are directed to the FCB. The

Real-Tasks are the only received tasks. All the tasks

within the soft queues are assigned to priority-level 1.

The values of the L-flag and S-flag are kept to the 1 value

until the value of the
L or

SR becomes less or equal to

its previous value due to the execution of the tasks that

are currently in their queues. At this moment the Share-

Ratio is re-computed again and VMS are re-distributed

accordingly.

V. CONCLUSION AND FUTURE WORK

In this paper, the MLRTS model is proposed as multi-

level scheduling that accomplishes the load balancing in

the data fog center and their neighboring fog and related

cloud. The model was designed for efficient reserving of

the fog resources under different types of soft and real

tasks. The proposed model offers an elastic re-allocation

for the available processing power of the VMs according

to the change in the load of the different types of the tasks.

In addition, it provides an adaptable allocation for real

time tasks due to their dead line times. The soft tasks are

sorted in their queues based on the SJF scheduling.

Therefore, the MLRTS model is implemented based on

the two priority-levels for each soft type of the tasks. The

priority-levels are used to inhibit the starving of the tasks

within their queue type. The proposed model includes an

independent module defined as FCB. This module is

implemented as an interface to manage the transfer of the

tasks that will not serve in its local fog to one of the

neighboring fogs or the related cloud to be served. In the

future, we have two targets. The first one is offering a re-

engineer for the system to be more suitable for live video.

The second target is the development of this model to

benefit from the facilities of the heterogeneous processing

power.

Fig.9. Real Throughput

14 MLRTS: Multi-Level Real-Time Scheduling Algorithm for Load Balancing in Fog Computing Environment

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 2, 1-15

REFERENCES

[1] Chandrasekhar S. Pawar, Rajnikant B. Wagh,‖ Priority

Based Dynamic resource allocation in Cloud Computing

with modified Waiting Queue‖, Proceeding of the IEEE

2013 International Conference on Intelligent System and

Signal Processing(ISSP) Pages 311-316.

[2] Yusen Li, Xueyan Tang, Wentong Cai,‖ Dynamic Bin

packing for on demand cloud resource allocation ‖,

Proceedings of the IEEE Transactions on Parallel and

Distributed Systems ,2015,Paged 1-14.

[3] Kamyab Khajehei, ―Role of virtualization in cloud

computing‖, International Journal of Advance Research in

Computer Science and Management Studies Volume 2,

Issue 4, April 2014.

[4] Savani Nirav M, Prof. Amar Buchade, ―Priority Based

Allocation in Cloud Computing‖, International Journal of

Engineering Research & Technology (IJERT) ISSN:

2278-0181 IJERTV3IS051140 Vol. 3 Issue 5, May – 2014.

[5] Brototi Mondala, Kousik Dasguptaa, Paramartha

Duttab”Load Balancing in Cloud Computing using

Stochastic Hill Climbing-A Soft Computing Approach”,

Elsevier, Procedia Technology 4(2012) pp. 783 – 789.

[6] Ivan Stojmenovic, sheng Wen, “The Fog Computing

Paradigm: Scenarios and security issues” Proceedings of

the IEEE International Fedrerated Conference on

Computer Science and Information Systems, 2014, pp.1-8.

[7] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, Sateesh

Addepalli “Fog Computing and its Role in the internet of

things”,http://conferences.sigcomm.org/sigcomm/2012/pa

per/mcc/p13.pdf.

[8] Manisha Verma, Neelam Bhardwaj Arun Kumar Yadav,”

An architecture for load balancing techniques for Fog

computing environment”, International Journal of

Computer Science and Communication, Vol. 8 • Number

2 Jan - Jun 2015 pp. 43-49.

[9] S. F. El-Zoghdy and S. Ghoniemy, “A Survey of Load

Balancing In High-Performance Distributed Computing

Systems”, International Journal of Advanced Computing

Research, Volume 1, 2014.

[10] Mohsen and Hossein Delda, “Balancing Load in a

Computational Grid Applying Adaptive, Intelligent

Colonies of Ants”, Informatica 32 (2008) 327–335.

[11] Antony Thomas, Krishnalal G, Jagathy Raj V P,”Credit

Based Scheduling Algorithm in Cloud Computing

Environment”, International Conference on Information

and Communication Technologies, Procedia Computer

Science 46(2014) 913-920.

[12] Dhinesh Babu L.D, P. Venkata Krishna,”Honey bee

behavior inspired load balancing”, Elsevier, Applied Soft

Computing 13(2013) 2292-2303.

[13] Brototi Mondala, Kousik Dasguptaa, Paramartha

Duttab”Load Balancing in Cloud Computing using

Stochastic Hill Climbing-A Soft Computing Approach”,

Elsevier, Procedia Technology 4(2012) pp. 783 – 789.

