
I.J. Modern Education and Computer Science, 2018, 10, 31-39
Published Online October 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2018.10.04

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 10, 31-39

Framework for Software Code Reviews and

Inspections in a Classroom Environment

Fernando Almeida
Faculty of Engineering of Oporto University, INESC TEC, Porto, Portugal

Email: almd@fe.up.pt

Received: 17 August 2018; Accepted: 05 September 2018; Published: 08 October 2018

Abstract—Code reviews and inspections have the

purpose to ensure that the code has sufficient quality to

be released. It is generally seen as an economical way of

finding errors, increase team productivity and sharing

technical and product knowledge among team members.

This approach is traditionally adopted in software

development companies, but their practices may be useful

in other contexts, such as in the process of learning

software engineering. In this sense, this study proposes an

innovative framework for conducting code reviews in a

Computer Science course. The proposed framework can

be applied in any object-oriented program language, and

it is sufficiently concise to be applied in the classroom,

namely in a 90-minute session in which all students are

invited to collaborate in this process. The findings

suggest that code reviews in an academic context can

help students to strategically reflect about the performed

work, enhance their soft skills, and increase their ability

to work in groups. On the other hand, as the main

challenges, the findings reveal that students typically

don’t have previous experience in performing inspections

and it can become difficult to perform a complete

inspection in a classroom session.

Index Terms—Code Review; Education; Learning;

Software Engineering; Software Development; Software

Quality.

I. INTRODUCTION

Software engineering is an engineering field that is

concerned with all aspects of software process, from the

initial stage of the system specification to customer

maintenance [1]. The software engineering field is

necessarily multidisciplinary and requires the knowledge

and application of various knowledge domains, such as,

design, workflow, project management, testing, databases,

quality control, requirements, architecture, programming,

cost estimation, and law and ethics.

The software development process incorporates a set of

methods, tools and processes to analyze, design and

develop software with quality and within the estimated

time frames and costs. Factors such as effort, productivity,

time, cost of development and quality are negatively

affected when software artifacts are produced due to the

work required to correct these defects. In [2,3] it is also

known that the cost of labor for defect correction

increases as the development process progresses. In this

way, initiatives to correct errors and anomalies must be

carried out as soon as possible. An approach that has

proven to be efficient and cost-effective in finding defects,

reducing effort, and improving product quality is the

review and inspection of artifacts produced throughout

the software development process [4].

Considering the need to bring academia and industry

closer together through teaching and learning of software

engineering, this study seeks to encourage the

development of code review practices among students

attending software engineering courses in higher

education. To this end, an innovative multi-dimensional

framework is proposed, which can be used by students to

analyze the maturity and quality of their software

development practices in a practical software engineering

project. The use of code reviews in the classroom and

throughout the student training process will become

important in the acquisition of good programming

practices, in the identification of the importance that the

software quality assumes in the software development

process, and in the their subsequent insertion in the labor

market.

This study has as the main research question the

exploration of the main benefits, challenges and

difficulties brought by the adoption of this framework for

code reviews. The manuscript is organized as follows:

Initially, a review of the literature on the process of

conducting code reviews, its impact at the enterprise level

and its application in the classroom is carried out. Then,

the approach followed for defining a guide for the

formulation of code reviews is presented. Subsequently,

the working methodology is presented and then the main

results of the process are presented and discussed. Finally,

the conclusions of this study are drawn.

II. LITERATURE REVIEW

The Institute of Electrical and Electronic Engineers

(IEEE) establishes five types of reviews [5]: (i)

management review, which is as a systematic evaluation

process of acquisition, development, operation and

maintenance processes performed by managers; (ii)

technical review, which is a peer review approach in

which technical qualified personnel examines the

32 Framework for Software Code Reviews and Inspections in a Classroom Environment

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 10, 31-39

software to identify discrepancies from specifications and

standards; (iii) inspections, which involve a rigorous

process to detect and correct defects; (iv) walk-through,

which incorporates joint review effort to improve product

quality in software development work; and (v) audits,

which is an internal or external review of a software

program to check its quality, progress or adherence to

plans, standards and regulations.

There are several models and formal techniques for the

execution of an inspection, such as Fagan methodology,

Glib methodology, phase inspection, scenario based

inspection method and Defect Management Oriented

Inspection (DEMAO). Traditional inspection process

defined by Fagan in 1976 is still the most used in industry,

which is composed of five iterative and sequential steps

[6]: (i) overview; (ii) preparation; (iii) inspection meeting;

(iv) rework; and (v) follow up. In [7] it is stated that the

evolution of these techniques has the following objectives:

(i) improve quality; (ii) improve efficiency; (iii) increase

reliability; (iv) reduce effort; (v) reduce time of meetings;

(vi) increase the defects detection; and (vii) reduce

complexity.

One of the most studied ways in the literature to

increase the quality of software is through the use of

software inspection. This approach is defined as a

particular type of review that can be applied to all

software artifacts and has a rigorous and well defined

defect detection process [8]. Additionally, empirical

research in this field clearly evidences that inspections

generally benefit software development process and

quality assurance [9]. Consequently, several authors have

suggested using different approaches to software

inspection to increase software quality. In [10] it is

suggested the use of formal inspection, which may be

applied to any product or partial product of the software

development process. In [11] it is proposed a system

dynamics model for simulation of the software inspection

process. Finally, in [12] it is proposed the adoption of

management and technical review techniques, which can

drastically reduce the time and costs required for testing,

debugging and reworking.

In [13] it is pointed out nine benefits offered by

software inspection practices: (i) minimize the chances of

defects reported by users; (ii) customer satisfaction is

increased; (iii) amount of productivity is also increased;

(iv) increase in-time delivery of software projects; (v)

help in meeting the committed schedules efficiently; (vi)

increase the experience and speed up the cross-training of

team member on new products; (vii) improve the

development process model; (viii) provide team building

environment; and (ix) can potentially eliminate the need

of unit testing of code, in some cases. This vision is

confirmed in [14] by stating that inspections play a

valuable role in training new employees. He advocates

that software inspections are useful for educating new

employees on the practices and processes employed in

the organization.

Inspection sessions must be pre-scheduled and planned.

In [13] it is suggested the existence of five roles: (i) the

moderator, who is the leader of inspection activity; (ii)

the author, who is responsible for the creation and

maintenance of the work product that is to be inspected;

(iii) the reader; who reads the work product to the team;

(iv) the recorder, who records the defects and issues that

were founded during the inspection activity; and (v) the

inspector, who tries to find errors in the work product. In

these roles emerge the critical function deployed by an

inspector that must be a skilled and experience individual,

typically a senior programmer.

It is also relevant to classify the type of errors, since

there may be multiple dimensions with different levels of

criticality. In [15] it is defined eight dimensions: (i)

omission; (ii) ambiguous; (iii) inconsistent; (iv)

superfluous; (v) incorrect; (vi) not-conforming to

standards; (vii) not-implementable; and (viii) risk-prone.

It is important to recognize that the same error can be

cataloged in different ways, according to the specificity

of each programming language and the way the program

is built. For instance, a global variable later declared to be

local in a given method can be considered an ambiguity

or an inconsistency, in the light of its use. It is also

important to adopt measurements to monitor and analyze

the success of an inspection. For that, in [16] it is

proposed nine key metrics: (i) total KLOC inspected; (ii)

average LOC inspected; (iii) average preparation time; (iv)

average inspection rate; (v) average effort per KLOC; (vi)

average effort fault detected; (vii) average faults detected

per KLOC; (viii) percentage of re-inspections; and (ix)

defect-removal efficiency.

Often in software field the terms code review and

software inspections are used undifferentiated. In fact, the

two terms share the same objectives, but it is important to

clarify that according to [17] they vary in amount of

planning required, the amount of formality, number of

people and number of roles. It is correct to consider that

more heavyweight approaches like software inspections

tend to be more effective because they have potential to

detect more software errors. However, this approach

tends to be less efficient due to the high consumption of

time and resources and therefore its practical use is often

impracticable [18].

There are several types of code reviews with different

scope. The evolution of new software development

processes, such as the emergence of agile methodologies

and lean programming, has also led to the emergence of

more dynamic and interactive code review models. In [19]

it is considered the existence of four code review types: (i)

over-the-shoulder, one developer is responsible to look to

the code developed by other colleague as the latter walks

through the code; (ii) email pass-around, source code

management systems emails code to reviewers

automatically; (iii) pair programming, two programmers

develop code together at the same workstation; and (iv)

tool-assisted code review, authors and reviewers use

specialized tools to assist the peer code review. At scope

level, we may find a wide range of models [19]: (i) goal

review; (ii) API/design review; (iii) maintainability

review; (iv) security review; (v) integration review; (vi)

testing review; and (vii) license review.

 Framework for Software Code Reviews and Inspections in a Classroom Environment 33

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 10, 31-39

Maintaining quality in software development is a

challenge faced by many companies. Several strategies

can be used to check software quality, such as testing,

software reviews, patterns and software metrics [20].

Furthermore, the process of conducting a code review and

its coverage are elements that influence the software

quality. This confirmation is given by [21] that establish a

taxonomy of five factors in a code review that influence

the obtained results and the quality of the software: (i)

product (e.g., size and complexity); (ii) process (e.g.,

prior defects, churn and change entropy); (iii) human

factors (e.g., total authors, minor/major authors and

authors ownership); (iv) coverage (e.g., proportion of

reviewed changes and proportion of reviewed churns);

and (v) participation (e.g., proportion of self-approved,

proportion of hastily reviewed changes and proportion of

changes without discussion). On the same direction, in

[22] it is stated that large and more complex components

are more likely to be defect-prone. Additionally, in [23] it

is referred that components that have undergone a lot of

change are likely defect-prone.

The effectiveness of code reviews is also investigated

in the literature. In [24] it is found that number of lines of

code and complexity of a program affect the effectiveness

and efficiency of code review. On the other hand, in [25]

it is stated that number of involved teams, participants

and locations generally improve reviewer contributions,

but with a severe penalty to the duration. In this sense,

several authors appear to propose strategies to increase

the effectiveness of a code review. Additionally, code

standards and informative comments are useful to ensure

consistent flow of information among teams over the

project lifecycle [26]. Furthermore, the adoption of code

review tools that can help identify some potential issues

via inspections [27].

In [28] it is summarized the top five benefits offered by

code reviews: (i) finding defects; (ii) code improvement;

(iii) look for alternative solutions; (iv) knowledge transfer;

and (iv) team awareness and transparency. Code reviews

help code to become simpler, clearer, and better

understandable [29]. Additionally, it contributes to

improve the feeling of collective code ownership. In [30]

it is explored the role of code reviews at Microsoft

through the use of an qualitative empirical study. They

concluded that code reviews can also be very useful for

new team members to learn the project design, constraints,

available tools and application programming interfaces

(APIs).