[14] Atul Vikas Luthra and Dharmendra Kumar Yadav,”Multi-

Objective Tasks Scheduling Algorithm for Cloud

Computing Throughput Optimization”, International

Conference on Intelligent, Communication &

Convergence, Procedia Computer Science 48(2015) 107-

113.

[15] Manisha Verma, Neelam Bhardwaj, and Arun Kumar

Yadav, "Real Time Efficient Scheduling Algorithm for

Load Balancing in Fog Computing Environment",

International Journal of Information Technology and

Computer Science, Vol.4, No.2, pp.1-10, 2016. DOI:

10.5815/ijitcs.2016.04.01

[16] Po-Huei Liang and Jiann-Min Yang,”Evaluation of two

level global load balancing framework in Cloud

Environment”, International Journal of Computer Science

and Information Technology (IJCSIT), Vol. 7 No 2, April

2015.

[17] Mohamed A. Elsharkawey, Hosam E. Refaat,"CVSHR:

Enchantment Cloud-based Video Streaming using the

Heterogeneous Resource Allocation", International

Journal of Computer Network and Information Security

(IJCNIS), Vol.9, No.9, pp.1-11, 2017.DOI:

10.5815/ijcnis.2017.09.01

[18] M.Verma, N. Bhardwaj and A. Kumar, "Real Time

Efficient Scheduling Algorithm for Load Balancing in

Fog Computing Environment",I.J. Information

Technology and Computer Science, April, 2016, 4, 1-10

[19] Himani and Kamaljit Kaur,” Deadline Scheduling in

Cloud Computing: A Review”, International Journal of

Computer Applications(0975-8887),Vol. 96-No.24,\june

2014.

[20] W. Chen and E. Deelman, ―Workflowsim: A toolkit for

simulating scientific workflows in distributed

environments, in 2012 IEEE 8th International Conference

on E-Science, ser. eScience, 2012, pp. 1–8. [Online].

Available:https://github.com/WorkflowSim

[21] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De

Rose, and R. Buyya, ―CloudSim: a toolkit for modeling

and simulation of cloud computing environments and

evaluation of resource provisioning algorithms, Software:

Practice and Experience, vol. 41, no. 1, 2011.

[22] Xiaofang Li, Yingchi Mao, Xianjian Xiao, "An improved

Max-Min task-scheduling algorithm for elastic cloud",

Computer, Consumer and Control (IS3C), 2014

International Symposium on

[23] B.Anju and C.Inderveer (2016), "Multilevel Priority-

Based Task Scheduling Algorithm for Workflows in

Cloud Computing Environment". In Proceedings of

International Conference on ICT for Sustainable

Development: Volume

[24] Swati Agarwal, Shashank Yadav, Arun Kumar Yadav,"An

Efficient Architecture and Algorithm for Resource

Provisioning in Fog Computing", International Journal of

Information Engineering and Electronic Business(IJIEEB),

Vol.8, No.1, pp.48-61, 2016. DOI:

10.5815/ijieeb.2016.01.06

Authors’ Profiles

Mohammed A. El-Shrkawey received his

B.Sc. in Electrical engineering from the

Military Technical Collage, Cairo in 1987.

He received his M. Sc. in Computer

Engineering from Faculty of Engineering,

Al Azhar University, Cairo in 2002. He

received his Ph. D. in Network Security

from Faculty of Computers& Informatics,

Cairo University in June 2007. He is currently a lecturer in

Faculty of Computers & Informatics, Suez Canal University.

Ismailia, Egypt. His current research interests are Networks,

Modeling, simulation, and Image Processing

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.%20Xiaofang%20Li.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.%20Yingchi%20Mao.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.%20Xianjian%20Xiao.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6845427
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6845427

 MLRTS: Multi-Level Real-Time Scheduling Algorithm for Load Balancing in Fog Computing Environment 15

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 2, 1-15

Hosam E Refaat: has graduated from the

Faculty of Science, Assuit University,

Egypt, in 1998. In October 2006, he

finished his Master degree in the field of

distributed systems from the faculty of

Science, Cairo University, Egypt.

Currently, he is a lecturer in Faculty of

Computers & Informatics, Suez Canal

University. Ismailia, Egypt. His current research interests are

Parallel Systems, Cloud Computing, Edge Computing, and Data

mining.

How to cite this paper: Mohamed A. Elsharkawey, Hosam E. Refaat, " MLRTS: Multi-Level Real-Time Scheduling

Algorithm for Load Balancing in Fog Computing Environment", International Journal of Modern Education and

Computer Science(IJMECS), Vol.10, No.2, pp. 1-15, 2018.DOI: 10.5815/ijmecs.2018.02.01