Despite unequivocal advantages associated with code

review processes that are generally identical to those

identified in software inspections, resistance to the

implementation of code reviews is still experienced in

many companies. Two primary reasons can be identified

[31]: programmer egos that tend to put obstacles in the

code to be revised by other programmers, and the hassle

of packaging source code for review and scheduling

review meetings. In [32] it is suggested the existence of

high costs associated with inspections as a technology.

Additionally, it is important to have in mind that code

reviews catch only about half of the defects [26].

Therefore, additional verification and validation (V&V)

tools and techniques are required to ensure trustworthy

code.

Studies reporting the use of code review and inspection

techniques in the classroom are very limited. One of these

studies is written by [33], in which three classroom

exercises were created to detect errors in object-oriented

systems. This study concludes that traditional reading

techniques are not appropriate in the process of

inspecting the code in large object-oriented (OO) systems,

because this development paradigm can lead to

delocalization problems. These issues emerge due to the

need to have a dynamic view of the system and a global

perception of the software. In this sense, other techniques

are suggested like the adoption of a use-case driven

strategy and creation of personalized checklists. Study

[34] invites students to participate in their own learning

process as part of a community of learners through the

adoption of code reviews. In [35] it is reported that the

use of code reviews by software engineering students

improve their own self-evaluation and confidence in their

abilities. Finally, in [36] it is included near-peer mentor

preparation and code reviews to expand capacity and

promoting students’ inclusion in introductory computer

science courses.

III. APPROACH

Several authors have proposed frameworks to conduct

a code review process. Some of these proposals are

specific to a given programming language (e.g., Java,

Python, C# / C++ and Ruby on Rails), while others take a

generic perspective and approach cross-points to all

object-oriented programming languages. There are

frameworks proposed informally by programmers,

project managers, consultants and software engineering

companies. In this study, all these proposals were not

considered, but only proposals published in books,

chapters of books, journals and indexed

international/national conferences. Additionally, code

review frameworks adopted in the context of higher

education institutions, particularly in computer science or

similar courses were considered.

In [17] it is proposed a generic code review composed

of six dimensions: (i) structure; (ii) documentation; (iii)

variables; (iv) arithmetic operations; (v) loops and

branches; and (vi) defensive programming. This latter

dimension is clearly the most innovative and basically

comprises a set of issues relating to error detection,

memory allocation and performance. In total, 35

questions are considered.

In [31] it is proposed a code review framework

composed of five dimensions: (i) documentation; (ii)

testing; (iii) error handling; (iv) thread safety; and (v)

performance. In total they propose a checklist composed

of 25 items. They also advocate that longer checklists

tend to be less effective and, therefore, they propose

keeping it down to the 20-25 most critical items [31].

In [37] it is suggested seven dimensions: (i) feature; (ii)

34 Framework for Software Code Reviews and Inspections in a Classroom Environment

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 10, 31-39

background; (iii) scenarios; (iv) tags; (v) general code; (vi)

steps; and (vii) exceptions. In total In total, 36 questions

are presented divided by seven dimensions in a relatively

asymmetric way since, for example, the "feature"

dimension has 8 items, while the "exceptions" dimension

has 2 items. Some of these items are also relatively

ambiguous and redundant, since if the code follows the

coding standards, then it must necessarily be well-

structured and consistent in style and formatting, since

this is one of the rules that must be explicitly defined in a

coding standard.

In [38] it is proposed a specific code review for

embedded systems composed of seven dimensions: (i)

function; (ii) style; (iii) architecture; (iv) exception

handling; (v) timing; (vi) validation and testing; and (vii)

hardware. Additionally, the authors suggest that each

dimension should be given to a specific reviewer and the

review should include 100-400 lines of code per 1-2 hour

review session. In total, this model proposes 62 questions,

which turn it very complete and exhaustive. It is relevant

to highlight that this model is adopted in the College of

Engineering of Carnegie Mellon University.

In [39] it is presented a specific code review guideline

that is used in the context of Java software programming

classes at the Department of Computer Science and

Software Engineering of Cal Poly College of Engineering.

The framework has ten dimensions: (i)

specification/design; (ii) initialization and declarations;

(iii) method calls; (iv) arrays; (v) object comparison; (vi)

output format; (vii) computation, comparisons and

assignments; (viii) exceptions; (ix) flow of control; and (x)

files. In total, 45 questions are proposed.

In [40] it is used in the context of a software

engineering course at Paul G. Allen School of Computer

Science & Engineering of University of Washington a

code review framework composed of five dimensions: (i)

coding standards; (ii) comments; (iii) logic; (iv) error

handling; and (v) coding decisions. This model also

proposes the existence of a section for review notes in

which the reviewer must expose the founded problems

and decisions made. In total, 35 questions were

considered.

A comparative analysis of these approaches is

performed in Table 1. For this purpose some of these

dimensions were aggregated, since they generally

approach the same items. The following acronyms are

used: “-“ means that this dimension is not found in a

given study; “Y” the dimension is explicitly mentioned in

a given study; whereas “P” means that the dimension is

only implicitly considered. The adopted terminology in

the organization of dimensions is distinct from several

authors. However, issues that are addressed in the review

process are similar among them. An example of this

situation is the concept of “defense programming”

introduced by [17] and whose practices are adopted in the

model proposed by [31,38, 40]. In fact, the last author

addresses essentially the same content, but uses "code

decisions" terminology. For instance, in this section, they

propose to analyze whether redundancy is minimized;

defensive copies are made when needed, no unnecessary

new objects are created, etc. For his part, in [37] it is

proposed the "background" and "scenarios" sections that

basically correspond to "structure" and "testing" of other

frameworks. In general terms, “structure”, “variables”

and “error handling” are the most commonly found

dimensions in a code review guideline.

Table 1. Classification and comparative analysis of code review

dimensions

Before defining the structure of code review that we

intend to adopt in the context of the computer science

course, some restrictions were defined considering the

structure of the course, students’ profile and classes’

organization. Thus, three premises must be accomplished:

(i) it must be used in the context of programming classes

for desktop, mobile and web environment; (ii) it must be

appropriate to the profile of an undergraduate student; (iii)

it should promote the increase of the quality of software

developed in the academic context; and (iv) it must have

a reduced size, 20 - 25 most critical item as suggested by

[31], so that it is not an inhibiting element of learning and

can be carried out in a 90-minutes session.

Table 2 presents the adopted framework that has been

utilized during the last three academic years. The

framework has 25 questions organized in seven

dimensions. In the "feature" dimension, we intend to

verify the code's compliance with the functional

requirements and architecture of the application. This

section is considered absolutely essential in the process of

teaching software engineering, since it is crucial that

students realize the importance of the requirements

capture process and its correct mapping with the code. In

the "structure dimension" the importance of coding

standards is emphasized, which is also a document that

students should prepare before starting their group work.

In the third dimension, we organized together the

variables, operations, loops and branches elements, since

they are related to technical decisions of the code

implementation. "Error handling" is also another

dimension contemplated in framework, which becomes

Dimension

R
ef

 [
1

7
]

R
ef

 [
3

1
]

R
ef

 [
3

7
]

R
ef

 [
3

8
]

R
ef

 [
3

9
]

R
ef

 [
4

0
]

Structure Y P Y P Y P

Documentation Y Y - - - Y

Variables Y P P P Y P

Arithmetic

operations

Y P - P Y P

Loops and

branches

Y Y - P Y P

Defensive

programming

Y P - P - Y

Testing - Y P Y - P

Error handling P Y Y Y Y Y

Performance P Y - Y - -

Feature P - Y Y Y -

Output format P - - - Y -

Files Y - - - Y Y

Coding standards Y - Y - - Y

Hardware - - - Y - -

 Framework for Software Code Reviews and Inspections in a Classroom Environment 35

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 10, 31-39

fundamental in the process of increasing the quality of the

code. Subsequently, appears the "documentation" section,

which is a key element in the code maintenance process.

"Testing" is another element considered fundamental,

namely the existence of unit tests on the developed code.

Finally, "performance" is also another dimension

addressed by several studies. This last dimension tries to

instill in the students at an early age the need to have the

code properly developed considering demanding

scenarios, in which the capacity of the device is limited or

the system must offer a real response time.

IV. METHODOLOGY

The methodology is divided into four phases as

presented in Fig. 1. In the preliminary stage, a review of

the literature on code reviews and inspections is carried

out, in which it is intended to explore the importance of

these techniques in the software engineering field.

Additionally, this phase intends to perform a comparative

analysis of proposals for structuring code reviews

according to several dimensions. Then, in the conceptual

phase, the adopted framework for academic code reviews

is presented. Subsequently, in the exploitation stage, an

empirical study of the application of the previously

formulated framework proposal is performed. Finally, in

the fieldwork stage, the benefits, challenges and

limitations of this approach are explored.

Fig.1. Research methodology

The empirical study occurred during the last three

academic years, since 2015/16 to 2017/18. It took place

in a University environment using 3rd year Computer

Science students who had during their academic journey

two years of programming experience in Java, C# and

PHP. The students are distributed by several teams, in

which each team there is a project manager, two software

analysts and between 3 and 4 programmers. The waterfall

methodology is used in the software development process.

In the process of conducting the inspection the code is

presented by the student who assumes the role of project

manager, in which follows the guide of table 2. The

inspection is done in the classroom in a session of 90

minutes. The dimension of the teams and objectives of

each project is described in table 3. The technologies

adopted in the development of the project were the same

despite the distinct objectives of each project in each

academic year.

Table 2. Adopted framework for academic code reviews

The students' opinion collection was captured after the

conclusion process of each code review. In each

academic year two code reviews were established: one of

them after three months of the project initiation; the last

code review, two weeks before the delivery of the project.

This model is common for the 3 academic years. The

programmers responsible for the development of the code

are responsible to prepare the source code for review,

which implies format and document properly the source

code.

A key question in the process of performing a code

review is to define what sections should be included or

not in the review process. We generally adopt the

recommendations suggested by [17] that best suitable

sections to be included in code reviews include complex

Feature

F1. Does the code completely and correctly implement the

functional requirements?

F2. Does the code fit the architecture’s design?

F3. Is there any excess functionality in the code but not described in

the specification?

Structure

S1. Does the code conform to any pertinent coding standards?

S2. Are any modules excessively complex and should be

restructured or split into multiple routines?

S3. Can any code be replaced by calls to external reusable

components or library functions?

Variables, Operations, Loops and Branches

VOLB1. Do all assigned variables have proper type consistency or

casting?

VOLB2. Are there any redundant or unused variables?

VOLB3. Does the code systematically prevent rounding errors?

VOLB4. Are divisors tested for zero or noise?

VOLB5. Are all loops, branches, and logic constructs complete,

correct, and properly nested?

VOLB6. Are indexes or subscripts properly initialized, just prior to

the loop?

Error handling

EH1. Are input parameters checked for proper values?

EH2. Are error messages understandable and complete?

EH3. Are all relevant exceptions caught?

Documentation

D1. Is the code clearly and adequately documented with an easy-to-

maintain commenting style?

D2. Are complex algorithms and routines properly explained and

justified?

D3. Are all comments consistent with the code?

Testing

T1. Do unit tests have 100% branch coverage?

T2. Are all interfaces tested, including all exceptions?

T3. Does the code provide convenient ways to inject faulty

conditions for testing?

Performance

P1. Is every memory allocation deallocated?

P2. Is memory usage acceptable even with large inputs?

P3. Can better data structures or more efficient algorithms be used?

P4. Has code readability been sacrificed for unnecessary

optimization?

36 Framework for Software Code Reviews and Inspections in a Classroom Environment

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 10, 31-39

logic code, implementation of algorithms, and code

whose bad construction has a significant impact on the

overall system. This study just doesn’t follow the

recommendation to choose code typically designed by

new or inexperienced team members, because in

academic context we consider that all students have

similar maturity in code development. On the other side,

reused code, repeated parts of code and parts of the code

that, if faulty, are not expected to affect functionality.

In order to evaluate the development process of the

code reviews a qualitative approach was used through the

adoption of semi-structured interviews. The qualitative

methodology allows an in-depth analysis of the data in

order to perceive the behaviors and tendencies of a target

audience. This detailed exploration approach allows a

deeper understanding of the causes of a given behavior,

which is one of the main advantages associated with this

research method [41].

Table 4 presents the guide for the development of the

interviews, which is grouped in three dimensions: (i)

contextual; (ii) evaluative; and (iii) strategic. Semi-

structured interviews are especially recommended for

group interviews and allow a more systematic treatment

of the data [42,43]. Additionally, it allows the

introduction of new informal questions throughout the

interview according to the feedback received by each

group.

Table 3. Description of the projects and involved teams

Table 4. Interview’ structure

V. RESULTS AND DISCUSSION

A. Contextual dimension

Q1: What is the state of project’ development?

A contextual aspect that was initially assessed is the

state of development of the source code at the time of the

code review. In each academic year two code reviews

were carried out at two key moments in the project

development process (i.e., one after 3 months of the

project’ kickoff, the other two weeks before project

delivery). Despite the difference between the objectives

of each project, the following common events occurred:

• After 3 months of project start-up in all academic

years, there were significant delays in developing the

code at this stage. Two reasons conditioned the

development of the code: (i) time needed by the students

to analyze the requirements, definition of the system

architecture and design of the database; and (ii) students'

level of knowledge in object-oriented programming was

reduced despite prior academic programming experience

in Java, C# and PHP. This situation occurs because the

programming knowledge in object-oriented languages

was essentially explored in the resolution of small

exercises, without the need to build a project that requests

integration of different technologies;

• At the time of the last code review, there were very

heterogeneous levels of development of the source code,

particularly in the 2016/17 academic year, in which one

group had only implemented less than 50% of the

functional requirements defined in the project’ kickoff.

The main reason is the difficulty experienced by students

in attending various curricular units in parallel with

numerous written and practical assessment tests.

Q2: What is the team's involvement in the project?

It was verified, as mentioned in the previous point,

delays in the development of the projects. In fact, only 2

out of 7 projects were able to implement all the functional

requirements within the deadlines defined by the school

calendar (one semester). The involvement of students in

each project was conditioned by the frequency in the

course of students with some curricular units in arrears,

which strongly conditioned the students' willingness to

attend all classes. In these groups more delays in the

development of the project occurred. Synchronous and

asynchronous communication technologies, such as chats,

forums, and social networks, helped to mitigate this issue.

B. Evaluative dimension

Q3: What is the result of the evaluation adopted the

proposed framework?

The results obtained by the students' participation in

the code review give us some relevant indicators that

should be analyzed in each of the phases.

• Phase I (first code review after 3 months of project’

kick-off) – due to delays across all groups, the response

to some of the code review questions is inconclusive. In

three groups it was verified that the architecture of the

Academic

year

Students Project goal

2015/16

2 groups of

7 students

The goal of this project is to

develop a loyalty card application

for a supermarket. The concession

of discounts to the customer is

based on the type of products

purchased by them and the

existence of promotional

campaigns.

2016/17

2 groups of

7 students

This project provides a car-sharing

solution. With this application the

user can rent a vehicle during a

period of time. This application

helps the customer in the process of

choosing the best car service and

vehicle suited to his/her needs.

2017/18

3 groups of

6 students

This project has developed an

application that aims to assist in the

process of composing software

development teams. To this end,

this application helps software

engineering companies to formulate

a Scrum team consisting of product

owner, Scrum master and Scrum

team.

Dimension Questions

Contextual Q1. What is the state of project’ development?

Q2. What is the team's involvement in the

project?

Evaluative Q3. What is the result of the evaluation adopted

the proposed framework?

Strategic Q4. What are the main benefits of adopting the

framework?

Q5. What are the main challenges and limitations

of adopting the framework?

 Framework for Software Code Reviews and Inspections in a Classroom Environment 37

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 10, 31-39

application was incomplete, namely in the definition of

the logical architecture and in the design of the database.

Despite this, and through the code developed by each

group at this stage, there was a complete correction in the

consistent use of the type of variables and in the

documentation of the produced code. These were the two

main positive indicators collected in this first code review

held in each academic year;

• Phase II (second code review realized two weeks

before project delivery) – the obtained results allow us to

verify that: (i) not all functional requirements were

implemented in the projects. This situation was not

critical, since there was a concern in the prioritization of

the implementation of the requirements, and was given

preference to the implementation of high and medium

priority requirements; (ii) new functional requirements

emerged throughout the project development phase, being

reflected in the code produced, but not in the

specification and modeling of the requirements; (iii)

substantial part of the implemented algorithms resulted in

overly complex and redundant code that could be

replaced using reusable components or library functions;

(iv) approximately half of the projects used explicit

conversions of the data type and their majority (5 in 7

groups) used redundant variables or global variables

without any valid reason; and (v) most of the groups

focused their attention on code production without

considering the importance of generating automatic unit

tests, interface tests, robustness tests, among other kind of

tests.

C. Strategic dimension

Q4: What are the main benefits of adopting the

framework?

The benefits reported by students are globally common

to the benefits summarized in the literature review.

Among them are the benefits related to improving the

final quality of the code, finding alternative solutions to

the same problem and improving the code readability.

Several students pointed out that comments in the code

were only included motivated by the existence of code

reviews. Additionally, code review helps students to

follow coding standards compliance which helps them to

maintain a consistent coding style. In the project of this

last academic year was also pointed out by one of the

groups that the code review helped them to find problems

in little executed parts of the code, which was not covered

by the specified unit tests.

Other encountered benefits appear in the context of the

application of code reviews in the classroom. Students

stated that it was very important to perform the code

review in a 90-minute class. Its realization in a classroom

was also considered very important because it allowed

the presence of all students. These sessions allowed the

students to look critically at the work produced,

something that is typically not explored in the classroom

context. It was stressed by the students the importance of

the existence of moments that allow an informal

reflection and evaluation of the work produced during the

semester, without the need for a quantitative evaluation.

Increasing cohesion within the working group was

another relevant benefit. All teams noted difficulties

experienced by some students in dealing with the

pressure and manage their soft skills. At critical moments

of the project, particularly those close to milestones,

some fragmentation within these groups was felt. Code

review discussions helped to save team members from

isolation and bring them closer to each other.

Additionally, it was pointed out transversally that the

code review sessions were fun and helped the students to

feel more involved with the project. Finally, all groups

indicated that mistakes made in code development served

as individual and collective learning so that the same

mistakes were not made in future projects, particularly in

the context of other curricular units offered by the

Computer Science course.

Q5: What are the main challenges and limitations of

adopting the framework?

The challenges and limitations found by [31,32] related

to the existence of egos, problems of packing source code

for review, and the existence of high costs were not

verified in this study. All students that assumed the role

of programmers in their teams expressed total openness

to let the code being analyzed by their colleagues. They

looked at code reviews as a helpful process for code

improvement. In addition, no difficulties were

experienced in preparing the code for review because

Apache Subversion was used as a version control system.

However, other challenges and difficulties were

experienced in the operationalization of classroom

inspections. At the time of the 1st code review, it was

verified that most of the groups had developed little code,

so that the result obtained with this first code review was

generically common among all groups. Most of the

groups mainly inspected the user authentication process

and introduced code improvements to ensure password

encryption in the database and exception handling in the

application. The scenario changed considerably when the

2nd code review was performed, in which the amount of

code developed was already significantly larger. However,

due to this situation, it was not possible to review the

entire code in a 90-minute session. As solution, in the

process of conduction the review, preference was given to

high priority requirements. Another difficulty was the

students' lack of experience in performing software

inspections. It was the first time they came into contact

with this reality and, therefore, doubts emerged that were

clarified in the classroom. This first experience faced by

students was emphasized by them as being very positive

and that surely will help them in the future to have a

better performance in future code reviews in academic

and business context.

38 Framework for Software Code Reviews and Inspections in a Classroom Environment

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 10, 31-39

VI. CONCLUSIONS

Code review is a software review practice that has been

used by several software development companies.

Generally, it consists of some or all members of a

software development team reviewing a colleague's code

before integrating it into the production version of the

code. Several benefits have been generically associated

with this practice as an economical way of finding errors,

improving code quality, increasing productivity and

sharing product knowledge. However, this technique has

been little explored in the classroom and, therefore, this

study proposes a framework for conducting code reviews

in a Computer Science course.

The results suggest that the benefits of using code

reviews in a classroom environment are generically

similar to those found in project management teams in

business environments. In addition to these benefits, it is

important to recognize the importance that these code

reviews can have in the students' reflection on the

developed work, in the development of soft skills, in

teamwork and in individual and collective perception that

these mistakes can help them throughout the course. On

the other hand, as the main challenges, we have the

difficulty of its operationalization in the classroom in due

time, especially when the volume of code produced is

high, and the students’ lack of experience in performing

code inspections.

The practical implications of this study are substantial

for Computer Science courses since we advocate that

code reviews should be encouraged in the classroom. In

software projects of medium-high complexity, in which

the development of software takes the entire semester, it

is important to have code reviews that assist the code

development process and contribute to the cohesion of

working groups. Given the obtained results, it can be

verified that the number of code reviews performed was

insufficient, being recommended the existence of code

reviews more uniformly distributed in the last months of

the project. It may make more sense to have code reviews

when the implementation of functional requirements is

completed and not in fixed positions in time.

As future work we intend to explore the inclusion of

code reviews in agile development environments. We

also intend to explore the use of automated code review

tools and formulate a model in which it is possible to

jointly use the combination of manual and automated

efforts.

REFERENCES

[1] I. Sommerville, Software Engineering. Pearson Education,

2015.

[2] M. Zhivich and R. Cunningham, “The Real Cost of

Software Errors”, Secure Systems, vol. March/April, pp.

87-90, 2009.

[3] L. Bergmane, J. Grabis and E. Zeiris, “A Case Study:

Software Defect Root Causes”, Information Technology

and Management Science, vol. 20, pp. 54-57, 2017.

[4] J. Dooley, Walkthroughs, Code Reviews, and Inspections.

Apress, 2011.

[5] IEEE, “IEEE Standard for Software Reviews and Audits”,

IEEE Standards. Retrieved 2018, May 28, from

https://ieeexplore.ieee.org/document/4601584/

[6] A. Mishra and H. Shukla, “Software Inspection: An

Overview”, International Journal of Advanced

Computational Engineering and Networking, vol. 1, no. 5,

pp. 32-34, 2013.

[7] A. Qazi, S. Shahzadi and M. Humayun, “A Comparative

Study of Software Inspection Techniques for Quality

Perspective”, International Journal of Modern Education

and Computer Science, vol. 10, pp. 9-16, 2016.

[8] Y. Zhu, Software Reading Techniques: Twenty

Techniques for More Effective Software Review and

Inspection. Apress, 2016.

[9] S. Kollanus and J. Koskinen, “Survey of Software

Inspection Research”, The Open Software Engineering

Journal, vol. 3, pp. 15-34, 2009.

[10] T. Devi, “Improving Quality of Software through Formal

Inspection”, International Journal of Engineering

Research and Application (IJERA), vol. 2, no. 1, pp. 552-

557, 2012.

[11] J. Coelho, J. Braga and B. Ambrósio, “System dynamics

model for simulation of the software inspection process”,

ACM SIGSOFT Software Engineering Notes, vol. 38, no.

5, pp. 1-8, 2013.

[12] I. Akpannah, “Optimization of Software Quality using

Management and Technical Review Techniques”,

International Journal of Computer Trends and Technology

(IJCTI), vol. 17, no. 6, pp. 304-309, 2014.

[13] A. Ahad, Z. Ullah, L. Tariq and S. Niaz, “Software

Inspections and Their Role in Software Quality

Assurance”, American Journal of Software Engineering

and Applications, vol. 6, no. 4, pp. 105-110, 2017.

[14] G. O’Regan, A Practical Approach to Software Quality.

Springer-Verlag, 2012.

[15] A. Alshazly, A. Elfatatry and M. Abougabal, “Detecting

defects in software requirements specification”,

Alexandria Engineering Journal, vol. 53, pp. 513-527,

2014.

[16] G. Huzooree and V. Ramdoo, “Evaluation of Code

Inspection on an Outsourced Software Project in

Mauritius”, International Journal of Computer

Applications, vol. 113, no. 10, pp. 39-44, 2015.

[17] K. Wiegers, Peer Reviews in Software: A Practical Guide.

Addison-Wesley Professional, 2001.

[18] L. Copeland, A Practitioner’s Guide to Software Test

Design. Artech House, 2013.

[19] A. Bhuyan, “Code Review Principles, Processes and

Tools”, Retrieved 2018, May 29, from

https://www.scribd.com/document/291887013/Code-

Review-Principles-Process-and-Tools

[20] D. Galin, Software Quality: Concepts and Practice.

Wiley-IEEE Computer Society, 2018.

[21] S. McIntosh, Y. Kamei, B. Adams and A. Hassan, “The

impact of code review coverage and code review

participation on software quality: a case study of the qt,

VTK, and ITK projects”, Proceedings of the 11th

Working Conference on Mining Software Repositories,

Hyderabad, India, pp. 192-201, 2014.

[22] A. Koru, D. Zhang, K. Eman and H. Liu, “An

Investigation into the Functional Form of the Size-Defect

Relationship for Software Modules”, Transactions on

Software Engineering (TSE), vol. 35, no. 2, pp. 293-304,

2009.

[23] N. Nagappan and T. Ball, “Using Software Dependencies

and Churn Metrics to Predict Field Failures: An Empirical

https://ieeexplore.ieee.org/document/4601584/
https://www.scribd.com/document/291887013/Code-Review-Principles-Process-and-Tools
https://www.scribd.com/document/291887013/Code-Review-Principles-Process-and-Tools

 Framework for Software Code Reviews and Inspections in a Classroom Environment 39

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 10, 31-39

Case Study”, Proceedings of the 1st International

Symposium on Empirical Software Engineering and

Measurement (ESEM), Madrid, Spain, pp. 364-373, 2007.

[24] S. Ahmed and R. Purohit, “Evaluating Efficiency and

Effectiveness of Code Reading Technique with an

Emphasis on Enhancing Software Quality”, International

Journal of Computer Applications, vol. 2, pp. 32-36, 2014.

[25] E. Santos and I. Nunes, “Investigating the Effectiveness of

Peer Code Review in Distributed Software Development”,

Proceedings of the 31st Brazilian Symposium on Software

Engineering, Fortaleza, Brazil, pp. 84-93, 2017.

[26] S. Nelson and J. Schumann, “What makes a Code Review

Trustworthy?”, Proceedings of the Thirty-Seventh Annual

Hawaii Int. Conf. on System Sciences (HICSS-37), Hawaii,

USA, pp. 1-10. 2004.

[27] T. Gee, “Ways to Make Code Reviews More Effective”,

Retrieved 2018, May 30, from

https://www.infoq.com/articles/effective-code-reviews

[28] A. Bacchelli and C. Bird, “Expectations, outcomes, and

challenges of modern code review”, Proceedings of the

2013 International Conference on Software Engineering,

San Francisco, USA, pp. 712-721, 2013.

[29] J. McCrary, “An Effective Code Review Process”,

Retrieved 2018, May 30, from

https://jakemccrary.com/blog/2014/12/09/an-effective-

code-review-process/

[30] A. Bosu, M. Greiler and C. Bird, “Characteristics of

useful code reviews: an empirical study at Microsoft”,

Proceedings of the 12th Working Conference on Mining

Software Repositories, Florence, Italy, pp. 146-156, 2015.

[31] J. Cohen, S. Teleki and E. Brown, Best kept secrets of

peer code review. SmartBear Software, 2013.

[32] N. Fogelström and T. Gorschek, “Test-case Driven versus

Checklist-based Inspections of Software Requirements –

An Experimental Evaluation”, Retrieved 2018, May 29,

from

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.

218.5538

[33] A. Dunsmore, M. Roper and M. Wood, “Practical Code

Inspection Techniques for Object-Oriented Systems: An

Experimental Comparison”, IEEE Software, vol. 20, no. 4,

pp. 21-29, 2003.

[34] H. Sondergaard and R. Mulder, “Collaborative learning

through formative peer review: Pedagogy, programs and

potential”, Computer Science Education, vol. 22, pp. 343-

467, 2012.

[35] Y. Wang, H. Li, Y. Feng, Y. Jiang and Y. Liu,

“Assessment of programming language learning based on

peer code review model: Implementation and experience

report”, Computers & Education, vol. 59, pp. 412-422,

2012.

[36] H. Pon-Barry, B. Packard and A. John, “Expanding

capacity and promoting inclusion in introductory

computer science: a focus on near-peer mentor

preparation and code review”, Computer Science

Education, vol. 27, no. 1, pp. 54-77, 2017.

[37] C. Van Bael, “Feature Review Checklist”, Retrieved 2018,

June 22, from https://www.polteq.com/wp-

content/uploads/2016/06/Gherkin-Checklists-1.pdf

[38] G. Khattak and P. Koopman, “Embedded System Code

Review Checklist”, Retrieved 2018, June 22, from

https://users.ece.cmu.edu/~koopman/pubs/code_review_c

hecklist_v1_00.pdf

[39] J. Dalbey, “Code Review Checklist – Java”, Retrieved

2018, June 22, from

http://users.csc.calpoly.edu/~jdalbey/301/Forms/CodeRev

iewChecklistJava.doc

[40] M. Ernst, “Code Review Framework”, Retrieved 2018,

June 22, from https://homes.cs.washington.edu/

[41] C. Marshall and G. Rossman, Designing Qualitative

Research. SAGE Publications, 2015.

[42] S. Oltmann, “Qualitative Interviews: A Methodological

Discussion of the Interviewer and Respondent Contexts”,

Forum: Qualitative Social Research, vol. 17, no. 2, art. 15,

2016.

[43] A. Queirós, D. Faria and F. Almeida, “Strengths and

Limitation of Qualitative and Quantitative Research

Methods”, European Journal of Education Studies, vol. 3,

no. 9, pp. 369-387, 2017.

Author’s Profile

Fernando Almeida is a lecturer at

Polythecnic Institute of Gaya and

researcher at University of Porto and

INESC TEC. He holds a PhD. in

Computer Science Engineering and a MSc.

in Innovation and Entrepreneurship. His

current research areas include software

engineering, agile development and

innovation policies.

How to cite this paper: Fernando Almeida, " Framework for Software Code Reviews and Inspections in a Classroom

Environment", International Journal of Modern Education and Computer Science(IJMECS), Vol.10, No.10, pp. 31-39,

2018.DOI: 10.5815/ijmecs.2018.10.04

https://www.infoq.com/articles/effective-code-reviews
https://jakemccrary.com/blog/2014/12/09/an-effective-code-review-process/
https://jakemccrary.com/blog/2014/12/09/an-effective-code-review-process/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.218.5538
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.218.5538
https://www.polteq.com/wp-content/uploads/2016/06/Gherkin-Checklists-1.pdf
https://www.polteq.com/wp-content/uploads/2016/06/Gherkin-Checklists-1.pdf
https://users.ece.cmu.edu/~koopman/pubs/code_review_checklist_v1_00.pdf
https://users.ece.cmu.edu/~koopman/pubs/code_review_checklist_v1_00.pdf
http://users.csc.calpoly.edu/~jdalbey/301/Forms/CodeReviewChecklistJava.doc
http://users.csc.calpoly.edu/~jdalbey/301/Forms/CodeReviewChecklistJava.doc
https://homes.cs.washington.edu/

